
Suricata User Guide
Release 8.0.0

OISF

Jul 08, 2025

CONTENTS

1 What is Suricata 3
1.1 About the Open Information Security Foundation . 3

2 Quickstart guide 5
2.1 Installation . 5
2.2 Basic setup . 5
2.3 Signatures . 6
2.4 Running Suricata . 6
2.5 Alerting . 7
2.6 EVE Json . 7

3 Installation 9
3.1 Source . 9
3.2 Binary packages . 12
3.3 Advanced Installation . 16

4 Upgrading 17
4.1 General instructions . 17
4.2 Upgrading 7.0 to 8.0 . 17
4.3 Upgrading 6.0 to 7.0 . 21
4.4 Upgrading 5.0 to 6.0 . 23
4.5 Upgrading 4.1 to 5.0 . 24

5 Security Considerations 25
5.1 Running as a User Other Than Root . 25
5.2 Containers . 27

6 Support Status 29
6.1 Levels of Support . 29
6.2 Distributions . 30
6.3 Architecture Support . 31

7 Command Line Options 33
7.1 Unit Tests . 37

8 Suricata Rules 39
8.1 Rules Format . 39
8.2 Meta Keywords . 46
8.3 IP Keywords . 50
8.4 TCP keywords . 55
8.5 UDP keywords . 59

i

8.6 ICMP keywords . 59
8.7 Payload Keywords . 63
8.8 Integer Keywords . 86
8.9 Transformations . 88
8.10 Prefiltering Keywords . 94
8.11 Flow Keywords . 97
8.12 Bypass Keyword . 104
8.13 HTTP Keywords . 105
8.14 File Keywords . 124
8.15 DNS Keywords . 129
8.16 mDNS Keywords . 133
8.17 SSL/TLS Keywords . 134
8.18 SSH Keywords . 140
8.19 JA3/JA4 Keywords . 143
8.20 Modbus Keyword . 144
8.21 DCERPC Keywords . 147
8.22 DHCP keywords . 148
8.23 DNP3 Keywords . 149
8.24 ENIP/CIP Keywords . 152
8.25 FTP/FTP-DATA Keywords . 157
8.26 Kerberos Keywords . 161
8.27 SMB Keywords . 163
8.28 SNMP keywords . 166
8.29 Base64 keywords . 168
8.30 SIP Keywords . 169
8.31 SDP Keywords . 175
8.32 RFB Keywords . 182
8.33 MQTT Keywords . 183
8.34 IKE Keywords . 188
8.35 HTTP2 Keywords . 191
8.36 Quic Keywords . 193
8.37 NFS Keywords . 194
8.38 SMTP Keywords . 194
8.39 WebSocket Keywords . 196
8.40 Generic App Layer Keywords . 197
8.41 Generic Decode Layer Keywords . 199
8.42 Xbits Keyword . 200
8.43 Alert Keywords . 202
8.44 Thresholding Keywords . 203
8.45 IP Reputation Keyword . 205
8.46 IP Addresses Match . 207
8.47 Config Rules . 207
8.48 Datasets . 208
8.49 Lua Scripting for Detection . 217
8.50 Differences From Snort . 220
8.51 Multiple Buffer Matching . 230
8.52 Tag . 232
8.53 VLAN Keywords . 234
8.54 LDAP Keywords . 236
8.55 PGSQL Keywords . 245
8.56 Rule Types and Categorization . 245
8.57 Email Keywords . 268

9 Rule Management 273

ii

9.1 Rule Management with Suricata-Update . 273
9.2 Adding Your Own Rules . 275
9.3 Rule Reloads . 276
9.4 Rules Profiling . 277

10 Making sense out of Alerts 279

11 Performance 281
11.1 Runmodes . 281
11.2 Packet Capture . 286
11.3 Tuning Considerations . 288
11.4 Hyperscan . 290
11.5 High Performance Configuration . 291
11.6 Statistics . 297
11.7 Ignoring Traffic . 300
11.8 Packet Profiling . 302
11.9 Rule Profiling . 303
11.10 Tcmalloc . 304
11.11 Performance Analysis . 304

12 Configuration 309
12.1 Suricata.yaml . 309
12.2 Global-Thresholds . 372
12.3 Exception Policies . 375
12.4 Snort.conf to Suricata.yaml . 380
12.5 Multi Tenancy . 385
12.6 Dropping Privileges After Startup . 389
12.7 Using Landlock LSM . 389
12.8 systemd notification . 390
12.9 Includes . 391

13 Reputation 393
13.1 IP Reputation . 393

14 Init Scripts 397

15 Setting up IPS/inline for Linux 399
15.1 Setting up IPS with Netfilter . 399
15.2 Setting up IPS at Layer 2 . 403

16 Setting up IPS/inline for Windows 409

17 Output 411
17.1 EVE . 411
17.2 Lua Output . 494
17.3 Syslog Alerting Compatibility . 496
17.4 Custom http logging . 497
17.5 Custom tls logging . 498
17.6 Log Rotation . 499

18 Lua support 501
18.1 Lua usage in Suricata . 501
18.2 Lua functions . 501
18.3 Lua Libraries . 503

iii

19 File Extraction 543
19.1 Architecture . 543
19.2 Settings . 543
19.3 Output . 544
19.4 Rules . 545
19.5 MD5 . 545
19.6 Updating Filestore Configuration . 548

20 Public Data Sets 549

21 Using Capture Hardware 551
21.1 Endace DAG . 551
21.2 Napatech . 552
21.3 Myricom . 560
21.4 eBPF and XDP . 562
21.5 Netmap . 573
21.6 AF_XDP . 576
21.7 DPDK . 581
21.8 PCAP File Reading . 585

22 Interacting via Unix Socket 587
22.1 Introduction . 587
22.2 Commands in standard running mode . 587
22.3 Commands on the cmd prompt . 589
22.4 PCAP processing mode . 589
22.5 Build your own client . 590

23 Plugins 593
23.1 nDPI . 593

24 Firewall Mode 595
24.1 Firewall Mode Design . 595
24.2 Firewall Ruleset Examples . 599

25 3rd Party Integration 603
25.1 Symantec SSL Visibility (BlueCoat) . 603

26 Man Pages 605
26.1 Suricata . 605
26.2 Suricata Socket Control . 611
26.3 Suricata Control . 613
26.4 Suricata Control Filestore . 614

27 Acknowledgements 617

28 Licenses 621
28.1 GNU General Public License . 621
28.2 Creative Commons Attribution-NonCommercial 4.0 International Public License 625
28.3 Suricata Source Code . 629
28.4 Suricata Documentation . 629

29 Suricata Developer Guide 631
29.1 Working with the Codebase . 631
29.2 Contributing . 654
29.3 Suricata Internals . 665
29.4 Extending Suricata . 667

iv

29.5 LibSuricata and Plugins . 690
29.6 Upgrading . 691

30 Verifying Suricata Source Distribution Files 693
30.1 Verification Steps . 693

31 Appendix 695
31.1 EVE JSON Schema . 695
31.2 EVE Index . 696

Bibliography 795

Index 797

v

vi

Suricata User Guide, Release 8.0.0

This is the documentation for Suricata 8.0.0.

CONTENTS 1

Suricata User Guide, Release 8.0.0

2 CONTENTS

CHAPTER

ONE

WHAT IS SURICATA

Suricata is a high performance Network IDS, IPS and Network Security Monitoring engine. It is open source and owned
by a community-run non-profit foundation, the Open Information Security Foundation (OISF). Suricata is developed
by the OISF.

1.1 About the Open Information Security Foundation

The Open Information Security Foundation is a non-profit foundation organized to build community and to support
open-source security technologies like Suricata, the world-class IDS/IPS engine.

1.1.1 License

The Suricata source code is licensed under version 2 of the GNU General Public License.

This documentation is licensed under the Creative Commons Attribution-NonCommercial 4.0 International Public
License.

3

https://oisf.net

Suricata User Guide, Release 8.0.0

4 Chapter 1. What is Suricata

CHAPTER

TWO

QUICKSTART GUIDE

This guide will give you a quick start to run Suricata and will focus only on the basics. For more details, read through
the more specific chapters.

2.1 Installation

It's assumed that you run a recent Ubuntu release as the official PPA can then be used for the installation. To install the
latest stable Suricata version, follow the steps:

sudo apt-get install software-properties-common
sudo add-apt-repository ppa:oisf/suricata-stable
sudo apt update
sudo apt install suricata jq

The dedicated PPA repository is added, and after updating the index, Suricata can be installed. We recommend installing
the jq tool at this time as it will help with displaying information from Suricata's EVE JSON output (described later
in this guide).

For the installation on other systems or to use specific compile options see Installation.

After installing Suricata, you can check which version of Suricata you have running and with what options, as well as
the service state:

sudo suricata --build-info
sudo systemctl status suricata

2.2 Basic setup

First, determine the interface(s) and IP address(es) on which Suricata should be inspecting network packets:

$ ip addr

2: enp1s0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc fq_codel state UP group␣
→˓default qlen 1000
link/ether 00:11:22:33:44:55 brd ff:ff:ff:ff:ff:ff
inet 10.0.0.23/24 brd 10.23.0.255 scope global noprefixroute enp1s0

Use that information to configure Suricata:

5

Suricata User Guide, Release 8.0.0

sudo vim /etc/suricata/suricata.yaml

There are many possible configuration options, we focus on the setup of the HOME_NET variable and the network inter-
face configuration. The HOME_NET variable should include, in most scenarios, the IP address of the monitored interface
and all the local networks in use. The default already includes the RFC 1918 networks. In this example 10.0.0.23 is
already included within 10.0.0.0/8. If no other networks are used the other predefined values can be removed.

In this example the interface name is enp1s0 so the interface name in the af-packet section needs to match. An
example interface config might look like this:

Capture settings:

af-packet:
- interface: enp1s0
cluster-id: 99
cluster-type: cluster_flow
defrag: yes
tpacket-v3: yes

This configuration uses the most recent recommended settings for the IDS runmode for basic setups. There are many
of possible configuration options which are described in dedicated chapters and are especially relevant for high perfor-
mance setups.

2.3 Signatures

Suricata uses Signatures to trigger alerts so it's necessary to install those and keep them updated. Signatures are also
called rules, thus the name rule-files. With the tool suricata-update rules can be fetched, updated and managed to
be provided for Suricata.

In this guide we just run the default mode which fetches the ET Open ruleset:

sudo suricata-update

Afterwards the rules are installed at /var/lib/suricata/rules which is also the default at the config and uses the
sole suricata.rules file.

2.4 Running Suricata

With the rules installed, Suricata can run properly and thus we restart it:

sudo systemctl restart suricata

To make sure Suricata is running check the Suricata log:

sudo tail /var/log/suricata/suricata.log

The last line will be similar to this:

<Notice> - all 4 packet processing threads, 4 management threads initialized, engine␣
→˓started.

6 Chapter 2. Quickstart guide

Suricata User Guide, Release 8.0.0

The actual thread count will depend on the system and the configuration.

To see statistics, check the stats.log file:

sudo tail -f /var/log/suricata/stats.log

By default, it is updated every 8 seconds to show updated values with the current state, like how many packets have
been processed and what type of traffic was decoded.

2.5 Alerting

To test the IDS functionality of Suricata it's best to test with a signature. The signature with ID 2100498 from the ET
Open ruleset is written specific for such test cases.

2100498:

alert ip any any -> any any (msg:"GPL ATTACK_RESPONSE id check returned root"; content:
→˓"uid=0|28|root|29|"; classtype:bad-unknown; sid:2100498; rev:7; metadata:created_at␣
→˓2010_09_23, updated_at 2010_09_23;)

The syntax and logic behind those signatures is covered in other chapters. This will alert on any IP traffic that has the
content within its payload. This rule can be triggered quite easy. Before we trigger it, start tail to see updates to
fast.log.

Rule trigger:

sudo tail -f /var/log/suricata/fast.log
curl http://testmynids.org/uid/index.html

The following output should now be seen in the log:

[1:2100498:7] GPL ATTACK_RESPONSE id check returned root [**] [Classification:␣
→˓Potentially Bad Traffic] [Priority: 2] {TCP} 217.160.0.187:80 -> 10.0.0.23:41618

This should include the timestamp and the IP of your system.

2.6 EVE Json

The more advanced output is the EVE JSON output which is explained in detail in Eve JSON Output. To see what this
looks like it's recommended to use jq to parse the JSON output.

Alerts:

sudo tail -f /var/log/suricata/eve.json | jq 'select(.event_type=="alert")'

This will display more detail about each alert, including meta-data.

Stats:

sudo tail -f /var/log/suricata/eve.json | jq 'select(.event_type=="stats")|.stats.
→˓capture.kernel_packets'
sudo tail -f /var/log/suricata/eve.json | jq 'select(.event_type=="stats")'

The first example displays the number of packets captured by the kernel; the second examples shows all of the statistics.

2.5. Alerting 7

Suricata User Guide, Release 8.0.0

8 Chapter 2. Quickstart guide

CHAPTER

THREE

INSTALLATION

Before Suricata can be used it has to be installed. Suricata can be installed on various distributions using binary
packages: Binary packages.

For people familiar with compiling their own software, the Source method is recommended.

Advanced users can check the advanced guides, see Advanced Installation.

3.1 Source

Installing from the source distribution files gives the most control over the Suricata installation.

The Suricata source distribution files should be verified before building the source, see Verifying Suricata Source
Distribution Files.

Basic steps:

tar xzvf suricata-7.0.0.tar.gz
cd suricata-7.0.0
./configure
make
make install

This will install Suricata into /usr/local/bin/, use the default configuration in /usr/local/etc/suricata/ and
will output to /usr/local/var/log/suricata

3.1.1 Common configure options

--disable-gccmarch-native

Do not optimize the binary for the hardware it is built on. Add this flag if the binary is meant to be portable or
if Suricata is to be used in a VM.

--prefix=/usr/

Installs the Suricata binary into /usr/bin/. Default /usr/local/

--sysconfdir=/etc

Installs the Suricata configuration files into /etc/suricata/. Default /usr/local/etc/

--localstatedir=/var

Setups Suricata for logging into /var/log/suricata/. Default /usr/local/var/log/suricata

9

Suricata User Guide, Release 8.0.0

--enable-lua

Enables Lua support for detection and output.

--enable-geoip

Enables GeoIP support for detection.

--enable-dpdk

Enables DPDK packet capture method.

3.1.2 Dependencies and compilation

Ubuntu/Debian

Note: The following instructions require sudo to be installed.

Listing 1: Minimal dependencies for Ubuntu/Debian

sudo apt -y install autoconf automake build-essential cargo \
cbindgen libjansson-dev libpcap-dev libpcre2-dev libtool \
libyaml-dev make pkg-config rustc zlib1g-dev

CentOS, AlmaLinux, RockyLinux, Fedora, etc

Note: The following instructions require sudo to be installed.

To install all minimal dependencies, it is required to enable extra package repository in most distros. You can enable it
possibly by one of the following ways:

sudo dnf -y update
sudo dnf -y install epel-release dnf-plugins-core
AlmaLinux 8 / RockyLinux 8
sudo dnf config-manager --set-enabled powertools
AlmaLinux 9 / RockyLinux 9
sudo dnf config-manager --set-enable crb
Oracle Linux 8
sudo dnf config-manager --set-enable ol8_codeready_builder
Oracle Linux 9
sudo dnf config-manager --set-enable ol9_codeready_builder

10 Chapter 3. Installation

https://www.dpdk.org/

Suricata User Guide, Release 8.0.0

Listing 2: Minimal dependencies for RPM-based distributions

sudo dnf install -y rustc cargo cbindgen
sudo dnf install -y gcc gcc-c++ jansson-devel libpcap-devel \

libyaml-devel make pcre2-devel zlib-devel

Windows

For building and installing from source on Windows, see install/windows.

Compilation

Follow these steps from your Suricata directory:

./configure # you may want to add additional parameters here
./configure --help to get all available parameters
j is for adding concurrency to make; the number indicates how much
concurrency so choose a number that is suitable for your build system
make -j8
make install # to install your Suricata compiled binary
make install-full - installs configuration and rulesets as well

Rust support

Rust packages can be found in package managers but some distributions don't provide Rust or provide
outdated Rust packages. In case of insufficient version you can install Rust directly from the Rust project
itself:

1) Install Rust https://www.rust-lang.org/en-US/install.html
2) Install cbindgen - if the cbindgen is not found in the repository
or the cbindgen version is lower than required, it can be
alternatively installed as: cargo install --force cbindgen

3) Make sure the cargo path is within your PATH environment
echo 'export PATH="~/.cargo/bin:${PATH}"' >> ~/.bashrc
export PATH="~/.cargo/bin:${PATH}"

3.1.3 Auto-Setup

You can also use the available auto-setup features of Suricata:

./configure && make && sudo make install-conf

make install-conf would do the regular "make install" and then it would automatically create/setup all the necessary
directories and suricata.yaml for you.

./configure && make && sudo make install-rules

make install-rules would do the regular "make install" and then it would automatically download and set up the latest
ruleset from Emerging Threats available for Suricata.

3.1. Source 11

Suricata User Guide, Release 8.0.0

./configure && make && sudo make install-full

make install-full would combine everything mentioned above (install-conf and install-rules) and will present you with
a ready-to-run (configured and set-up) Suricata.

3.2 Binary packages

3.2.1 Ubuntu Package Installation

For Ubuntu, the OISF maintains a Personal Package Archive (PPA) suricata-stable that always contains the latest
stable release.

Note: The following instructions require sudo to be installed.

Setup to install the latest stable Suricata:

sudo apt-get install software-properties-common
sudo add-apt-repository ppa:oisf/suricata-stable
sudo apt-get update

Then, you can install the latest stable with:

sudo apt-get install suricata

After installing you can proceed to the Basic setup.

OISF launchpad: suricata-stable.

Upgrading

To upgrade:

sudo apt-get update
sudo apt-get upgrade suricata

Remove

To remove Suricata from your system:

sudo apt-get remove suricata

12 Chapter 3. Installation

https://launchpad.net/~oisf/+archive/suricata-stable

Suricata User Guide, Release 8.0.0

Getting Debug or Pre-release Versions

Note: The following instructions require sudo to be installed.

If you want Suricata with built-in (enabled) debugging, you can install the debug package:

sudo apt-get install suricata-dbg

If you would like to help test the Release Candidate (RC) packages, the same procedures apply, just using another PPA:
suricata-beta:

sudo add-apt-repository ppa:oisf/suricata-beta
sudo apt-get update
sudo apt-get upgrade

You can use both the suricata-stable and suricata-beta repositories together. Suricata will then always be the latest
release, stable or beta.

OISF launchpad: suricata-beta.

Daily Releases

Note: The following instructions require sudo to be installed.

If you would like to help test the daily build packages from our latest git(dev) repository, the same procedures as above
apply, just using another PPA, suricata-daily:

sudo add-apt-repository ppa:oisf/suricata-daily-allarch
sudo apt-get update
sudo apt-get upgrade

Note: Please have in mind that this is packaged from our latest development git master and is therefore potentially
unstable.

We do our best to make others aware of continuing development and items within the engine that are not yet complete
or optimal. With this in mind, please refer to Suricata's issue tracker on Redmine for an up-to-date list of what we are
working on, planned roadmap, and to report issues.

OISF launchpad: suricata-daily.

3.2. Binary packages 13

https://launchpad.net/~oisf/+archive/suricata-beta
http://redmine.openinfosecfoundation.org/projects/suricata/issues
https://launchpad.net/~oisf/+archive/suricata-daily

Suricata User Guide, Release 8.0.0

After Installation

After installing you can proceed to the Basic setup.

3.2.2 Debian Package Installation

Suricata is available in the official Debian repositories for Debian 9 (stretch) and later versions.

Note: The following instructions require sudo to be installed.

In Debian 9 (stretch) and later do:

sudo apt-get install suricata

In the "stable" version of Debian, Suricata is usually not available in the latest version. A more recent version is often
available from Debian backports, if it can be built there.

To use backports, the backports repository for the current stable distribution needs to be added to the system-wide
sources list. For Debian 10 (buster), for instance, run the following as root:

echo "deb http://http.debian.net/debian buster-backports main" > \
/etc/apt/sources.list.d/backports.list

apt-get update
apt-get install suricata -t buster-backports

After Installation

After installing you can proceed to the Basic setup.

3.2.3 RPM Installation

Using the Fedora COPR system, the OISF provides Suricata packages for Fedora, Red Hat Enterprise Linux, and
Enterprise Linux rebuilds.

The benefit of using the OISF maintained COPR package repositories is that the OISF maintains packages for all
non-EOL Suricata versions for each distribution version. For example, the OISF maintains Suricata 7 and Suricata 8
packages for RHEL 9 and 10.

Installing From Package Repositories

Note: Instructions in the following sections require sudo to be installed.

14 Chapter 3. Installation

Suricata User Guide, Release 8.0.0

Enterprise Linux and Rebuilds

sudo dnf install epel-release dnf-plugins-core
sudo dnf copr enable @oisf/suricata-8.0
sudo dnf install suricata

Fedora

sudo dnf install dnf-plugins-core
sudo dnf copr enable @oisf/suricata-8.0
sudo dnf install suricata

Additional Notes for RPM Installations

• Suricata is pre-configured to run as the suricata user.

• Command line parameters such as providing the interface names can be configured in /etc/sysconfig/
suricata.

• Users can run suricata-update without being root provided they are added to the suricata group.

• Directories:

– /etc/suricata: Configuration directory

– /var/log/suricata: Log directory

– /var/lib/suricata: State directory rules, datasets.

Starting Suricata On-Boot

The Suricata RPMs are configured to run from Systemd.

Note: The following instructions require sudo to be installed.

To start Suricata:

sudo systemctl start suricata

To stop Suricata:

sudo systemctl stop suricata

To have Suricata start on-boot:

sudo systemctl enable suricata

To reload rules:

sudo systemctl reload suricata

3.2. Binary packages 15

Suricata User Guide, Release 8.0.0

After Installation

After installing you can proceed to the Basic setup.

3.2.4 Other Package Installations

Suricata can be found in the package managers for many other operating systems and distributions, but it is important
to note that these are not created or supported by the OISF and the Suricata development team.

Arch Based

The ArchLinux AUR contains Suricata and suricata-nfqueue packages, with commonly used configurations for compi-
lation (may also be edited to your liking). You may use makepkg, yay (sample below), or other AUR helpers to compile
and build Suricata packages.

yay -S suricata

After Installation

After installing you can proceed to the Basic setup.

Suricata is available on various distributions as binary packages. These offer a convenient way to install and manage
Suricata without compiling from source.

For Ubuntu systems:
See Ubuntu Package Installation for detailed instructions on installing from PPA repositories.

For Debian systems:
See Debian Package Installation for detailed instructions on installing from official repositories and back-
ports.

For RPM-based distributions (CentOS, AlmaLinux, RockyLinux, Fedora, etc):
See RPM Installation for detailed instructions on installing from COPR repositories.

For other distributions:
See Other Package Installations for installation instructions for Arch Linux and other distributions.

3.3 Advanced Installation

If you are using Ubuntu, you can follow Installation from GIT .

For other various installation guides for installing from GIT and for other operating systems, please check (bear in mind
that those may be somewhat outdated): https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_
Installation

16 Chapter 3. Installation

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation

CHAPTER

FOUR

UPGRADING

4.1 General instructions

Suricata can be upgraded by simply installing the new version to the same locations as the already installed ver-
sion. When installing from source, this means passing the same --prefix, --sysconfdir, --localstatedir and
--datadir options to configure.

$ suricata --build-info|grep -A 3 '\-\-prefix'
--prefix /usr
--sysconfdir /etc
--localstatedir /var
--datarootdir /usr/share

4.1.1 Configuration Updates

New versions of Suricata will occasionally include updated config files: classification.config and reference.
config. Since the Suricata installation will not overwrite these if they exist, they must be manually updated. If there
are no local modifications they can simply be overwritten by the ones Suricata supplies.

Major updates include new features, new default settings and often also remove features. This upgrade guide covers
the changes that might have an impact of migrating from an older version and keeping the config. We encourage you
to also check all the new features that have been added but are not covered by this guide. Those features are either not
enabled by default or require dedicated new configuration.

4.2 Upgrading 7.0 to 8.0

Note: stats.whitelist has been renamed to stats.score in eve.json

17

Suricata User Guide, Release 8.0.0

4.2.1 Major changes

• SIP parser has been updated to inspect traffic carried by TCP as well. SIP keywords can still match on their
respective fields in addition to these improvements. Transactions are logged with the same schema regardless of
which transport protocol is carrying the payload. Also, SIP protocol is detected using pattern matching and not
only probing parser.

• SIP_PORTS variable has been introduced in suricata.yaml

• Application layer's sip counter has been split into sip_tcp and sip_udp for the stats event.

• Stats counters that are 0 can now be hidden from EVE logs. Default behavior still logs those (see EVE Output -
Stats for configuration setting).

• SDP parser, logger and sticky buffers have been introduced. Due to SDP being encapsulated within other proto-
cols, such as SIP, they cannot be directly enabled or disabled. Instead, both the SDP parser and logger depend
on being invoked by another parser (or logger).

• ARP decoder and logger have been introduced. Since ARP can be quite verbose and produce many events, the
logger is disabled by default.

• It is possible to see an increase of alerts, for the same rule-sets, if you use many stream/payload rules, due to
Suricata triggering TCP stream reassembly earlier.

• New transform from_base64 that base64 decodes a buffer and passes the decoded buffer. It's recommended
that from_base64 be used instead of base64_decode

• Datasets of type String now include the length of the strings to determine if the memcap value is reached. This
may lead to memcaps being hit for older setups that didn't take that into account. For more details, check https:
//redmine.openinfosecfoundation.org/issues/3910

• DNS logging has been modified to be more consistent across requests, responses and alerts. See DNS Logging
Changes for 8.0.

• PF_RING support has been moved to a plugin. See PF_RING plugin.

• LDAP parser and logger have been introduced.

• The following sticky buffers for matching SIP headers have been implemented:

– sip.via

– sip.from

– sip.to

– sip.content_type

– sip.content_length

• Napatech support has been moved to a capture plugin. See Napatech plugin.

• Unknown requirements in the requires keyword will now be treated as unmet requirements, causing the rule
to not be loaded. See requires.

• The configuration setting controlling stream checksum checks no longer affects checksum keyword validation. In
Suricata 7.0, when stream.checksum-validation was set to no, the checksum keywords (e.g., ipv4-csum,
tcpv4-csum, etc) will always consider it valid; e.g., tcpv4-csum: invalidwill never match. In Suricata 8.0,
stream.checksum-validation no longer affects the checksum rule keywords. E.g., ipv4-csum: valid
will only match if the check sum is valid, even when engine checksum validations are disabled.

• Lua detection scripts (rules) now run in a sandboxed environment. See Lua Scripting for Detection.

• Lua output scripts have no default module search path, a search path will need to be set before external modules
can be loaded. See the new default configuration file or YAML for more details.

18 Chapter 4. Upgrading

https://redmine.openinfosecfoundation.org/issues/3910
https://redmine.openinfosecfoundation.org/issues/3910

Suricata User Guide, Release 8.0.0

• If the configuration value ftp.memcap is invalid, Suricata will set it to 0 which means no limit will be placed.
In previous Suricata releases, Suricata would terminate execution. A warning message will be displayed Invalid
value <value> for ftp.memcap when this occurs.

• The utility applications suricatasc and suricatactl have been rewritten in Rust. For most end-users this is
a transparent change, however if you run these tools from the source directory, patch them or use them as Python
modules your workflows may need to be adapted.

• Datasets now have a default max limit for hashsize of 65536. This is configurable via the datasets.limits
options.

• For detect inspection recursion limits, if no value is provided, the default is now set to 3000.

• AF_PACKET now has better defaults:

– AF_PACKET will now default to defrag off for inline mode with cluster_flow as its not recommended
for inline use. However it can still be enabled with the defrag configuration parameter.

– AF_PACKET will now default to tpacket-v3 for non-inline modes, it remains disabled for inline modes.
To keep tpacket-v2 for non-inline modes, the existing tpacket-v3 configuration parameter can be set to
false.

– The AF_PACKET default block size for both TPACKET_V2 and TPACKET_V3 has been increased
from 32k to 128k. This is to allow for full size defragmented packets. For TPACKET_V3 the exist-
ing block-size parameter can be used to change this back to the old default of 32768 if needed. For
TPACKET_V2 a new configuration parameter has been added, v2-block-size which can be used to tune
this value for TPACKET_V2. Due to the increased block size, memory usage has been increased, but
should not be an issue in most cases.

• DPDK interface settings can now be configured automatically by setting auto to mempool-size,
mempool-cache-size, rx-descriptors, tx-descriptors. See Automatic interface configuration.

• DPDK interface mempools are now allocated per thread instead of per port. This change improves performance
and should not be visible from the user configuration perspective.

• DPDK supports link state check, allowing Suricata to start only when the link is up. This is especially useful
for Intel E810 (ice) NICs as they need a few seconds before they are ready to receive packets. With this check
disabled, Suricata reports as started but only begins processing packets after the previously mentioned interval.
Other cards were not observed to have this issue. This feature is disabled by default. See Link State Change
timeout.

• Encrypted traffic bypass has been decoupled from stream.bypass setting. This means that encrypted traffic can
be bypassed while tracking/fully inspecting other traffic as well.

• Encrypted SSH traffic bypass is now independently controlled through app-layer.protocols.ssh.
encryption-handling setting. The setting can either be bypass, track-only or full. To retain the previ-
ous behavior of encrypted traffic bypass combined with stream depth bypass, set app-layer.protocols.ssh.
encryption-handling to bypass (while also setting app-layer.protocols.tls.encryption-handling
to bypass and stream.bypass to true).

• Spaces are accepted in HTTP1 URIs instead of in the protocol version. That is: GET /a b HTTP/1.1 gets now
URI as /a b and protocol as HTTP/1.1 when it used to be URI as /a and protocol as b HTTP/1.1

• The configuration structure of threading.cpu-affinity has been changed from a list format to a dictionary
format. Additionally, member properties of *-cpu-set nodes have been moved one level up. The support for list
items such as - worker-cpu-set, - management-cpu-set, etc. is still supported. To convert to the new configuration
format follow the example below or the description in Threading.

threading:
cpu-affinity:

(continues on next page)

4.2. Upgrading 7.0 to 8.0 19

Suricata User Guide, Release 8.0.0

(continued from previous page)

- - worker-cpu-set:
- cpu: [0, 1]
+ worker-cpu-set:
+ cpu: [0, 1]

• All applayer protocols except FTP and HTTP now trigger inspection upon completion of a request/response in
the respective direction. This means that earlier a content that matched just because it fell in the inspection chunk
without wholly belonging to any one request/response may not match any longer.

4.2.2 Removals

• The ssh keywords ssh.protoversion and ssh.softwareversion have been removed.

4.2.3 Deprecations

• The http-log output is now deprecated and will be removed in Suricata 9.0.

• The tls-log output is now deprecated and will be removed in Suricata 9.0.

• The syslog output is now deprecated and will be removed in Suricata 9.0. Note that this is the standalone
syslog output and does affect the eve outputs ability to send to syslog.

• The default option in app-layer.protocols.tls.encryption-handling is now deprecated and will be
removed in Suricata 9.0. The track-only option should be used instead.

4.2.4 Keyword changes

• ja3.hash and ja3s.hash no longer accept contents with non hexadecimal characters, as they will never match.

4.2.5 Logging changes

• RFB security result is now consistently logged as security_result when it was sometimes logged with a dash
instead of an underscore.

• Application layer metadata is logged with alerts by default only for rules that use application layer keywords.
For other rules, the configuration parameter detect.guess-applayer-tx can be used to force the detect engine
to guess a transaction, which is not guaranteed to be the one you expect. In this case, the engine will NOT
log any transaction metadata if there is more than one live transaction, to reduce the chances of logging
unrelated data. This may lead to what looks like a regression in behavior, but it is a considered choice.

4.2.6 Other Changes

• libhtp has been replaced with a rust version. This means libhtp is no longer built and linked as a shared library,
and the libhtp dependency is now built directly into suricata.

20 Chapter 4. Upgrading

Suricata User Guide, Release 8.0.0

4.3 Upgrading 6.0 to 7.0

4.3.1 Major changes

• Upgrade of PCRE1 to PCRE2. See Changes from PCRE1 to PCRE2 for more details.

• IPS users: by default various new "exception policies" are set to DROP traffic. Please see Exception Policies for
details on the settings and their scope. For trouble shooting, please check My traffic gets blocked after upgrading
to Suricata 7.

• New protocols enabled by default: bittorrent-dht, quic, http2.

• The telnet protocol is also enabled by default, but only for the app-layer.

4.3.2 Security changes

• suricata.yaml now prevents process creation by Suricata by default with security.limit-noproc. The suricata.yaml
configuration file needs to be updated to enable this feature. For more info, see Configuration hardening.

• Absolute filenames and filenames containing parent directory traversal are no longer allowed by default for
datasets when the filename is specified as part of a rule. See Datasets Security and Datasets File Locations
for more information.

• Lua rules are now disabled by default (change also introduced in 6.0.13), see Lua Scripting for Detection.

4.3.3 Removals

• The libprelude output plugin has been removed.

• EVE DNS v1 logging support has been removed. If still using EVE DNS v1 logging, see the manual section on
DNS logging configuration for the current configuration options: DNS EVE Configuration

4.3.4 Logging changes

• IKEv2 Eve logging changed, the event_type has become ike which covers both protocol versions. The fields
errors and notify have moved to ike.ikev2.errors and ike.ikev2.notify.

• FTP DATA metadata for alerts are now logged in ftp_data instead of root.

• Alert xff field is now logged as alert.xff for alerts instead of at the root.

• Protocol values and their names are built into Suricata instead of using the system's /etc/protocols file. Some
names and casing may have changed in the values proto in eve.json log entries and other logs containing
protocol names and values. See https://redmine.openinfosecfoundation.org/issues/4267 for more information.

• Logging of additional HTTP headers configured through the EVE http.custom option will now be logged in
the request_headers and/or response_headers respectively instead of merged into the existing http object.
In Suricata 6.0, a configuration like:

http:
custom: [Server]

would result in a log entry like:

4.3. Upgrading 6.0 to 7.0 21

https://forum.suricata.io/t/my-traffic-gets-blocked-after-upgrading-to-suricata-7
https://forum.suricata.io/t/my-traffic-gets-blocked-after-upgrading-to-suricata-7
https://redmine.openinfosecfoundation.org/issues/4267

Suricata User Guide, Release 8.0.0

"http": {
"hostname": "suricata.io",
"http_method": "GET",
"protocol": "HTTP/1/1",
"server": "nginx",
...

}

This merging of custom headers in the http object could result in custom headers overwriting standard fields in
the http object, or a response header overwriting request header.

To prevent the possibility of fields being overwritten, all custom headers are now logged into the
request_headers and response_headers arrays to avoid any chance of collision. This also facilitates the
logging of headers that may appear multiple times, with each occurrence being logged in future releases (see
note below).

While these arrays are not new in Suricata 7.0, they had previously been used exclusively for the
dump-all-headers option.

As of Suricata 7.0, the above configuration example will now be logged like:

"http": {
"hostname": "suricata.io",
"http_method": "GET",
"protocol": "HTTP/1/1",
"response_headers": [
{ "name": "Server", "value": "nginx" }

]
}

Effectively making the custom option a subset of the dump-all-headers option.

If you've been using the custom option, this may represent a breaking change. However, if you haven't used it,
there will be no change in the output.

Note: Currently, if the same HTTP header is seen multiple times, the values are concatenated into a comma-
separated value.

For more information, refer to: https://redmine.openinfosecfoundation.org/issues/1275.

• Engine logging/output now uses separate defaults for console and file, to provide a cleaner output on the
console.

Defaults are:

– console: %D: %S: %M

– file: [%i - %m] %z %d: %S: %M

The console output also changes based on verbosity level.

22 Chapter 4. Upgrading

https://redmine.openinfosecfoundation.org/issues/1275

Suricata User Guide, Release 8.0.0

4.3.5 Deprecations

• Multiple "include" fields in the configuration file will now issue a warning and in Suricata 8.0 will not be sup-
ported. See Includes for documentation on including multiple files.

• For AF-Packet, the cluster_rollover setting is no longer supported. Configuration settings using
cluster_rollover will cause a warning message and act as though cluster_flow` was specified. Please update
your configuration settings.

4.3.6 Other changes

• Experimental keyword http2.header is removed. http.header, http.request_header, and http.response_header
are to be used.

• NSS is no longer required. File hashing and JA3 can now be used without the NSS compile time dependency.

• If installing Suricata without the bundled Suricata-Update, the default-rule-path has been changed from
/etc/suricata/rules to /var/lib/suricata/rules to be consistent with Suricata when installed with
Suricata-Update.

• FTP has been updated with a maximum command request and response line length of 4096 bytes. To change the
default see FTP.

• SWF decompression in http has been disabled by default. To change the default see Configure HTTP (libhtp).
Users with configurations from previous releases may want to modify their config to match the new default. See
https://redmine.openinfosecfoundation.org/issues/5632 for more information.

• The new option livedev is enabled by default with use-for-tracking being set to true. This should be disabled if
multiple live devices are used to capture traffic from the same network.

4.4 Upgrading 5.0 to 6.0

• SIP now enabled by default

• RDP now enabled by default

• ERSPAN Type I enabled by default.

4.4.1 Major changes

• New protocols enabled by default: mqtt, rfb

• SSH Client fingerprinting for SSH clients

• Conditional logging

• Initial HTTP/2 support

• DCERPC logging

• Improved EVE logging performance

4.4. Upgrading 5.0 to 6.0 23

https://redmine.openinfosecfoundation.org/issues/5632

Suricata User Guide, Release 8.0.0

4.4.2 Removals

• File-store v1 has been removed. If using file extraction, the file-store configuration will need to be updated to
version 2. See Update File-store v1 Configuration to V2.

• Individual Eve (JSON) loggers have been removed. For example, stats-json, dns-json, etc. Use multiple
Eve logger instances if this behavior is still required. See Multiple Logger Instances.

• Unified2 has been removed. See unified2-removed.

4.4.3 Performance

• In YAML files w/o a flow-timeouts.tcp.closed setting, the default went from 0 to 10 seconds. This may lead to
higher than expected TCP memory use: https://redmine.openinfosecfoundation.org/issues/6552

4.5 Upgrading 4.1 to 5.0

4.5.1 Major changes

• New protocols enabled by default: snmp (new config only)

• New protocols disabled by default: rdp, sip

• New defaults for protocols: nfs, smb, tftp, krb5 ntp are all enabled by default (new config only)

• VXLAN decoder enabled by default. To disable, set decoder.vxlan.enabled to false.

• HTTP LZMA support enabled by default. To disable, set lzma-enabled to false in each of the libhtp
configurations in use.

• classification.config updated. ET 5.0 ruleset will use this.

• decoder event counters use 'decoder.event' as prefix now. This can be controlled using the stats.
decoder-events-prefix setting.

4.5.2 Removals

• dns-log, the text dns log. Use EVE.dns instead.

• file-log, the non-EVE JSON file log. Use EVE.files instead.

• drop-log, the non-EVE JSON drop log.

See https://suricata.io/about/deprecation-policy/

24 Chapter 4. Upgrading

https://redmine.openinfosecfoundation.org/issues/6552
https://suricata.io/about/deprecation-policy/

CHAPTER

FIVE

SECURITY CONSIDERATIONS

Suricata is a security tool that processes untrusted network data, as well as requiring elevated system privileges to
acquire that data. This combination deserves extra security precautions that we discuss below.

Additionally, supply chain attacks, particularly around rule distribution, could potentially target Suricata installations.

5.1 Running as a User Other Than Root

Note: If using the Suricata RPMs, either from the OISF COPR repo, or the EPEL repo, the following is already
configured for you. The only thing you might want to do is add your management user to the suricata group.

Many Suricata examples and guides will show Suricata running as the root user, particularly when running on live
traffic. As Suricata generally needs low level read (and in IPS write) access to network traffic, it is required that
Suricata starts as root, however Suricata does have the ability to drop down to a non-root user after startup, which could
limit the impact of a security vulnerability in Suricata itself.

Note: Currently the ability to drop root privileges after startup is only available on Linux systems.

5.1.1 Create User

Before running as a non-root user, you need to choose and possibly create the user and group that will Suricata will run
as. Typically this user would be a sytem user with the name suricata. Such a user can be created with the following
command:

useradd --no-create-home --system --shell /sbin/nologin suricata

This will create a user and group with the name suricata.

25

Suricata User Guide, Release 8.0.0

5.1.2 File System Permissions

Before running Suricata as the user suricata, some directory permissions will need to be updated to allow the
suricata read and write access.

Assuming your Suricata was installed from source using the recommended configuration of:

./configure --prefix=/usr/ --sysconfdir=/etc/ --localstatedir=/var/

the following directories will need their permissions updated:

Directory Permissions
/etc/suricata Read
/var/log/suricata Read, Write
/var/lib/suricata Read, Write
/var/run/suricata Read, Write

The following commands will setup the correct permissions:

• /etc/suricata:

chgrp -R suricata /etc/suricata
chmod -R g+r /etc/suricata

• /var/log/suricata:

chgrp -R suricata /var/log/suricata
chmod -R g+rw /var/log/suricata

• /var/lib/suricata:

chgrp -R suricata /var/lib/suricata
chmod -R g+srw /var/lib/suricata

• /var/lib/suricata:

chgrp -R suricata /var/run/suricata
chmod -R g+srw /var/run/suricata

5.1.3 Configure Suricata to Run as Suricata

Suricata can be configured to run as an alternate user by updating the configuration file or using command line argu-
ments.

• Using the configuration file, update the run-as section to look like:

run-as:
user: suricata
group: suricata

• Or if using command line arguments, add the following to your command:

--user suricata --group suricata

26 Chapter 5. Security Considerations

Suricata User Guide, Release 8.0.0

5.1.4 Starting Suricata

It is important to note that Suricata still needs to be started with root permissions in most cases. Starting as root allows
Suricata to get access to the network interfaces and set the capabilities required during runtime before it switches down
to the configured user.

5.1.5 Other Commands: Suricata-Update, SuricataSC

With the previous permissions setup, suricata-update and suricatasc can also be run without root or sudo. To
allow a user to access these commands, add them to the suricata group.

5.2 Containers

Containers such as Docker and Podman are other methods to provide isolation between Suricata and the host machine
running Suricata. However, we still recommend running as a non-root user, even in containers.

5.2.1 Capabilities

For both Docker and Podman the following capabilities should be provided to the container running Suricata for proper
operation:

--cap-add=net_admin --cap-add=net_raw --cap-add=sys_nice

5.2.2 Podman

Unfortunately Suricata will not work with rootless Podman, this is due to Suricata's requirement to start with root
privileges to gain access to the network interfaces. However, if started with the above capabilities, and configured to
run as a non-root user, it will drop root privileges before processing network data.

5.2. Containers 27

Suricata User Guide, Release 8.0.0

28 Chapter 5. Security Considerations

CHAPTER

SIX

SUPPORT STATUS

6.1 Levels of Support

The support tiers detailed below do not represent a binding commitment. Instead, they serve as a framework that the
OISF employs to prioritize features and functionality.

6.1.1 Tier 1

Tier 1 supported items are developed and supported by the Suricata team. These items receive full CI (continuous
integration) coverage, and functional failures block git merges and releases. Tier 1 features are enabled by default on
platforms that support the feature.

6.1.2 Tier 2

Tier 2 supported items are developed and supported by the Suricata team, sometimes with help from community mem-
bers. Major functional failures block git merges and releases, however less major issues may be documented as "known
issues" and may go into a release. Tier 2 features and functionality may be disabled by default.

6.1.3 Community

When a feature of Suricata is community supported, it means the OISF/Suricata development team won’t directly
support it. This is to avoid overloading the team.

When accepting a feature into the code base anyway, it will come with a number of limits and conditions:

• submitter must commit to maintaining it:

– make sure code compiles and correctly functions after Suricata and/or external (e.g. library) changes.

– support users when they encounter problems on forum and redmine tickets.

• the code will be disabled by default and will not become part of the QA setup. This means it will be enabled
only by an --enable configure flag.

• the code may not have CI coverage by the OISF infrastructure.

If the feature gets lots of traction, and/or if the team just considers it very useful, it may get ‘promoted’ to being officially
supported.

On the other hand, the feature will be removed if the submitter stops maintaining it and no-one steps up to take over.

29

Suricata User Guide, Release 8.0.0

6.1.4 Vendor

Vendor supported features are features specific to a certain vendor and usually require software and/or hardware from
that vendor. While these features may exist in the main Suricata code, they rely on support from the vendor to keep the
feature in a functional state.

Vendor supported functionality will generally not have CI or QA coverage by the OISF.

6.1.5 Unmaintained

When a feature is unmaintained it is very likely broken and may be (partially) removed during cleanups and code
refactoring. No end-user support is done by the core team. If someone wants to help maintain and support such a
feature, we recommend talking to the core team before spending a lot of time on it.

Please see Contributing to Suricata for more information if you wish to contribute.

6.2 Distributions

6.2.1 Tier 1

These tier 1 supported Linux distributions and operating systems receive full CI and QA, as well as documentation.

Distribution Version Support QA Notes
RHEL/CentOS 7 OISF
RHEL/Alma/Rocky 8 OISF
RHEL/Alma/Rocky 9 OISF
Ubuntu 20.04 OISF
Ubuntu 22.04 OISF
Debian 10 (Buster) OISF
Debian 11 (Bullseye) OISF Foundation of SELKS
Debian 12 (Book-

worm)
OISF

FreeBSD 12 OISF Foundation of OPNsense, pfSense
FreeBSD 13 OISF Foundation of OPNSense

6.2.2 Tier 2

These tier 2 supported Linux distributions and operating systems receive CI but not full QA (functional testing).

Distribution Version Support QA Notes
CentOS Stream OISF
Fedora Active OISF
OpenBSD 7.2 OISF
OpenBSD 7.1 OISF
OSX/macOS ?? OISF
Win-
dows/MinGW64

OISF

30 Chapter 6. Support Status

Suricata User Guide, Release 8.0.0

6.3 Architecture Support

6.3.1 Tier 1

Architecture Support QA Notes
x86_64 OISF
ARM8-64bit OISF

6.3.2 Tier 2

Architecture Support QA Notes
ARM7-32bit OISF
i386 OISF

6.3.3 Community

Architecture Support QA Notes
PPC64el Part of Fedora automated QA Access can be arranged through IBM dev

cloud
PPC64 No access to working hardware
PPC32 No access to working hardware
RISC-V

6.3.4 High Level Features

Capture support

Tier 1

Capture Type Maintainer QA Notes
AF_PACKET OISF Used by Security Onion, SELKS
NETMAP (FreeBSD) OISF Used by OPNsense, PFsense
NFQUEUE OISF
libpcap OISF

Tier 2

Capture Type Maintainer QA Notes
PF_RING OISF
NETMAP (Linux) OISF
DPDK OISF
AF_PACKET (eBPF/XDP) OISF

6.3. Architecture Support 31

Suricata User Guide, Release 8.0.0

Community

Capture Type Maintainer QA Notes
NFLOG Community
AF_XDP Community

Vendor

Capture Type Maintainer QA Notes
Napatech Napatech / Community

Unmaintained

Capture Type Maintainer QA Notes
IPFW
Endace/DAG

Operation modes

Tier 1

Mode Maintainer QA Notes
IDS (passive) OISF
IPS (active) OISF
Offline pcap file OISF

Tier 2

Mode Maintainer QA Notes
Unix socket mode OISF
IDS (active) OISF Active responses, reject keyword

32 Chapter 6. Support Status

CHAPTER

SEVEN

COMMAND LINE OPTIONS

Suricata's command line options:

-h

Display a brief usage overview.

-V

Displays the version of Suricata.

-c <path>

Path to configuration file.

--include <path>

Additional configuration files to include. Multiple additional configuration files can be provided and will be
included in the order specified on the command line. These additional configuration files are loaded as if they
existed at the end of the main configuration file.

Example including one additional file:

--include /etc/suricata/other.yaml

Example including more than one additional file:

--include /etc/suricata/other.yaml --include /etc/suricata/extra.yaml

-T

Test configuration.

-v

Increase the verbosity of the Suricata application logging by increasing the log level from the default. This option
can be passed multiple times to further increase the verbosity.

• -v: INFO

• -vv: PERF

• -vvv: CONFIG

• -vvvv: DEBUG

This option will not decrease the log level set in the configuration file if it is already more verbose than the level
requested with this option.

-r <path>

Run in pcap offline mode (replay mode) reading files from pcap file. If <path> specifies a directory, all files in
that directory will be processed in order of modified time maintaining flow state between files.

33

Suricata User Guide, Release 8.0.0

--pcap-file-continuous

Used with the -r option to indicate that the mode should stay alive until interrupted. This is useful with directories
to add new files and not reset flow state between files.

--pcap-file-recursive

Used with the -r option when the path provided is a directory. This option enables recursive traversal into sub-
directories to a maximum depth of 255. This option cannot be combined with --pcap-file-continuous. Symlinks
are ignored.

--pcap-file-delete

Used with the -r option to indicate that the mode should delete pcap files after they have been processed. This is
useful with pcap-file-continuous to continuously feed files to a directory and have them cleaned up when done.
If this option is not set, pcap files will not be deleted after processing.

--pcap-file-buffer-size <value>

Set read buffer size using setvbuf to speed up pcap reading. Valid values are 4 KiB to 64 MiB. Default value
is 128 KiB. Supported on Linux only.

-i <interface>

After the -i option you can enter the interface card you would like to use to sniff packets from. This option will
try to use the best capture method available. Can be used several times to sniff packets from several interfaces.

--pcap[=<device>]

Run in PCAP mode. If no device is provided the interfaces provided in the pcap section of the configuration file
will be used.

--af-packet[=<device>]

Enable capture of packet using AF_PACKET on Linux. If no device is supplied, the list of devices from the
af-packet section in the yaml is used.

--af-xdp[=<device>]

Enable capture of packet using AF_XDP on Linux. If no device is supplied, the list of devices from the af-xdp
section in the yaml is used.

-q <queue id>

Run inline of the NFQUEUE queue ID provided. May be provided multiple times.

-s <filename.rules>

With the -s option you can set a file with signatures, which will be loaded together with the rules set in the yaml.

It is possible to use globbing when specifying rules files. For example, -s '/path/to/rules/*.rules'

-S <filename.rules>

With the -S option you can set a file with signatures, which will be loaded exclusively, regardless of the rules set
in the yaml.

It is possible to use globbing when specifying rules files. For example, -S '/path/to/rules/*.rules'

-l <directory>

With the -l option you can set the default log directory. If you already have the default-log-dir set in yaml, it will
not be used by Suricata if you use the -l option. It will use the log dir that is set with the -l option. If you do not
set a directory with the -l option, Suricata will use the directory that is set in yaml.

-D

Normally if you run Suricata on your console, it keeps your console occupied. You can not use it for other
purposes, and when you close the window, Suricata stops running. If you run Suricata as daemon (using the -D
option), it runs at the background and you will be able to use the console for other tasks without disturbing the
engine running.

34 Chapter 7. Command Line Options

Suricata User Guide, Release 8.0.0

--runmode <runmode>

With the --runmode option you can set the runmode that you would like to use. This command line option can
override the yaml runmode option.

Runmodes are: workers, autofp and single.

For more information about runmodes see Runmodes in the user guide.

-F <bpf filter file>

Use BPF filter from file.

-k [all|none]

Force (all) the checksum check or disable (none) all checksum checks.

--user=<user>

Set the process user after initialization. Overrides the user provided in the run-as section of the configuration
file.

--group=<group>

Set the process group to group after initialization. Overrides the group provided in the run-as section of the
configuration file.

--pidfile <file>

Write the process ID to file. Overrides the pid-file option in the configuration file and forces the file to be written
when not running as a daemon.

--init-errors-fatal

Exit with a failure when errors are encountered loading signatures.

--strict-rule-keywords[=all|<keyword>|<keywords(csv)]

Applies to: classtype, reference and app-layer-event.

By default missing reference or classtype values are warnings and not errors. Additionally, loading outdated
app-layer-event events are also not treated as errors, but as warnings instead.

If this option is enabled these warnings are considered errors.

If no value, or the value 'all', is specified, the option applies to all of the keywords above. Alternatively, a comma
separated list can be supplied with the keyword names it should apply to.

--disable-detection

Disable the detection engine.

--disable-hashing

Disable support for hash algorithms such as md5, sha1 and sha256.

By default hashing is enabled. Disabling hashing will also disable some Suricata features such as the filestore,
ja3, and rule keywords that use hash algorithms.

--dump-config

Dump the configuration loaded from the configuration file to the terminal and exit.

--dump-features

Dump the features provided by Suricata modules and exit. Features list (a subset of) the configuration values and
are intended to assist with comparing provided features with those required by one or more rules.

--build-info

Display the build information the Suricata was built with.

35

Suricata User Guide, Release 8.0.0

--list-app-layer-protos

List all supported application layer protocols.

--list-keywords=[all|csv|<kword>]

List all supported rule keywords.

--list-runmodes

List all supported run modes.

--set <key>=<value>

Set a configuration value. Useful for overriding basic configuration parameters. For example, to change the
default log directory:

--set default-log-dir=/var/tmp

This option cannot be used to add new entries to a list in the configuration file, such as a new output. It can only
be used to modify a value in a list that already exists.

For example, to disable the eve-log in the default configuration file:

--set outputs.1.eve-log.enabled=no

Also note that the index values may change as the suricata.yaml is updated.

See the output of --dump-config for existing values that could be modified with their index.

--engine-analysis

Print reports on analysis of different sections in the engine and exit. Please have a look at the conf parameter
engine-analysis on what reports can be printed

--unix-socket=<file>

Use file as the Suricata unix control socket. Overrides the filename provided in the unix-command section of the
configuration file.

--reject-dev=<device>

Use device to send out RST / ICMP error packets with the reject keyword.

--pcap-buffer-size=<size>

Set the size of the PCAP buffer (0 - 2147483647).

--netmap[=<device>]

Enable capture of packet using NETMAP on FreeBSD or Linux. If no device is supplied, the list of devices from
the netmap section in the yaml is used.

--pfring[=<device>]

Enable PF_RING packet capture. If no device provided, the devices in the Suricata configuration will be used.

--pfring-cluster-id <id>

Set the PF_RING cluster ID.

--pfring-cluster-type <type>

Set the PF_RING cluster type (cluster_round_robin, cluster_flow).

-d <divert-port>

Run inline using IPFW divert mode.

36 Chapter 7. Command Line Options

Suricata User Guide, Release 8.0.0

--dag <device>

Enable packet capture off a DAG card. If capturing off a specific stream the stream can be select using a device
name like "dag0:4". This option may be provided multiple times read off multiple devices and/or streams.

--napatech

Enable packet capture using the Napatech Streams API.

--erf-in=<file>

Run in offline mode reading the specific ERF file (Endace extensible record format).

--simulate-ips

Simulate IPS mode when running in a non-IPS mode.

7.1 Unit Tests

The builtin unittests are only available when Suricata has been configured and built with --enable-unittests.

Running unittests does not require a configuration file. Use -l to supply an output directory.:

sudo suricata -u

-u

Run the unit tests and exit. Requires that Suricata be configured with --enable-unittests.

-U, --unittest-filter=REGEX

With the -U option you can select which of the unit tests you want to run. This option uses REGEX. Example of
use: suricata -u -U http

--list-unittests

Lists available unit tests.

--fatal-unittests

Enables fatal failure on a unit test error. Suricata will exit instead of continuing more tests.

--unittests-coverage

Display unit test coverage report.

7.1. Unit Tests 37

Suricata User Guide, Release 8.0.0

38 Chapter 7. Command Line Options

CHAPTER

EIGHT

SURICATA RULES

8.1 Rules Format

Signatures play a very important role in Suricata. In most occasions people are using existing rulesets.

The official way to install rulesets is described in Rule Management with Suricata-Update.

There are a number of free rulesets that can be used via suricata-update. To aid in learning about writing rules, the
Emerging Threats Open ruleset is free and a good reference that has a wide range of signature examples.

This Suricata Rules document explains all about signatures; how to read, adjust and create them.

A rule/signature consists of the following:

• The action, determining what happens when the rule matches.

• The header, defining the protocol, IP addresses, ports and direction of the rule.

• The rule options, defining the specifics of the rule.

An example of a rule is as follows:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

In this example, red is the action, green is the header and blue are the options.

We will be using the above signature as an example throughout this section, highlighting the different parts of the
signature.

8.1.1 Action

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Valid actions are:

• alert - generate an alert.

• pass - stop further inspection of the packet.

• drop - drop packet and generate alert.

• reject - send RST/ICMP unreach error to the sender of the matching packet.

• rejectsrc - same as just reject.

39

Suricata User Guide, Release 8.0.0

• rejectdst - send RST/ICMP error packet to receiver of the matching packet.

• rejectboth - send RST/ICMP error packets to both sides of the conversation.

Note: In IPS mode, using any of the reject actions also enables drop.

For more information see Action-order.

8.1.2 Protocol

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

This keyword in a signature tells Suricata which protocol it concerns. You can choose between four basic protocols:

• tcp (for tcp-traffic)

• udp

• icmp

• ip (ip stands for 'all' or 'any')

There are a couple of additional TCP related protocol options:

• tcp-pkt (for matching content in individual tcp packets)

• tcp-stream (for matching content only in a reassembled tcp stream)

There are also a few so-called application layer protocols, or layer 7 protocols you can pick from. These are:

• http (either HTTP1 or HTTP2)

• http1

• http2

• ftp

• tls (this includes ssl)

• smb

• dns

• dcerpc

• dhcp

• ssh

• smtp

• imap

• pop3

• modbus (disabled by default)

• dnp3 (disabled by default)

• enip (disabled by default)

• nfs

40 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

• ike

• krb5

• bittorrent-dht

• ntp

• dhcp

• rfb

• rdp

• snmp

• tftp

• sip

• websocket

The availability of these protocols depends on whether the protocol is enabled in the configuration file, suricata.yaml.

If you have a signature with the protocol declared as 'http', Suricata makes sure the signature will only match if the TCP
stream contains http traffic.

8.1.3 Source and destination

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

The first emphasized part is the traffic source, the second is the traffic destination (note the direction of the directional
arrow).

With the source and destination, you specify the source of the traffic and the destination of the traffic, respectively. You
can assign IP addresses, (both IPv4 and IPv6 are supported) and IP ranges. These can be combined with operators:

Operator Description
../.. IP ranges (CIDR notation)
! exception/negation
[.., ..] grouping

Normally, you would also make use of variables, such as $HOME_NET and $EXTERNAL_NET. The suricata.yaml config-
uration file specifies the IP addresses these concern. The respective $HOME_NET and $EXTERNAL_NET settings will be
used in place of the variables in your rules.

See Rule-vars for more information.

Rule usage examples:

Example Meaning
!1.1.1.1 Every IP address but 1.1.1.1
![1.1.1.1, 1.1.1.2] Every IP address but 1.1.1.1 and 1.1.1.2
$HOME_NET Your setting of HOME_NET in yaml
[$EXTERNAL_NET, !$HOME_NET] EXTERNAL_NET and not HOME_NET
[10.0.0.0/24, !10.0.0.5] 10.0.0.0/24 except for 10.0.0.5
[..., [....]]
[..., ![.....]]

8.1. Rules Format 41

Suricata User Guide, Release 8.0.0

Warning: If you set your configuration to something like this:

HOME_NET: any
EXTERNAL_NET: !$HOME_NET

You cannot write a signature using $EXTERNAL_NET because it evaluates to 'not any', which is an invalid value.

Note: Please note that the source and destination address can also be matched via the ip.src and ip.dst keywords
(See IP Addresses Match). These keywords are mostly used in conjunction with the dataset feature (Datasets).

8.1.4 Ports (source and destination)

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

The first emphasized part is the source port, the second is the destination port (note the direction of the directional
arrow).

Traffic comes in and goes out through ports. Different protocols have different port numbers. For example, the default
port for HTTP is 80 while 443 is typically the port for HTTPS. Note, however, that the port does not dictate which
protocol is used in the communication. Rather, it determines which application is receiving the data.

The ports mentioned above are typically the destination ports. Source ports, i.e. the application that sent the packet,
typically get assigned a random port by the operating system. When writing a rule for your own HTTP service, you
would typically write any -> 80, since that would mean any packet from any source port to your HTTP application
(running on port 80) is matched.

In setting ports you can make use of special operators as well. Operators such as:

Operator Description
: port ranges
! exception/negation
[.., ..] grouping

Rule usage examples:

Example Meaning
[80, 81, 82] port 80, 81 and 82
[80: 82] Range from 80 till 82
[1024:] From 1024 till the highest port-number
!80 Every port but 80
[80:100,!99] Range from 80 till 100 but 99 excluded
[1:80,![2,4]] Range from 1-80, except ports 2 and 4
[.., [..,..]]

42 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.1.5 Direction

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

The directional arrow indicates which way the signature will be evaluated. In most signatures an arrow to the right (->)
is used. This means that only packets with the same direction can match. There is also the double arrow (=>), which
respects the directionality as ->, but allows matching on bidirectional transactions, used with keywords matching each
direction. Finally, it is also possible to have a rule match either directions (<>):

source -> destination
source => destination
source <> destination (either directions)

The following example illustrates direction. In this example there is a client with IP address 1.2.3.4 using port 1024.
A server with IP address 5.6.7.8, listening on port 80 (typically HTTP). The client sends a message to the server and
the server replies with its answer.

Now, let's say we have a rule with the following header:

alert tcp 1.2.3.4 1024 -> 5.6.7.8 80

Only the traffic from the client to the server will be matched by this rule, as the direction specifies that we do not want
to evaluate the response packet.

Now, if we have a rule with the following header:

alert tcp 1.2.3.4 any <> 5.6.7.8 80

Suricata will duplicate it and use the same rule with headers in both directions :

alert tcp 1.2.3.4 any -> 5.6.7.8 80 alert tcp 5.6.7.8 80 -> 1.2.3.4 any

8.1. Rules Format 43

Suricata User Guide, Release 8.0.0

Warning: There is no 'reverse' style direction, i.e. there is no <-.

Transactional rules

Here is an example of a transactional rule:

alert http any any => 5.6.7.8 80 (msg:"matching both uri and status"; sid: 1; http.uri; content: "/download";
http.stat_code; content: "200";)

It will match on flows to 5.6.7.8 and port 80. And it will match on a full transaction, using both the uri from the request,
and the stat_code from the response. As such, it will match only when Suricata got both request and response.

Transactional rules can use direction-ambiguous keywords, by specifying the direction.

alert http any any => 5.6.7.8 80 (msg:"matching json to server and xml to client"; sid: 1; http.content_type: to_server;
content: "json"; http.content_type: to_client; content: "xml";)

Transactional rules have some limitations :

• They cannot use direction-ambiguous keywords

• They are only meant to work on transactions with first a request to the server, and then a response to the client,
and not the other way around (not tested).

• They cannot have fast_pattern or prefilter the direction to client if they also have a streaming buffer on
the direction to server, see example below.

• They will refuse to load if a single directional rule is enough.

This rule cannot have the fast_pattern to client, as file.data is a streaming buffer and will refuse to load.

alert http any any => any any (file.data: to_server; content: "123"; http.stat_code; content: "500"; fast_patten;)

If not explicit, a transactional rule will choose a fast_pattern to server by default

8.1.6 Rule options

The rest of the rule consists of options. These are enclosed by parenthesis and separated by semicolons. Some options
have settings (such as msg), which are specified by the keyword of the option, followed by a colon, followed by the
settings. Others have no settings; they are simply the keyword (such as nocase):

<keyword>: <settings>;
<keyword>;

Rule options have a specific ordering and changing their order would change the meaning of the rule.

Note: The characters ; and " have special meaning in the Suricata rule language and must be escaped when used in
a rule option value. For example:

msg:"Message with semicolon\;";

As a consequence, you must also escape the backslash, as it functions as an escape character.

The rest of this chapter in the documentation documents the use of the various keywords.

Some generic details about keywords follow.

44 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Disabling Alerts

There is a way to disable alert generation for a rule using the keyword noalert. When this keyword is part of a rule,
no alert is generated if the other portions of the rule match. That is, the other rule actions will still be applied. Using
noalert can be helpful when a rule is collecting or setting state using flowbits, datasets or other state maintenance
constructs of the rule language. See Thresholding Keywords for other ways to control alert frequency.

The following rules demonstrate noalert with a familiar pattern:

• The first rule marks state without generating an alert.

• The second rule generates an alert if the state is set and additional qualifications are met.

alert http any any -> $HOME_NET any (msg:"noalert example: set state"; flow:established,to_server;
xbits:set,SC.EXAMPLE,track ip_dst, expire 10; noalert; http.method; content:"GET"; sid:1;)

alert http any any -> $HOME_NET any (msg:"noalert example: state use"; flow:established,to_server;
xbits:isset,SC.EXAMPLE,track ip_dst; http.method; content:"POST"; sid: 2;)

In IPS mode, noalert is commonly used in when Suricata should drop network packets without generating alerts (ex-
ample below). The following rule is a simplified example showing how noalert could be used with IPS deployments
to drop inbound SSH requests.

drop tcp any any -> any 22 (msg:"Drop inbound SSH traffic"; noalert; sid: 3)

Modifier Keywords

Some keywords function act as modifiers. There are two types of modifiers.

• The older style 'content modifiers' look back in the rule, e.g.:

alert http any any -> any any (content:"index.php"; http_uri; sid:1;)

In the above example the pattern 'index.php' is modified to inspect the HTTP uri buffer.

• The more recent type is called the 'sticky buffer'. It places the buffer name first and all keywords following it
apply to that buffer, for instance:

alert http any any -> any any (http_response_line; content:"403 Forbidden"; sid:1;)

In the above example the pattern '403 Forbidden' is inspected against the HTTP response line because it follows
the http_response_line keyword.

Normalized Buffers

A packet consists of raw data. HTTP and reassembly make a copy of those kinds of packets data. They erase anomalous
content, combine packets etcetera. What remains is a called the 'normalized buffer':

8.1. Rules Format 45

Suricata User Guide, Release 8.0.0

Because the data is being normalized, it is not what it used to be; it is an interpretation. Normalized buffers are: all
HTTP-keywords, reassembled streams, TLS-, SSL-, SSH-, FTP- and dcerpc-buffers.

Note that there are some exceptions, e.g. the http_raw_uri keyword. See http.uri for more information.

8.2 Meta Keywords

Meta keywords have no effect on Suricata's inspection of network traffic; they do have an effect on the way Suricata
reports events/alerts.

8.2.1 msg (message)

The keyword msg gives contextual information about the signature and the possible alert.

The format of msg is:

msg: "some description";

Examples:

msg:"ET MALWARE Win32/RecordBreaker CnC Checkin";
msg:"ET EXPLOIT SMB-DS DCERPC PnP bind attempt";

To continue the example from the previous chapter, the msg component of the signature is emphasized below:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Tip: It is a standard practice in rule writing to make the first part of the signature msg uppercase and to indicate the
class of the signature.

46 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

It is also standard practice that msg is the first keyword in the signature.

Note: The following characters must be escaped inside the msg: ; \ "

8.2.2 sid (signature ID)

The keyword sid gives every signature its own id. This id is stated with a number greater than zero. The format of sid
is:

sid:123;

Example of sid in a signature:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Tip: It is a standard practice in rule writing that the signature sid is provided as the last keyword (or second-to-last
if there is a rev) of the signature.

There are reserved ranges of sids, the reservations are recorded at https://sidallocation.org/ .

Note: This value must be unique for all rules within the same rule group (gid).

As Suricata-update currently considers the rule's sid only (cf. Bug#5447), it is advisable to opt for a completely unique
sid altogether.

8.2.3 rev (revision)

The sid keyword is commonly accompanied by the rev keyword. Rev represents the version of the signature. If a
signature is modified, the number of rev will be incremented by the signature writers. The format of rev is:

rev:123;

Example of rev in a signature:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Tip: It is a standard practice in rule writing that the rev keyword is expressed after the sid keyword. The sid and rev
keywords are commonly put as the last two keywords in a signature.

8.2. Meta Keywords 47

https://sidallocation.org/
https://redmine.openinfosecfoundation.org/issues/5447

Suricata User Guide, Release 8.0.0

8.2.4 gid (group ID)

The gid keyword can be used to give different groups of signatures another id value (like in sid). Suricata by default
uses gid 1. It is possible to modify the default value. In most cases, it will be unnecessary to change the default gid
value. Changing the gid value has no technical implications, the value is only noted in alert data.

Example of the gid value in an alert entry in the fast.log file. In the part [1:123], the first 1 is the gid (123 is the sid and
1 is the rev).

07/12/2022-21:59:26.713297 [**] [1:123:1] HTTP GET Request Containing Rule in URI [**] [Classification: Poten-
tially Bad Traffic] [Priority: 2] {TCP} 192.168.225.121:12407 -> 172.16.105.84:80

8.2.5 classtype

The classtype keyword gives information about the classification of rules and alerts. It consists of a short name, a long
name and a priority. It can tell for example whether a rule is just informational or is about a CVE. For each classtype,
the classification.config has a priority that will be used in the rule.

Example classtype definition:

config classification: web-application-attack,Web Application Attack,1
config classification: not-suspicious,Not Suspicious Traffic,3

Once we have defined the classification in the configuration file, we can use the classtypes in our rules. A rule with
classtype web-application-attack will be assigned a priority of 1 and the alert will contain 'Web Application Attack' in
the Suricata logs:

classtype Alert Priority
web-application-attack Web Application Attack 1
not-suspicious Not Suspicious Traffic 3

Our continuing example also has a classtype: bad-unknown:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Tip: It is a standard practice in rule writing that the classtype keyword comes before the sid and rev keywords (as
shown in the example rule).

8.2.6 reference

The reference keyword is used to document where information about the signature and about the problem the signature
tries to address can be found. The reference keyword can appear multiple times in a signature. This keyword is meant
for signature-writers and analysts who investigate why a signature has matched. It has the following format:

reference:type,reference

A typical reference to www.info.com would be:

reference:url,www.info.com

48 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

There are several systems that can be used as a reference. A commonly known example is the CVE-database, which
assigns numbers to vulnerabilities, to prevent having to type the same URL over and over again. An example reference
of a CVE:

reference:cve,CVE-2014-1234

This would make a reference to http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1234.

All the reference types are defined in the reference.config configuration file.

8.2.7 priority

The priority keyword comes with a mandatory numeric value which can range from 1 to 255. The values 1 through
4 are commonly used. The highest priority is 1. Signatures with a higher priority will be examined first. Normally
signatures have a priority determined through a classtype definition. The classtype definition can be overridden by
defining the priority keyword in the signature. The format of priority is:

priority:1;

8.2.8 metadata

The metadata keyword allows additional, non-functional, information to be added to the signature. While the format is
free-form, it is recommended to stick to [key, value] pairs as Suricata can include these in eve alerts. The format is:

metadata: key value;
metadata: key value, key value;

8.2.9 target

The target keyword allows the rules writer to specify which side of the alert is the target of the attack. If specified, the
alert event is enhanced to contain information about source and target.

The format is:

target:[src_ip|dest_ip]

If the value is src_ip then the source IP in the generated event (src_ip field in JSON) is the target of the attack. If target
is set to dest_ip then the target is the destination IP in the generated event.

8.2.10 requires

The requires keyword allows a rule to require specific Suricata features to be enabled, specific keywords to be avail-
able, or the Suricata version to match an expression. Rules that do not meet the requirements will be ignored, and
Suricata will not treat them as errors.

Requirements that follow the valid format of <keyword> <expression> but are not known to Suricata are allowed
for future compatiblity, however unknown requirement expressions will lead to the requirement not being met, skipping
the rule.

When parsing rules, the parser attempts to process the requires keywords before others. This allows it to occur after
keywords that may only be present in specific versions of Suricata, as specified by the requires statement. However,
the keywords preceding it must still adhere to the basic known formats of Suricata rules.

8.2. Meta Keywords 49

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1234

Suricata User Guide, Release 8.0.0

The format is:

requires: feature geoip, version >= 7.0.0, keyword foobar

To require multiple features, the feature sub-keyword must be specified multiple times:

requires: feature geoip, feature lua

Alternatively, and expressions may be expressed like:

requires: version >= 7.0.4 < 8

and or expressions may expressed with | like:

requires: version >= 7.0.4 < 8 | >= 8.0.3

to express that a rule requires version 7.0.4 or greater, but less than 8, OR greater than or equal to 8.0.3. Which could
be useful if a keyword wasn't added until 7.0.4 and the 8.0.3 patch releases, as it would not exist in 8.0.1.

This can be extended to multiple release branches:

requires: version >= 7.0.10 < 8 | >= 8.0.5 < 9 | >= 9.0.3

If no minor or patch version component is provided, it will default to 0.

The version may only be specified once, if specified more than once the rule will log an error and not be loaded.

The requires keyword was introduced in Suricata 7.0.3 and 8.0.0.

8.3 IP Keywords

8.3.1 ttl

The ttl keyword is used to check for a specific IP time-to-live value in the header of a packet. The format is:

ttl:<number>;

For example:

ttl:10;

ttl uses an unsigned 8-bit integer.

At the end of the ttl keyword you can enter the value on which you want to match. The Time-to-live value determines
the maximal amount of time a packet can be in the Internet-system. If this field is set to 0, then the packet has to be
destroyed. The time-to-live is based on hop count. Each hop/router the packet passes subtracts one from the packet
TTL counter. The purpose of this mechanism is to limit the existence of packets so that packets can not end up in
infinite routing loops.

Example of the ttl keyword in a rule:

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"IP Packet With TTL 0"; ttl:0; classtype:misc-activity;
sid:1; rev:1;)

50 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.3.2 ipopts

With the ipopts keyword you can check if a specific IP option is set. Ipopts has to be used at the beginning of a rule.
You can only match on one option per rule. There are several options on which can be matched. These are:

IP Option Description
rr Record Route
eol End of List
nop No Op
ts Time Stamp
sec IP Security
esec IP Extended Security
lsrr Loose Source Routing
ssrr Strict Source Routing
satid Stream Identifier
any any IP options are set

Format of the ipopts keyword:

ipopts: <name>;

For example:

ipopts: ts;

Example of ipopts in a rule:

alert ip $EXTERNAL_NET any -> $HOME_NET any (msg:"IP Packet with timestamp option"; ipopts:ts;
classtype:misc-activity; sid:2; rev:1;)

8.3.3 sameip

Every packet has a source IP-address and a destination IP-address. It can be that the source IP is the same as the
destination IP. With the sameip keyword you can check if the IP address of the source is the same as the IP address of
the destination. The format of the sameip keyword is:

sameip;

Example of sameip in a rule:

alert ip any any -> any any (msg:"IP Packet with the same source and destination IP"; sameip; classtype:bad-unknown;
sid:3; rev:1;)

8.3.4 ip_proto

With the ip_proto keyword you can match on the IP protocol in the packet-header. You can use the name or the number
of the protocol. You can match for example on the following protocols:

1 ICMP Internet Control Message
6 TCP Transmission Control Protocol
17 UDP User Datagram
47 GRE General Routing Encapsulation

(continues on next page)

8.3. IP Keywords 51

Suricata User Guide, Release 8.0.0

(continued from previous page)

50 ESP Encap Security Payload for IPv6
51 AH Authentication Header for Ipv6
58 IPv6-ICMP ICMP for Ipv6

For the complete list of protocols and their numbers see http://en.wikipedia.org/wiki/List_of_IP_protocol_numbers

Example of ip_proto in a rule:

alert ip any any -> any any (msg:"IP Packet with protocol 1"; ip_proto:1; classtype:bad-unknown; sid:5; rev:1;)

The named variant of that example would be:

ip_proto:ICMP;

8.3.5 ipv4.hdr

Sticky buffer to match on content contained within an IPv4 header.

Example rule:

alert ip any any -> any any (msg:"IPv4 header keyword example"; ipv4.hdr; content:"|06|"; offset:9; depth:1; sid:1;
rev:1;)

This example looks if byte 10 of IPv4 header has value 06, which indicates that the IPv4 protocol is TCP.

8.3.6 ipv6.hdr

Sticky buffer to match on content contained within an IPv6 header.

Example rule:

alert ip any any -> any any (msg:"IPv6 header keyword example"; ipv6.hdr; content:"|06|"; offset:6; depth:1; sid:1;
rev:1;)

This example looks if byte 7 of IP64 header has value 06, which indicates that the IPv6 protocol is TCP.

8.3.7 id

With the id keyword, you can match on a specific IP ID value. The ID identifies each packet sent by a host and
increments usually with one with each packet that is being send. The IP ID is used as a fragment identification number.
Each packet has an IP ID, and when the packet becomes fragmented, all fragments of this packet have the same ID. In
this way, the receiver of the packet knows which fragments belong to the same packet. (IP ID does not take care of the
order, in that case offset is used. It clarifies the order of the fragments.)

Format of id:

id:<number>;

Example of id in a rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"id keyword example"; id:1; content:"content|3a 20|";
fast_pattern; classtype:misc-activity; sid:12; rev:1;)

52 Chapter 8. Suricata Rules

http://en.wikipedia.org/wiki/List_of_IP_protocol_numbers

Suricata User Guide, Release 8.0.0

8.3.8 geoip

The geoip keyword enables matching on the source, destination or source and destination IPv4 addresses of network
traffic, and to see to which country it belongs. To be able to do this, Suricata uses the GeoIP2 API of MaxMind.

The syntax of geoip:

geoip: src,RU;
geoip: both,CN,RU;
geoip: dst,CN,RU,IR;
geoip: both,US,CA,UK;
geoip: any,CN,IR;

Option Description
both Both source and destination have to match with the given geoip(s)
any Either the source or the destination has to match with the given geoip(s).
dest The destination matches with the given geoip.
src The source matches with the given geoip.

geoip currently only supports IPv4. As it uses the GeoIP2 API of MaxMind, libmaxminddb must be compiled in.
You must download and install the GeoIP2 or GeoLite2 database editions desired. Visit the MaxMind site at https:
//dev.maxmind.com/geoip/geolite2-free-geolocation-data for details.

You must also supply the location of the GeoIP2 or GeoLite2 database file on the local system in the YAML-file
configuration (for example):

geoip-database: /usr/local/share/GeoIP/GeoLite2-Country.mmdb

8.3.9 fragbits (IP fragmentation)

With the fragbits keyword, you can check if the fragmentation and reserved bits are set in the IP header. The fragbits
keyword should be placed at the beginning of a rule. Fragbits is used to modify the fragmentation mechanism. During
routing of messages from one Internet module to the other, it can occur that a packet is bigger than the maximal packet
size a network can process. In that case, a packet can be send in fragments. This maximum of the packet size is called
Maximal Transmit Unit (MTU).

You can match on the following bits:

M - More Fragments
D - Do not Fragment
R - Reserved Bit

Matching on this bits can be more specified with the following modifiers:

+ match on the specified bits, plus any others
* match if any of the specified bits are set
! match if the specified bits are not set

Format:

fragbits:[*+!]<[MDR]>;

Example of fragbits in a rule:

8.3. IP Keywords 53

https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data

Suricata User Guide, Release 8.0.0

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"fragbits keyword example non-fragmented packet with
fragment offset>0"; fragbits:M; fragoffset:>0; classtype:bad-unknown; sid:123; rev:1;)

8.3.10 fragoffset

With the fragoffset keyword you can match on specific decimal values of the IP fragment offset field. If you would
like to check the first fragments of a session, you have to combine fragoffset 0 with the More Fragment option. The
fragmentation offset field is convenient for reassembly. The id is used to determine which fragments belong to which
packet and the fragmentation offset field clarifies the order of the fragments.

You can use the following modifiers:

< match if the value is smaller than the specified value
> match if the value is greater than the specified value
! match if the specified value is not present

Format of fragoffset:

fragoffset:[!|<|>]<number>;

Example of fragoffset in a rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"fragoffset keyword example invalid non-fragmented
packet with fragment offset>0"; fragbits:M; fragoffset:>0; classtype:bad-unknown; sid:13; rev:1;)

8.3.11 tos

The tos keyword can match on specific decimal values of the IP header TOS field. The tos keyword can have a value
from 0 - 255. This field of the IP header has been updated by rfc2474 to include functionality for Differentiated services.
Note that the value of the field has been defined with the right-most 2 bits having the value 0. When specifying a value
for tos, ensure that the value follows this.

E.g, instead of specifying the decimal value 34 (hex 22), right shift twice and use decimal 136 (hex 88).

You can specify hexadecimal values with a leading x, e.g, x88.

Format of tos:

tos:[!]<number>;

Example of tos in a rule:

alert ip any any -> any any (msg:"tos keyword example tos value 8"; flow:established; tos:8; classtype:not-suspicious;
sid:123; rev:1;)

Example of tos with a negated value:

alert ip any any -> any any (msg:"tos keyword example with negated content"; flow:established,to_server; tos:!8;
classtype:bad-unknown; sid:14; rev:1;)

54 Chapter 8. Suricata Rules

https://tools.ietf.org/html/rfc2474
https://en.wikipedia.org/wiki/Differentiated_services

Suricata User Guide, Release 8.0.0

8.4 TCP keywords

8.4.1 tcp.flags

The tcp.flags keyword checks for specific TCP flag bits.

The following flag bits may be checked:

Flag Description
F FIN - Finish
S SYN - Synchronize sequence numbers
R RST - Reset
P PSH - Push
A ACK - Acknowledgment
U URG - Urgent
C CWR - Congestion Window Reduced
E ECE - ECN-Echo
0 No TCP Flags Set

The following modifiers can be set to change the match criteria:

Modifier Description
+ match on the bits, plus any others
* match if any of the bits are set
! match if the bits are not set

To handle writing rules for session initiation packets such as ECN where a SYN packet is sent with CWR and ECE
flags set, an option mask may be used by appending a comma and masked values. For example, a rule that checks for
a SYN flag, regardless of the values of the reserved bits is tcp.flags:S,CE;

Format of tcp.flags:

tcp.flags:[modifier]<test flags>[,<ignore flags>];
tcp.flags:[!|*|+]<FSRPAUCE0>[,<FSRPAUCE>];

Example:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"Example tcp.flags sig"; tcp.flags:FPU,CE;
classtype:misc-activity; sid:1; rev:1;)

It is also possible to use the tcp.flags content as a fast_pattern by using the prefilter keyword. For more information on
prefilter usage see Prefiltering Keywords. Example:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"Example tcp.flags sig"; tcp.flags:FPU,CE; prefilter;
classtype:misc-activity; sid:1; rev:1;)

8.4. TCP keywords 55

https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure

Suricata User Guide, Release 8.0.0

8.4.2 seq

The seq keyword can be used in a signature to check for a specific TCP sequence number. A sequence number is a
number that is generated practically at random by both endpoints of a TCP-connection. The client and the server both
create a sequence number, which increases by one with every byte that they send. So this sequence number is different
for both sides. This sequence number has to be acknowledged by both sides of the connection.

Through sequence numbers, TCP handles acknowledgement, order and retransmission. Its number increases with every
data-byte the sender has sent. The seq helps keeping track of to what place in a data-stream a byte belongs. If the SYN
flag is set at 1, then the sequence number of the first byte of the data is this number plus 1 (so, 2).

Example:

seq:0;

Example of seq in a signature:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"GPL SCAN NULL"; flow:stateless; ack:0; flags:0;
seq:0; reference:arachnids,4; classtype:attempted-recon; sid:2100623; rev:7;)

Example of seq in a packet (Wireshark):

56 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.4.3 ack

The ack keyword can be used in a signature to check for a specific TCP acknowledgement number.

The ack is the acknowledgement of the receipt of all previous (data)-bytes send by the other side of the TCP-connection.
In most occasions every packet of a TCP connection has an ACK flag after the first SYN and a ack-number which
increases with the receipt of every new data-byte.

Format of ack:

ack:1;

Example of ack in a signature:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"GPL SCAN NULL"; flow:stateless; ack:0; flags:0;
seq:0; reference:arachnids,4; classtype:attempted-recon; sid:2100623; rev:7;)

Example of ack in a packet (Wireshark):

8.4.4 window

The window keyword is used to check for a specific TCP window size.

The TCP window size is a mechanism that has control of the data-flow. The window is set by the receiver (receiver
advertised window size) and indicates the amount of bytes that can be received. This amount of data has to be acknowl-
edged by the receiver first, before the sender can send the same amount of new data.

This mechanism is used to prevent the receiver from being overflowed by data. The value of the window size is limited
and can be 2 to 65.535 bytes. To make more use of your bandwidth you can use a bigger TCP-window.

The format of the window keyword is:

8.4. TCP keywords 57

Suricata User Guide, Release 8.0.0

window:[!]<number>;

Example of window in a rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"GPL DELETED typot trojan traffic"; flow:stateless;
flags:S,12; window:55808; reference:mcafee,100406; classtype:trojan-activity; sid:2182; rev:8;)

8.4.5 tcp.mss

Match on the TCP MSS option value. Will not match if the option is not present.

tcp.mss uses an unsigned 16-bit integer.

The format of the keyword is:

tcp.mss:<min>-<max>;
tcp.mss:[<|>]<number>;
tcp.mss:<value>;

Example rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (flow:stateless; flags:S,12; tcp.mss:<536; sid:1234; rev:5;)

8.4.6 tcp.wscale

Match on the TCP window scaling option value. Will not match if the option is not present.

tcp.wscale uses an unsigned 8-bit integer.

The format of the keyword is:

tcp.wscale:<min>-<max>;
tcp.wscale:[<|>]<number>;
tcp.wscale:<value>;

Example rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (flow:stateless; flags:S,12; tcp.wscale:>10; sid:1234; rev:5;)

8.4.7 tcp.hdr

Sticky buffer to match on the whole TCP header.

Example rule:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (flags:S,12; tcp.hdr; content:"|02 04|"; offset:20;
byte_test:2,<,536,0,big,relative; sid:1234; rev:5;)

This example starts looking after the fixed portion of the header, so into the variable sized options. There it will look
for the MSS option (type 2, option len 4) and using a byte_test determine if the value of the option is lower than 536.
The tcp.mss option will be more efficient, so this keyword is meant to be used in cases where no specific keyword is
available.

58 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.5 UDP keywords

8.5.1 udp.hdr

Sticky buffer to match on the whole UDP header.

Example rule:

alert udp any any -> any any (udp.hdr; content:"|00 08|"; offset:4; depth:2; sid:1234; rev:5;)

This example matches on the length field of the UDP header. In this case the length of 8 means that there is no payload.
This can also be matched using dsize:0;.

8.6 ICMP keywords

ICMP (Internet Control Message Protocol) is a part of IP. IP at itself is not reliable when it comes to delivering data
(datagram). ICMP gives feedback in case problems occur. It does not prevent problems from happening, but helps in
understanding what went wrong and where. If reliability is necessary, protocols that use IP have to take care of reliability
themselves. In different situations ICMP messages will be send. For instance when the destination is unreachable, if
there is not enough buffer-capacity to forward the data, or when a datagram is send fragmented when it should not be,
etcetera. More can be found in the list with message-types.

There are four important contents of a ICMP message on which can be matched with corresponding ICMP-keywords.
These are: the type, the code, the id and the sequence of a message.

8.6.1 itype

The itype keyword is for matching on a specific ICMP type (number). ICMP has several kinds of messages and uses
codes to clarify those messages. The different messages are distinct by different names, but more important by numeric
values. For more information see the table with message-types and codes.

itype uses an unsigned 8-bit integer.

The format of the itype keyword:

itype:min<>max;
itype:[<|>]<number>;

Example This example looks for an ICMP type greater than 10:

itype:>10;

Example of the itype keyword in a signature:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"GPL SCAN Broadscan Smurf Scanner"; dsize:4;
icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon; sid:2100478; rev:4;)

The following lists all ICMP types known at the time of writing. A recent table can be found at the website of IANA

8.5. UDP keywords 59

https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml

Suricata User Guide, Release 8.0.0

ICMP Type Name
0 Echo Reply
3 Destination Unreachable
4 Source Quench
5 Redirect
6 Alternate Host Address
8 Echo
9 Router Advertisement
10 Router Solicitation
11 Time Exceeded
12 Parameter Problem
13 Timestamp
14 Timestamp Reply
15 Information Request
16 Information Reply
17 Address Mask Request
18 Address Mask Reply
30 Traceroute
31 Datagram Conversion Error
32 Mobile Host Redirect
33 IPv6 Where-Are-You
34 IPv6 I-Am-Here
35 Mobile Registration Request
36 Mobile Registration Reply
37 Domain Name Request
38 Domain Name Reply
39 SKIP
40 Photuris
41 Experimental mobility protocols such as Seamoby

8.6.2 icode

With the icode keyword you can match on a specific ICMP code. The code of a ICMP message clarifies the message.
Together with the ICMP-type it indicates with what kind of problem you are dealing with. A code has a different
purpose with every ICMP-type.

icode uses an unsigned 8-bit integer.

The format of the icode keyword:

icode:min<>max;
icode:[<|>]<number>;

Example: This example looks for an ICMP code greater than 5:

icode:>5;

Example of the icode keyword in a rule:

alert icmp $HOME_NET any -> $EXTERNAL_NET any (msg:"GPL MISC Time-To-Live Exceeded in Transit";
icode:0; itype:11; classtype:misc-activity; sid:2100449; rev:7;)

The following lists the meaning of all ICMP types. When a code is not listed, only type 0 is defined and has the meaning
of the ICMP code, in the table above. A recent table can be found at the website of IANA

60 Chapter 8. Suricata Rules

https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml

Suricata User Guide, Release 8.0.0

ICMP Code ICMP Type Description
3 0 Net Unreachable

1 Host Unreachable
2 Protocol Unreachable
3 Port Unreachable
4 Fragmentation Needed and Don't Fragment was Set
5 Source Route Failed
6 Destination Network Unknown
7 Destination Host Unknown
8 Source Host Isolated
9 Communication with Destination Network is Administratively Prohibited
10 Communication with Destination Host is Administratively Prohibited
11 Destination Network Unreachable for Type of Service
12 Destination Host Unreachable for Type of Service
13 Communication Administratively Prohibited
14 Host Precedence Violation
15 Precedence cutoff in effect

5 0 Redirect Datagram for the Network (or subnet)
1 Redirect Datagram for the Host
2 Redirect Datagram for the Type of Service and Network
3 Redirect Datagram for the Type of Service and Host

9 0 Normal router advertisement
16 Doesn't route common traffic

11 0 Time to Live exceeded in Transit
1 Fragment Reassembly Time Exceeded

12 0 Pointer indicates the error
1 Missing a Required Option
2 Bad Length

40 0 Bad SPI
1 Authentication Failed
2 Decompression Failed
3 Decryption Failed
4 Need Authentication
5 Need Authorization

8.6.3 icmp_id

With the icmp_id keyword you can match on specific ICMP id-values. Every ICMP-packet gets an id when it is being
send. At the moment the receiver has received the packet, it will send a reply using the same id so the sender will
recognize it and connects it with the correct ICMP-request.

Format of the icmp_id keyword:

icmp_id:<number>;

Example: This example looks for an ICMP ID of 0:

icmp_id:0;

Example of the icmp_id keyword in a rule:

8.6. ICMP keywords 61

Suricata User Guide, Release 8.0.0

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"GPL SCAN Broadscan Smurf Scanner"; dsize:4;
icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon; sid:2100478; rev:4;)

8.6.4 icmp_seq

You can use the icmp_seq keyword to check for a ICMP sequence number. ICMP messages all have sequence numbers.
This can be useful (together with the id) for checking which reply message belongs to which request message.

Format of the icmp_seq keyword:

icmp_seq:<number>;

Example: This example looks for an ICMP Sequence of 0:

icmp_seq:0;

Example of icmp_seq in a rule:

alert icmp $EXTERNAL_NET any -> $HOME_NET any (msg:"GPL SCAN Broadscan Smurf Scanner"; dsize:4;
icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon; sid:2100478; rev:4;)

Note: Some pcap analysis tools, like wireshark, may give both a little endian and big endian value for icmp_seq. The
icmp_seq keyword matches on the big endian value, this is due to Suricata using the network byte order (big endian)
to perform the match comparison.

8.6.5 icmpv4.hdr

Sticky buffer to match on the whole ICMPv4 header.

8.6.6 icmpv6.hdr

Sticky buffer to match on the whole ICMPv6 header.

8.6.7 icmpv6.mtu

Match on the ICMPv6 MTU optional value. Will not match if the MTU is not present.

icmpv6.mtu uses an unsigned 32-bit integer.

The format of the keyword:

icmpv6.mtu:<min>-<max>;
icmpv6.mtu:[<|>]<number>;
icmpv6.mtu:<value>;

Example rule:

alert ip $EXTERNAL_NET any -> $HOME_NET any (icmpv6.mtu:<1280; sid:1234; rev:5;)

62 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.7 Payload Keywords

Payload keywords inspect the content of the payload of a packet or stream.

8.7.1 content

The content keyword is very important in signatures. Between the quotation marks you can write on what you would
like the signature to match. The most simple format of content is:

content: "............";

It is possible to use several contents in a signature.

Contents match on bytes. There are 256 different values of a byte (0-255). You can match on all characters; from a till
z, upper case and lower case and also on all special signs. But not all of the bytes are printable characters. For these
bytes heximal notations are used. Many programming languages use 0x00 as a notation, where 0x means it concerns
a binary value, however the rule language uses |00| as a notation. This kind of notation can also be used for printable
characters.

Example:

|61| is a
|61 61| is aa
|41| is A
|21| is !
|0D| is carriage return
|0A| is line feed

There are characters you can not use in the content because they are already important in the signature. For matching
on these characters you should use the heximal notation. These are:

" |22|
; |3B|
: |3A|
| |7C|

It is a convention to write the heximal notation in upper case characters.

To write for instance http:// in the content of a signature, you should write it like this: content: "http|3A|//";
If you use a heximal notation in a signature, make sure you always place it between pipes. Otherwise the notation will
be taken literally as part of the content.

A few examples:

content:"a|0D|bc";
content:"|61 0D 62 63|";
content:"a|0D|b|63|";

It is possible to let a signature check the whole payload for a match with the content or to let it check specific parts of
the payload. We come to that later. If you add nothing special to the signature, it will try to find a match in all the bytes
of the payload.

drop tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"ET TROJAN Likely Bot Nick in IRC (USA +..)";
flow:established,to_server; flowbits:isset,is_proto_irc; content:"NICK "; pcre:"/NICK .*USA.*[0-9]{3,}/i"; refer-
ence:url,doc.emergingthreats.net/2008124; classtype:trojan-activity; sid:2008124; rev:2;)

8.7. Payload Keywords 63

Suricata User Guide, Release 8.0.0

By default the pattern-matching is case sensitive. The content has to be accurate, otherwise there will not be a match.

Legend:

It is possible to use the ! for exceptions in contents as well.

For example:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"Outdated Firefox on
Windows"; content:"User-Agent|3A| Mozilla/5.0 |28|Windows|3B| ";
content:"Firefox/3."; distance:0; content:!"Firefox/3.6.13";
distance:-10; sid:9000000; rev:1;)

You see content:!"Firefox/3.6.13";. This means an alert will be generated if the used version of Firefox is not
3.6.13.

Note: The following characters must be escaped inside the content: ; \ "

64 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.7.2 nocase

If you do not want to make a distinction between uppercase and lowercase characters, you can use nocase. The keyword
nocase is a content modifier.

The format of this keyword is:

nocase;

You have to place it after the content you want to modify, like:

content: "abc"; nocase;

Example nocase:

It has no influence on other contents in the signature.

8.7.3 depth

The depth keyword is a absolute content modifier. It comes after the content. The depth content modifier comes with
a mandatory numeric value, like:

depth:12;

The number after depth designates how many bytes from the beginning of the payload will be checked.

Example:

8.7. Payload Keywords 65

Suricata User Guide, Release 8.0.0

8.7.4 startswith

The startswith keyword is similar to depth. It takes no arguments and must follow a content keyword. It modifies
the content to match exactly at the start of a buffer.

Example:

content:"GET|20|"; startswith;

startswith is a short hand notation for:

content:"GET|20|"; depth:4; offset:0;

startswith cannot be mixed with depth, offset, within or distance for the same pattern.

8.7.5 endswith

The endswith keyword is similar to isdataat:!1,relative;. It takes no arguments and must follow a content
keyword. It modifies the content to match exactly at the end of a buffer.

Example:

content:".php"; endswith;

endswith is a short hand notation for:

content:".php"; isdataat:!1,relative;

endswith cannot be mixed with offset, within or distance for the same pattern.

66 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.7.6 offset

The offset keyword designates from which byte in the payload will be checked to find a match. For instance offset:3;
checks the fourth byte and further.

The keywords offset and depth can be combined and are often used together.

For example:

content:"def"; offset:3; depth:3;

If this was used in a signature, it would check the payload from the third byte till the sixth byte.

8.7. Payload Keywords 67

Suricata User Guide, Release 8.0.0

8.7.7 distance

The keyword distance is a relative content modifier. This means it indicates a relation between this content keyword
and the content preceding it. Distance has its influence after the preceding match. The keyword distance comes with a
mandatory numeric value. The value you give distance, determines the byte in the payload from which will be checked
for a match relative to the previous match. Distance only determines where Suricata will start looking for a pattern.
So, distance:5; means the pattern can be anywhere after the previous match + 5 bytes. For limiting how far after the
last match Suricata needs to look, use 'within'.

The absolute value for distance must be less than or equal to 1MB (1048576).

Examples of distance:

68 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.7. Payload Keywords 69

Suricata User Guide, Release 8.0.0

Distance can also be a negative number. It can be used to check for matches with partly the same content (see example)
or for a content even completely before it. This is not very often used though. It is possible to attain the same results
with other keywords.

70 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.7.8 within

The keyword within is relative to the preceding match. The keyword within comes with a mandatory numeric value.
Using within makes sure there will only be a match if the content matches with the payload within the set amount of
bytes. Within can not be 0 (zero)

The absolute value for within must be less than or equal to 1MB (1048576).

Example:

Example of matching with within:

The second content has to fall/come 'within 3 ' from the first content.

As mentioned before, distance and within can be very well combined in a signature. If you want Suricata to check a
specific part of the payload for a match, use within.

8.7. Payload Keywords 71

Suricata User Guide, Release 8.0.0

8.7.9 rawbytes

The rawbytes keyword has no effect but is included to be compatible with signatures that use it, for example signatures
used with Snort.

72 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.7.10 isdataat

The purpose of the isdataat keyword is to look if there is still data at a specific part of the payload. The keyword starts
with a number (the position) and then optional followed by 'relative' separated by a comma and the option rawbytes.
You use the word 'relative' to know if there is still data at a specific part of the payload relative to the last match.

So you can use both examples:

isdataat:512;

isdataat:50, relative;

The first example illustrates a signature which searches for byte 512 of the payload. The second example illustrates a
signature searching for byte 50 after the last match.

You can also use the negation (!) before isdataat.

8.7.11 absent

The keyword absent checks that a sticky buffer does not exist. It can be used without any argument to match only on
absent buffer :

Example of absent in a rule:

alert http any any -> any any (msg:"HTTP request without referer"; http.referer; absent; sid:1; rev:1;)

It can take an argument "or_else" to match on absent buffer or on what comes next such as negated content, for instance
:

alert http any any -> any any (msg:"HTTP request without referer"; http.referer; absent: or_else; content: !"abc"; sid:1;
rev:1;)

For files (i.e file.data), absent means there are no files in the transaction.

8.7. Payload Keywords 73

Suricata User Guide, Release 8.0.0

8.7.12 bsize

With the bsize keyword, you can match on the length of the buffer. This adds precision to the content match, previously
this could have been done with isdataat.

bsize uses an unsigned 64-bit integer.

An optional operator can be specified; if no operator is present, the operator will default to '='. When a relational
operator is used, e.g., '<', '>' or '<>' (range), the bsize value will be compared using the relational operator. Ranges are
exclusive.

If one or more content keywords precedes bsize, each occurrence of content will be inspected and an error will
be raised if the content length and the bsize value prevent a match.

Format:

bsize:<number>;
bsize:=<number>;
bsize:<<number>;
bsize:><number>;
bsize:<lo-number><><hi-number>;

Examples of bsize in a rule:

alert dns any any -> any any (msg:"bsize exact buffer size"; dns.query; content:"google.com"; bsize:10; sid:1; rev:1;)

alert dns any any -> any any (msg:"bsize less than value"; dns.query; content:"google.com"; bsize:<25; sid:2; rev:1;)

alert dns any any -> any any (msg:"bsize buffer less than or equal value"; dns.query; content:"google.com"; bsize:<=20;
sid:3; rev:1;)

alert dns any any -> any any (msg:"bsize buffer greater than value"; dns.query; content:"google.com"; bsize:>8; sid:4;
rev:1;)

alert dns any any -> any any (msg:"bsize buffer greater than or equal value"; dns.query; content:"google.com";
bsize:>=8; sid:5; rev:1;)

alert dns any any -> any any (msg:"bsize buffer range value"; dns.query; content:"google.com"; bsize:8<>20; sid:6;
rev:1;)

alert dns any any -> any any (msg:"test bsize rule"; dns.query; content:"short"; bsize:<10; sid:124; rev:1;)

alert dns any any -> any any (msg:"test bsize rule"; dns.query; content:"longer string"; bsize:>10; sid:125; rev:1;)

alert dns any any -> any any (msg:"test bsize rule"; dns.query; content:"middle"; bsize:6<>15; sid:126; rev:1;)

To emphasize how range works: in the example above, a match will occur if bsize is greater than 6 and less than 15.

8.7.13 dsize

With the dsize keyword, you can match on the size of the packet payload/data. You can use the keyword for example
to look for abnormal sizes of payloads which are equal to some n i.e. 'dsize:n' not equal 'dsize:!n' less than 'dsize:<n'
or greater than 'dsize:>n' This may be convenient in detecting buffer overflows.

dsize cannot be used when using app/streamlayer protocol keywords (i.e. http.uri)

dsize uses an unsigned 16-bit integer.

Format:

dsize:[<>!]number; || dsize:min<>max;

74 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Examples of dsize values:

alert tcp any any -> any any (msg:"dsize exact size"; dsize:10; sid:1; rev:1;)

alert tcp any any -> any any (msg:"dsize less than value"; dsize:<10; sid:2; rev:1;)

alert tcp any any -> any any (msg:"dsize less than or equal value"; dsize:<=10; sid:3; rev:1;)

alert tcp any any -> any any (msg:"dsize greater than value"; dsize:>8; sid:4; rev:1;)

alert tcp any any -> any any (msg:"dsize greater than or equal value"; dsize:>=10; sid:5; rev:1;)

alert tcp any any -> any any (msg:"dsize range value"; dsize:8<>20; sid:6; rev:1;)

alert tcp any any -> any any (msg:"dsize not equal value"; dsize:!9; sid:7; rev:1;)

8.7.14 byte_test

The byte_test keyword extracts <num of bytes> and performs an operation selected with <operator> against the
value in <test value> at a particular <offset>. The <bitmask value> is applied to the extracted bytes (before
the operator is applied), and the final result will be right shifted one bit for each trailing 0 in the <bitmask value>.

Format:

byte_test:<num of bytes> | <variable_name>, [!]<operator>, <test value>, <offset> [,
→˓relative] \
[,<endian>][, string, <num type>][, dce][, bitmask <bitmask value>];

<num of bytes> The number of bytes selected from the packet to be con-
verted or the name of a byte_extract/byte_math variable.

<operator>
• [!] Negation can prefix other operators
• < less than
• > greater than
• = equal
• <= less than or equal
• >= greater than or equal
• & bitwise AND
• ^ bitwise OR

<value> Value to test the converted value against [hex or decimal
accepted]

<offset> Number of bytes into the payload
[relative] Offset relative to last content match
[endian] Type of number being read: - big (Most significant byte

at lowest address) - little (Most significant byte at the
highest address)

[string] <num>
• hex - Converted string represented in hex
• dec - Converted string represented in decimal
• oct - Converted string represented in octal

[dce] Allow the DCE module to determine the byte order
[bitmask] Applies the AND operator on the bytes converted

Example:

8.7. Payload Keywords 75

Suricata User Guide, Release 8.0.0

alert tcp any any -> any any \
(msg:"Byte_Test Example - Num = Value"; \
content:"|00 01 00 02|"; byte_test:2,=,0x01,0;)

alert tcp any any -> any any \
(msg:"Byte_Test Example - Num = Value relative to content"; \
content:"|00 01 00 02|"; byte_test:2,=,0x03,2,relative;)

alert tcp any any -> any any \
(msg:"Byte_Test Example - Num != Value"; content:"|00 01 00 02|"; \
byte_test:2,!=,0x06,0;)

alert tcp any any -> any any \
(msg:"Byte_Test Example - Detect Large Values"; content:"|00 01 00 02|"; \
byte_test:2,>,1000,1,relative;)

alert tcp any any -> any any \
(msg:"Byte_Test Example - Lowest bit is set"; \
content:"|00 01 00 02|"; byte_test:2,&,0x01,12,relative;)

alert tcp any any -> any any (msg:"Byte_Test Example - Compare to String"; \
content:"foobar"; byte_test:4,=,1337,1,relative,string,dec;)

8.7.15 byte_math

The byte_math keyword adds the capability to perform mathematical operations on extracted values with an existing
variable or a specified value.

When relative is included, there must be a previous content or pcre match.

Note: if oper is / and the divisor is 0, there will never be a match on the byte_math keyword.

The result can be stored in a result variable and referenced by other rule options later in the rule.

Keyword Modifier
content offset,depth,distance,within
byte_test offset,value
byte_jump offset
isdataat offset

Format:

byte_math:bytes <num of bytes> | <variable-name> , offset <offset>, oper <operator>,␣
→˓rvalue <rvalue>, \

result <result_var> [, relative] [, endian <endian>] [, string <number-type>] \
[, dce] [, bitmask <value>];

76 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

<num of bytes> The number of bytes selected from the packet or the
name of a byte_extract variable.

<offset> Number of bytes into the payload
oper <operator> Mathematical operation to perform: +, -, *, /, <<, >>
rvalue <rvalue> Value to perform the math operation with
result <result-var> Where to store the computed value
[relative] Offset relative to last content match
[endian <type>]

• big (Most significant byte at lowest address)
• little (Most significant byte at the highest address)
• dce (Allow the DCE module to determine the byte

order)

[string <num_type>]
• hex Converted data is represented in hex
• dec Converted data is represented in decimal
• oct Converted data is represented as octal

[dce] Allow the DCE module to determine the byte order
[bitmask] <value> The AND operator will be applied to the extracted value

The result will be right shifted by the number of bits
equal to the number of trailing zeros in the mask

Example:

alert tcp any any -> any any \
(msg:"Testing bytemath_body"; \
content:"|00 04 93 F3|"; \
content:"|00 00 00 07|"; distance:4; within:4; \
byte_math:bytes 4, offset 0, oper +, rvalue \
248, result var, relative;)

alert udp any any -> any any \
(byte_extract: 1, 0, extracted_val, relative; \
byte_math: bytes 1, offset 1, oper +, rvalue extracted_val, result var; \
byte_test: 2, =, var, 13; \
msg:"Byte extract and byte math with byte test verification";)

8.7.16 byte_jump

The byte_jump keyword allows for the ability to select a <num of bytes> from an <offset> and moves the detection
pointer to that position. Content matches will then be based off the new position.

Format:

byte_jump:<num of bytes> | <variable-name>, <offset> [, relative][, multiplier <mult_
→˓value>] \

[, <endian>][, string, <num_type>][, align][, from_beginning][, from_end] \
[, post_offset <value>][, dce][, bitmask <value>];

8.7. Payload Keywords 77

Suricata User Guide, Release 8.0.0

<num of bytes> The number of bytes selected from the packet to be con-
verted or the name of a byte_extract/byte_math variable.

<offset> Number of bytes into the payload
[relative] Offset relative to last content match
[multiplier] <value> Multiple the converted byte by the <value>
[endian]

• big (Most significant byte at lowest address)
• little (Most significant byte at the highest address)

[string] <num_type>
• hex Converted data is represented in hex
• dec Converted data is represented in decimal
• oct Converted data is represented as octal

[align] Rounds the number up to the next 32bit boundary
[from_beginning] Jumps forward from the beginning of the packet, instead

of where the detection pointer is set
[from_end] Jump will begin at the end of the payload, instead of

where the detection point is set
[post_offset] <value> After the jump operation has been performed, it will

jump an additional number of bytes specified by <value>
[dce] Allow the DCE module to determine the byte order
[bitmask] <value> The AND operator will be applied by <value> and the

converted bytes, then jump operation is performed

Example:

alert tcp any any -> any any \
(msg:"Byte_Jump Example"; \
content:"Alice"; byte_jump:2,0; content:"Bob";)

alert tcp any any -> any any \
(msg:"Byte_Jump Multiple Jumps"; \
byte_jump:2,0; byte_jump:2,0,relative; content:"foobar"; distance:0; within:6;)

alert tcp any any -> any any \
(msg:"Byte_Jump From the End -8 Bytes"; \
byte_jump:0,0, from_end, post_offset -8; \
content:"|6c 33 33 74|"; distance:0 within:4;)

8.7.17 byte_extract

The byte_extract keyword extracts <num of bytes> at a particular <offset> and stores it in <var_name>. The
value in <var_name> can be used in any modifier that takes a number as an option and in the case of byte_test it
can be used as a value.

Format:

byte_extract:<num of bytes>, <offset>, <var_name>, [,relative] [,multiplier <mult-value>
→˓] \

[,<endian>] [, dce] [, string [, <num_type>] [, align <align-value];

78 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

<num of bytes> The number of bytes selected from the packet to be ex-
tracted

<offset> Number of bytes into the payload
<var_name> The name of the variable in which to store the value
[relative] Offset relative to last content match
multiplier <value> multiply the extracted bytes by <mult-value> before stor-

ing
[endian] Type of number being read: - big (Most significant byte

at lowest address) - little (Most significant byte at the
highest address)

[string] <num>
• hex - Converted string represented in hex
• dec - Converted string represented in decimal
• oct - Converted string represented in octal

[dce] Allow the DCE module to determine the byte order
align <align-value> Round the extracted value up to the next <align-value>

byte boundary post-multiplication (if any) ; <align-
value> may be 2 or 4

Keyword Modifier
content offset,depth,distance,within
byte_test offset,value
byte_math rvalue
byte_jump offset
isdataat offset

Example:

alert tcp any any -> any any \
(msg:"Byte_Extract Example Using distance"; \
content:"Alice"; byte_extract:2,0,size; content:"Bob"; distance:size; within:3;␣

→˓sid:1;)
alert tcp any any -> any any \

(msg:"Byte_Extract Example Using within"; \
flow:established,to_server; content:"|00 FF|"; \
byte_extract:1,0,len,relative; content:"|5c 00|"; distance:2; within:len; sid:2;)

alert tcp any any -> any any \
(msg:"Byte_Extract Example Comparing Bytes"; \
flow:established,to_server; content:"|00 FF|"; \
byte_extract:2,0,cmp_ver,relative; content:"FooBar"; distance:0; byte_test:2,=,

→˓cmp_ver,0; sid:3;)

8.7. Payload Keywords 79

Suricata User Guide, Release 8.0.0

8.7.18 entropy

The entropy keyword calculates the Shannon entropy value for content and compares it with an entropy value. When
there is a match, rule processing will continue. Entropy values are between 0.0 and 8.0, inclusive. Internally, entropy
is represented as a 64-bit floating point value.

The entropy keyword syntax is the keyword entropy followed by options and the entropy value and operator used to
determine if the values agree.

The minimum entropy keyword specification is:

entropy: value <entropy-spec>

This results in the calculated entropy value being compared with entropy-spec using the (default) equality operator.

Example:

entropy: 7.01

A match occurs when the calculated entropy and specified entropy values agree. This is determined by calculating the
entropy value and comparing it with the value from the rule using the specified operator.

Example:

entropy: <7.01

Options have default values: - bytes is equal to the current content length - offset is 0 - equality comparison

When entropy keyword options are specified, all options and "value" must be comma-separated. Options and value
may be specified in any order.

The complete format for the entropy keyword is:

entropy: [bytes <byteval>] [offset <offsetval>] value <operator><entropy-value>

This example shows all possible options with default values and an entropy value of 4.037:

entropy: bytes 0, offset 0, value = 4.037

The following operators are available:

* = (default): Match when calculated value equals entropy value
* < Match when calculated value is strictly less than entropy value
* <= Match when calculated value is less than or equal to entropy value
* > Match when calculated value is strictly greater than entropy value
* >= Match when calculated value is greater than or equal to entropy value
* != Match when calculated value is not equal to entropy value
* x-y Match when calculated value is within the exclusive range
* !x-y Match when calculated value is not within the exclusive range

This example matches if the file.data content for an HTTP transaction has a Shannon entropy value of 4 or higher:

alert http any any -> any any (msg:"entropy simple test"; file.data; entropy: value >= 4;
→˓ sid:1;)

80 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Logging

When the entropy rule keyword is provided and the rule is evaluated, the calculated entropy value is associated with
the flow even if the calculated entropy value didn't result in a match or alert. Subsequent logging of event types that
include the flow, including alerts, will contain the entropy value in the metadata section of an output log. The follow
is an example that shows the calculated entropy value with the buffer on which the value was computed:

"metadata": {
"entropy": {
"file_data": 4.265743301617466

}
}

The events where entropy is logged will depend largely on how it's used within a rule and the rule's protocol.

For example -- this rule -- when evaluated by Suricata -- will result in the calculated entropy being included in the
alert, flow and http events. Depending on the traffic and Suricata configuration, other event types may include
the entropy value:

alert http any any -> any any (flow:established; file.data; entropy: value > 4.4; sid: 1;
→˓)

8.7.19 rpc

The rpc keyword can be used to match in the SUNRPC CALL on the RPC procedure numbers and the RPC version.

You can modify the keyword by using a wild-card, defined with * With this wild-card you can match on all version
and/or procedure numbers.

RPC (Remote Procedure Call) is an application that allows a computer program to execute a procedure on another com-
puter (or address space). It is used for inter-process communication. See http://en.wikipedia.org/wiki/Inter-process_
communication

Format:

rpc:<application number>, [<version number>|*], [<procedure number>|*]>;

Example of the rpc keyword in a rule:

alert udp $EXTERNAL_NET any -> $HOME_NET 111 (msg:"RPC portmap request yppasswdd"; rpc:100009,*,*;
reference:bugtraq,2763; classtype:rpc-portmap-decode; sid:1296; rev:4;)

8.7.20 replace

The replace content modifier can only be used in IPS. It adjusts network traffic. It changes the content it follows ('abc')
into another ('def'), see example:

8.7. Payload Keywords 81

http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Inter-process_communication

Suricata User Guide, Release 8.0.0

The replace modifier has to contain as many characters as the content it replaces. It can only be used with individual
packets. It will not work for Normalized Buffers like HTTP uri or a content match in the reassembled stream.

The checksums will be recalculated by Suricata and changed after the replace keyword is being used.

8.7.21 pcre (Perl Compatible Regular Expressions)

The keyword pcre matches specific on regular expressions. More information about regular expressions can be found
here http://en.wikipedia.org/wiki/Regular_expression.

The complexity of pcre comes with a high price though: it has a negative influence on performance. So, to mitigate
Suricata from having to check pcre often, pcre is mostly combined with 'content'. In that case, the content has to match
first, before pcre will be checked.

Format of pcre:

pcre:"/<regex>/opts";

Example of pcre. In this example there will be a match if the payload contains six numbers following:

pcre:"/[0-9]{6}/";

Example of pcre in a signature:

drop tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"ET TROJAN Likely Bot Nick in IRC (USA +..)";
flow:established,to_server; flowbits:isset,is_proto_irc; content:"NICK "; pcre:"/NICK .*USA.*[0-9]{3,}/i"; refer-
ence:url,doc.emergingthreats.net/2008124; classtype:trojan-activity; sid:2008124; rev:2;)

There are a few qualities of pcre which can be modified:

• By default pcre is case-sensitive.

• The . (dot) is a part of regex. It matches on every byte except for newline characters.

• By default the payload will be inspected as one line.

These qualities can be modified with the following characters:

i pcre is case insensitive
s pcre does check newline characters
m can make one line (of the payload) count as two lines

These options are perl compatible modifiers. To use these modifiers, you should add them to pcre, behind regex. Like
this:

pcre: "/<regex>/i";

Pcre compatible modifiers

There are a few pcre compatible modifiers which can change the qualities of pcre as well. These are:

82 Chapter 8. Suricata Rules

http://en.wikipedia.org/wiki/Regular_expression

Suricata User Guide, Release 8.0.0

• A: A pattern has to match at the beginning of a buffer. (In pcre ^ is similar to A.)

• E: Ignores newline characters at the end of the buffer/payload.

• G: Inverts the greediness.

Note: The following characters must be escaped inside the content: ; \ "

PCRE extraction

It is possible to capture groups from the regular expression and log them into the alert events.

There are 3 capabilities:

• pkt: the extracted group is logged as pkt variable in metadata.pktvars

• alert: the extracted group is logged to the alert.context subobject

• flow: the extracted group is stored in a flow variable and end up in the metadata.flowvars

To use the feature, parameters of pcre keyword need to be updated. After the regular pcre regex and options, a comma-
separated list of variable names. The prefix here is flow:, pkt: or alert: and the names can contain special char-
acters now. The names map to the capturing substring expressions in order

pcre:"/([a-z]+)\/[a-z]+\/(.+)\/(.+)\/changelog$/GUR, \
flow:ua/ubuntu/repo,flow:ua/ubuntu/pkg/base, \
flow:ua/ubuntu/pkg/version";

This would result in the alert event having something like

"metadata": {
"flowvars": [

{"ua/ubuntu/repo": "fr"},
{"ua/ubuntu/pkg/base": "curl"},
{"ua/ubuntu/pkg/version": "2.2.1"}

]
}

The other events on the same flow such as the flow one will also have the flow vars.

If this is not wanted, you can use the alert: construct to only get the event in the alert

pcre:"/([a-z]+)\/[a-z]+\/(.+)\/(.+)\/changelog$/GUR, \
alert:ua/ubuntu/repo,alert:ua/ubuntu/pkg/base, \
alert:ua/ubuntu/pkg/version";

With that syntax, the result of the extraction will appear like

"alert": {
"context": {

"ua/ubuntu/repo": "fr",
"ua/ubuntu/pkg/base": "curl",
"ua/ubuntu/pkg/version": "2.2.1"

]
}

8.7. Payload Keywords 83

Suricata User Guide, Release 8.0.0

A combination of the extraction scopes can be combined.

It is also possible to extract key/value pair in the pkt scope. One capture would be the key, the second the value. The
notation is similar to the last

pcre:"^/([A-Z]+) (.*)\r\n/, pkt:key,pkt:value";

key and value are simply hardcoded names to trigger the key/value extraction. As a consequence, they can't be used
as name for the variables.

Suricata's modifiers

Suricata has its own specific pcre modifiers. These are:

• R: Match relative to the last pattern match. It is similar to distance:0;

• U: Makes pcre match on the normalized uri. It matches on the uri_buffer just like uricontent and content combined
with http_uri.U can be combined with /R. Note that R is relative to the previous match so both matches have to
be in the HTTP-uri buffer. Read more about HTTP URI Normalization.

84 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

• I: Makes pcre match on the HTTP-raw-uri. It matches on the same buffer as http_raw_uri. I can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-raw-uri buffer.
Read more about HTTP URI Normalization.

• P: Makes pcre match on the HTTP- request-body. So, it matches on the same buffer as http_client_body. P can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-request
body.

• Q: Makes pcre match on the HTTP- response-body. So, it matches on the same buffer as http_server_body. Q
can be combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-
response body.

• H: Makes pcre match on the HTTP-header. H can be combined with /R. Note that R is relative to the previous
match so both matches have to be in the HTTP-header body.

• D: Makes pcre match on the unnormalized header. So, it matches on the same buffer as http_raw_header. D can
be combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-raw-
header.

• M: Makes pcre match on the request-method. So, it matches on the same buffer as http_method. M can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-method
buffer.

• C: Makes pcre match on the HTTP-cookie. So, it matches on the same buffer as http_cookie. C can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-cookie buffer.

8.7. Payload Keywords 85

Suricata User Guide, Release 8.0.0

• S: Makes pcre match on the HTTP-stat-code. So, it matches on the same buffer as http_stat_code. S can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-stat-
code buffer.

• Y: Makes pcre match on the HTTP-stat-msg. So, it matches on the same buffer as http_stat_msg. Y can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-stat-msg
buffer.

• B: You can encounter B in signatures but this is just for compatibility. So, Suricata does not use B but supports
it so it does not cause errors.

• O: Overrides the configures pcre match limit.

• V: Makes pcre match on the HTTP-User-Agent. So, it matches on the same buffer as http_user_agent. V can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-User-
Agent buffer.

• W: Makes pcre match on the HTTP-Host. So, it matches on the same buffer as http_host. W can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-Host buffer.

Changes from PCRE1 to PCRE2

The upgrade from PCRE1 to PCRE2 changes the behavior for some PCRE expressions.

• \I is a valid pcre in PCRE1, with a useless escape, so equivalent to I, but it is no longer the case in PCRE2.
There are other characters than I exhibiting this pattern

• [\d-a] is a valid pcre in PCRE1, with either a digit, a dash or the character a, but the dash must now be escaped
with PCRE2 as [\d\-a] to get the same behavior

• pcre2_substring_copy_bynumber now returns an error PCRE2_ERROR_UNSET instead of
pcre_copy_substring returning no error and giving an empty string. If the behavior of some use case
is no longer the expected one, please let us know.

8.8 Integer Keywords

Many keywords will match on an integer value on the network traffic. These are unsigned integers that can be 8, 16,
32 or 64 bits.

Simple example:

bsize:integer value;

The integer value can be written as base-10 like 100 or as an hexadecimal value like 0x64.

The most direct example is to match for equality, but there are different modes.

86 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.8.1 Comparison modes

Integers can be matched for
• Equality

• Inequality

• Greater than

• Less than

• Range

• Negated range

• Bitmask

• Negated Bitmask

Note: Comparisons are strict by default. Ranges are thus exclusive. That means a range between 1 and 4 will match
2 and 3, but neither 1 nor 4. Negated range !1-4 will match for 1 or below and for 4 or above.

Examples:

bsize:19; # equality
bsize:=0x13; # equality
bsize:!0x14; # inequality
bsize:!=20; # inequality
bsize:>21; # greater than
bsize:>=21; # greater than or equal
bsize:<22; # lesser than
bsize:<=22; # lesser than or equal
bsize:19-22; # range between value1 and value2
bsize:!19-22; # negated range between value1 and value2
bsize:&0xc0=0x80; # bitmask mask is compared to value for equality
bsize:&0xc0!=0; # bitmask mask is compared to value for inequality

8.8.2 Enumerations

Some integers on the wire represent an enumeration, that is, some values have a string/meaning associated to it. Rules
can be written using one of these strings to check for equality or inequality. This is meant to make rules more human-
readable and equivalent for matching.

Examples:

websocket.opcode:text;
websocket.opcode:1; # behaves the same

websocket.opcode:!ping;
websocket.opcode:!9; # behaves the same

8.8. Integer Keywords 87

Suricata User Guide, Release 8.0.0

8.8.3 Bitmasks

Some integers on the wire represent multiple bits. Some of these bits have a string/meaning associated to it. Rules can
be written using a list (comma-separated) of these strings, where each item can be negated.

There is no right shift for trailing zeros applied here (even if there is one for byte_test and byte_math). That means
a rule with websocket.flags:&0xc0=2 will be rejected as invalid as it can never match.

Examples:

websocket.flags:fin,!comp;
websocket.flags:&0xc0=0x80; # behaves the same

8.9 Transformations

Transformation keywords turn the data at a sticky buffer into something else. Some transformations support options
for greater control over the transformation process

Example:

alert http any any -> any any (file_data; strip_whitespace; \
content:"window.navigate("; sid:1;)

This example will match on traffic even if there are one or more spaces between the navigate and (.

The transforms can be chained. They are processed in the order in which they appear in a rule. Each transform's output
acts as input for the next one.

Example:

alert http any any -> any any (http_request_line; compress_whitespace; to_sha256; \
content:"|54A9 7A8A B09C 1B81 3725 2214 51D3 F997 F015 9DD7 049E E5AD CED3 945A FC79␣

→˓7401|"; sid:1;)

Note: not all sticky buffers support transformations yet

8.9.1 dotprefix

Takes the buffer, and prepends a . character to help facilitate concise domain checks. For example, an input string
of hello.google.com would be modified and become .hello.google.com. Additionally, adding the dot allows
google.com to match against content:".google.com"

Example:

alert dns any any -> any any (dns.query; dotprefix; \
content:".microsoft.com"; sid:1;)

This example will match on windows.update.microsoft.com and maps.microsoft.com.au but not windows.
update.fakemicrosoft.com.

This rule can be used to match on the domain only; example:

88 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

alert dns any any -> any any (dns.query; dotprefix; \
content:".microsoft.com"; endswith; sid:1;)

This example will match on windows.update.microsoft.com but not windows.update.microsoft.com.au.

Finally, this rule can be used to match on the TLD only; example:

alert dns any any -> any any (dns.query; dotprefix; \
content:".co.uk"; endswith; sid:1;)

This example will match on maps.google.co.uk but not maps.google.co.nl.

8.9.2 domain

Takes the buffer and extracts the domain name from it. The domain name is defined using Mozilla’s Public Suffix List.
This implies that it is using traditional top level domain such as .com but also some specific domain like airport.aero
or execute-api.cn-north-1.amazonaws.com.cn where declaration of sub domain by users below the domain is
possible.

Example:

alert tls any any -> any any (tls.sni; domain; \
dataset:isset,domains,type string,load domains.lst; sid:1;)

This example will match on all domains contained in the file domains.lst. For example, if domains.lst contains
oisf.net then webshop.oisf.net will match.

8.9.3 tld

Takes the buffer and extracts the Top Level Domain (TLD) name from it. The TLD name is defined using Mozilla’s
Public Suffix List. This implies that it is will have traditional TLD such as com but also some specific domain like
airport.aero or execute-api.cn-north-1.amazonaws.com.cnwhere declaration of sub domain by users below
the domain is possible.

Example:

alert tls any any -> any any (tls.sni; tld; \
dataset:isset,tlds,type string,load tlds.lst; sid:1;)

This example will match on all TLDs contained in the file tlds.lst. For example, if tlds.lst contains net then
oisf.net will match.

8.9.4 strip_whitespace

Strips all whitespace as considered by the isspace() call in C.

Example:

alert http any any -> any any (file_data; strip_whitespace; \
content:"window.navigate("; sid:1;)

8.9. Transformations 89

https://publicsuffix.org/
https://publicsuffix.org/
https://publicsuffix.org/

Suricata User Guide, Release 8.0.0

8.9.5 compress_whitespace

Compresses all consecutive whitespace into a single space.

8.9.6 to_lowercase

Converts the buffer to lowercase and passes the value on.

This example alerts if http.uri contains this text has been converted to lowercase

Example:

alert http any any -> any any (http.uri; to_lowercase; \
content:"this text has been converted to lowercase"; sid:1;)

8.9.7 to_md5

Takes the buffer, calculates the MD5 hash and passes the raw hash value on.

Example:

alert http any any -> any any (http_request_line; to_md5; \
content:"|54 A9 7A 8A B0 9C 1B 81 37 25 22 14 51 D3 F9 97|"; sid:1;)

8.9.8 to_uppercase

Converts the buffer to uppercase and passes the value on.

This example alerts if http.uri contains THIS TEXT HAS BEEN CONVERTED TO UPPERCASE

Example:

alert http any any -> any any (http.uri; to_uppercase; \
content:"THIS TEXT HAS BEEN CONVERTED TO UPPERCASE"; sid:1;)

8.9.9 to_sha1

Takes the buffer, calculates the SHA-1 hash and passes the raw hash value on.

Example:

alert http any any -> any any (http_request_line; to_sha1; \
content:"|54A9 7A8A B09C 1B81 3725 2214 51D3 F997 F015 9DD7|"; sid:1;)

90 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.9.10 to_sha256

Takes the buffer, calculates the SHA-256 hash and passes the raw hash value on.

Example:

alert http any any -> any any (http_request_line; to_sha256; \
content:"|54A9 7A8A B09C 1B81 3725 2214 51D3 F997 F015 9DD7 049E E5AD CED3 945A FC79␣

→˓7401|"; sid:1;)

8.9.11 pcrexform

Takes the buffer, applies the required regular expression, and outputs the first captured expression.

Note: this transform requires a mandatory option string containing a regular expression.

This example alerts if http.request_line contains /dropper.php Example:

alert http any any -> any any (msg:"HTTP with pcrexform"; http.request_line; \
pcrexform:"[a-zA-Z]+\s+(.*)\s+HTTP"; content:"/dropper.php"; sid:1;)

8.9.12 url_decode

Decodes url-encoded data, ie replacing '+' with space and '%HH' with its value. This does not decode unicode '%uZZZZ'
encoding

8.9.13 xor

Takes the buffer, applies xor decoding.

Note: this transform requires a mandatory option which is the hexadecimal encoded xor key.

This example alerts if http.uri contains password= xored with 4-bytes key 0d0ac8ff Example:

alert http any any -> any any (msg:"HTTP with xor"; http.uri; \
xor:"0d0ac8ff"; content:"password="; sid:1;)

8.9.14 header_lowercase

This transform is meant for HTTP/1 HTTP/2 header names normalization. It lowercases the header names, while
keeping untouched the header values.

The implementation uses a state machine : - it lowercases until it finds :` - it does not change until it finds a new line
and switch back to first state

This example alerts for both HTTP/1 and HTTP/2 with a authorization header Example:

alert http any any -> any any (msg:"HTTP authorization"; http.header_names; \
header_lowercase; content:"authorization:"; sid:1;)

8.9. Transformations 91

Suricata User Guide, Release 8.0.0

8.9.15 strip_pseudo_headers

This transform is meant for HTTP/1 HTTP/2 header names normalization. It strips HTTP2 pseudo-headers (names
and values).

The implementation just strips every line beginning by :.

This example alerts for both HTTP/1 and HTTP/2 with only a user agent Example:

alert http any any -> any any (msg:"HTTP ua only"; http.header_names; \
bsize:16; content:"|0d 0a|User-Agent|0d 0a 0d 0a|"; nocase; sid:1;)

8.9.16 from_base64

This transform is similar to the keyword base64_decode: the buffer is decoded using the optional values for mode,
offset and bytes and is available for matching on the decoded data.

After this transform completes, the buffer will contain only bytes that could be bases64-decoded. If the decoding
process encountered invalid bytes, those will not be included in the buffer.

The option values must be , separated and can appear in any order.

Note: from_base64 follows RFC 4648 by default i.e. encounter with any character that is not found in the base64
alphabet leads to rejection of that character and the rest of the string.

Format:

from_base64: [[bytes <value>] [, offset <offset_value> [, mode: strict|rfc4648|rfc2045]]]

There are defaults for each of the options: - bytes defaults to the length of the input buffer - offset defaults to 0 and
must be less than 65536 - mode defaults to rfc4648

Note that both bytes and offset may be variables from byte_extract and/or byte_math in later versions of Suricata.
They are not supported yet.

Mode rfc4648 applies RFC 4648 decoding logic which is suitable for encoding binary data that can be safely sent by
email, used in a URL, or included with HTTP POST requests.

Mode rfc2045 applies RFC 2045 decoding logic which supports strings, including those with embedded spaces, line
breaks, and any non base64 alphabet.

Mode strict will fail if an invalid character is found in the encoded bytes.

The following examples will alert when the buffer contents match (see the last content value for the expected strings).

This example uses the defaults and transforms "VGhpcyBpcyBTdXJpY2F0YQ==" to "This is Suricata":

content: "VGhpcyBpcyBTdXJpY2F0YQ=="; from_base64; content:"This is Suricata";

This example transforms "dGhpc2lzYXRlc3QK" to "thisisatest":

content:"/?arg=dGhpc2lzYXRlc3QK"; from_base64: offset 6, mode rfc4648; \
content:"thisisatest";

This example transforms "Zm 9v Ym Fy" to "foobar":

92 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

content:"/?arg=Zm 9v Ym Fy"; from_base64: offset 6, mode rfc2045; \
content:"foobar";

8.9.17 luaxform

This transform allows a Lua script to apply a transformation to a buffer.

Lua scripts that are used for transformations must contain a function named transform.

Lua transforms can be passed optional arguments -- see the examples below -- but they are not required to do so.
Arguments are comma-separated.

A Lua transform function is not invoked if the buffer is empty or the Lua framework is not accessible (rare).

Lua transform functions must return two values (see below) or the buffer is not modified.

Note that the arguments and values are passed without validation nor interpretation. There is a maximum of 10 argu-
ments.

The Lua transform function is invoked with these parameters:

• input The buffer provided to the transform

• arguments The list of arguments.

Lua transform functions must return two values [Lua datatypes shown]:

• buffer [Lua string] The return buffer containing the original input buffer or buffer modified by the transform.

• bytes [Lua integer] Number of bytes in return buffer.

This example supplies the HTTP data to a Lua transform and the transform results are checked with content.

Example:

alert http any any -> any any (msg:"Lua Xform example"; flow:established; \
file.data; luaxform:./lua/lua-transform.lua; content: "abc"; sid: 2;)

This example supplies the HTTP data to a Lua transform with with arguments that specify the offset and byte count for
the transform. The resulting buffer is then checked with a content match.

Example:

alert http any any -> any any (msg:"Lua Xform example"; flow:established; \
file.data; luaxform:./lua/lua-transform.lua, bytes 12, offset 13; content: "abc";

→˓ sid: 1;)

The following Lua script shows a transform that handles arguments: bytes and offset and uses those values (or defaults,
if there are no arguments) for applying the uppercase transform to the buffer.

function init (args)
local needs = {}
return needs

end

local function get_value(item, key)
if string.find(item, key) then

local _, value = string.match(item, "(%a+)%s*(%d*)")
if value ~= "" then

(continues on next page)

8.9. Transformations 93

Suricata User Guide, Release 8.0.0

(continued from previous page)

return tonumber(value)
end

end

return nil
end

-- Arguments supported
local bytes_key = "bytes"
local offset_key = "offset"
function transform(input_len, input, argc, args)

local bytes = #input
local offset = 0

-- Look for optional bytes and offset arguments
for i, item in ipairs(args) do

local value = get_value(item, bytes_key)
if value ~= nil then

bytes = value
else

local value = get_value(item, offset_key)
if value ~= nil then

offset = value
end

end
end
local str_len = #input
if offset < 0 or offset > str_len then

print("offset is out of bounds: " .. offset)
return nil

end
str_len = str_len - offset
if bytes < 0 or bytes > str_len then

print("invalid bytes " .. bytes .. " or bytes > length " .. bytes .. " length "␣
→˓.. str_len)

return nil
end
local sub = string.sub(input, offset + 1, offset + bytes)
return string.upper(sub), bytes

end

8.10 Prefiltering Keywords

8.10.1 fast_pattern

Suricata Fast Pattern Determination Explained

If the 'fast_pattern' keyword is explicitly set in a rule, Suricata will use that as the fast pattern match. The 'fast_pattern'
keyword can only be set once per rule. If 'fast_pattern' is not set, Suricata automatically determines the content to use
as the fast pattern match.

94 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

The following explains the logic Suricata uses to automatically determine the fast pattern match to use.

Be aware that if there are positive (i.e. non-negated) content matches, then negated content matches are ignored for fast
pattern determination. Otherwise, negated content matches are considered.

The fast_pattern selection criteria are as follows:

1. Suricata first identifies all content matches that have the highest "priority" that are used in the signature. The
priority is based off of the buffer being matched on and generally application layer buffers have a higher priority
(lower number is higher priority). The buffer http_method is an exception and has lower priority than the general
content buffer.

2. Within the content matches identified in step 1 (the highest priority content matches), the longest (in terms of
character/byte length) content match is used as the fast pattern match.

3. If multiple content matches have the same highest priority and qualify for the longest length, the one with the
highest character/byte diversity score ("Pattern Strength") is used as the fast pattern match. See Appendix A for
details on the algorithm used to determine Pattern Strength.

4. If multiple content matches have the same highest priority, qualify for the longest length, and the same highest
Pattern Strength, the buffer ("list_id") that was registered last is used as the fast pattern match.

5. If multiple content matches have the same highest priority, qualify for the longest length, the same highest Pattern
Strength, and have the same list_id (i.e. are looking in the same buffer), then the one that comes first (from left-
to-right) in the rule is used as the fast pattern match.

It is worth noting that for content matches that have the same priority, length, and Pattern Strength, 'http_stat_msg',
'http_stat_code', and 'http_method' take precedence over regular 'content' matches.

Appendices

Appendix A - Pattern Strength Algorithm

From detect-engine-mpm.c. Basically the Pattern Strength "score" starts at zero and looks at each character/byte in the
passed in byte array from left to right. If the character/byte has not been seen before in the array, it adds 3 to the score
if it is an alpha character; else it adds 4 to the score if it is a printable character, 0x00, 0x01, or 0xFF; else it adds 6 to
the score. If the character/byte has been seen before it adds 1 to the score. The final score is returned.

/** \brief Predict a strength value for patterns
*
* Patterns with high character diversity score higher.
* Alpha chars score not so high
* Other printable + a few common codes a little higher
* Everything else highest.
* Longer patterns score better than short patters.
*
* \param pat pattern
* \param patlen length of the pattern
*
* \retval s pattern score
*/
uint32_t PatternStrength(uint8_t *pat, uint16_t patlen) {

uint8_t a[256];
memset(&a, 0 ,sizeof(a));
uint32_t s = 0;
uint16_t u = 0;

(continues on next page)

8.10. Prefiltering Keywords 95

Suricata User Guide, Release 8.0.0

(continued from previous page)

for (u = 0; u < patlen; u++) {
if (a[pat[u]] == 0) {

if (isalpha(pat[u]))
s += 3;

else if (isprint(pat[u]) || pat[u] == 0x00 || pat[u] == 0x01 || pat[u] ==␣
→˓0xFF)

s += 4;
else

s += 6;
a[pat[u]] = 1;

} else {
s++;

}
}
return s;

}

Only one content of a signature will be used in the Multi Pattern Matcher (MPM). If there are multiple contents, then
Suricata uses the 'strongest' content. This means a combination of length, how varied a content is, and what buffer it
is looking in. Generally, the longer and more varied the better. For full details on how Suricata determines the fast
pattern match, see Suricata Fast Pattern Determination Explained.

Sometimes a signature writer concludes he wants Suricata to use another content than it does by default.

For instance:

User-agent: Mozilla/5.0 Badness;

content:"User-Agent|3A|";
content:"Badness"; distance:0;

In this example you see the first content is longer and more varied than the second one, so you know Suricata will use
this content for the MPM. Because 'User-Agent:' will be a match very often, and 'Badness' appears less often in network
traffic, you can make Suricata use the second content by using 'fast_pattern'.

content:"User-Agent|3A|";
content:"Badness"; distance:0; fast_pattern;

The keyword fast_pattern modifies the content previous to it.

Fast-pattern can also be combined with all previous mentioned keywords, and all mentioned HTTP-modifiers.

96 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

fast_pattern:only

Sometimes a signature contains only one content. In that case it is not necessary Suricata will check it any further
after a match has been found in MPM. If there is only one content, the whole signature matches. Suricata notices
this automatically. In some signatures this is still indicated with 'fast_pattern:only;'. Although Suricata does not need
fast_pattern:only, it does support it.

fast_pattern:'chop'

If you do not want the MPM to use the whole content, you can use fast_pattern 'chop'.

For example:

content: "aaaaaaaaabc"; fast_pattern:8,4;

This way, MPM uses only the last four characters.

8.10.2 prefilter

The prefilter engines for other non-MPM keywords can be enabled in specific rules by using the 'prefilter' keyword.

In the following rule the TTL test will be used in prefiltering instead of the single byte pattern:

alert ip any any -> any any (ttl:123; prefilter; content:"a"; sid:1;)

For more information on how to configure the prefilter engines, see Prefilter Engines

8.11 Flow Keywords

8.11.1 flowbits

Flowbits consists of two parts. The first part describes the action it is going to perform, the second part is the name of
the flowbit.

There are multiple packets that belong to one flow. Suricata keeps those flows in memory. For more information see
Flow Settings.

Flowbits can make sure an alert will be generated when for example two different packets match. An alert will only
be generated when both packets match. So, when the second packet matches, Suricata has to know if the first packet
was a match too. Flowbits mark the flow if a packet matches so Suricata 'knows' it should generate an alert when the
second packet matches as well.

Flowbits have different actions. These are:

flowbits: set, name
Will set the condition/'name', if present, in the flow.

flowbits: isset, name
Can be used in the rule to make sure it generates an alert when the rule matches and the condition is set in the
flow.

flowbits: toggle, name
Reverses the present setting. So for example if a condition is set, it will be unset and vice-versa.

8.11. Flow Keywords 97

Suricata User Guide, Release 8.0.0

flowbits: unset, name
Can be used to unset the condition in the flow.

flowbits: isnotset, name
Can be used in the rule to make sure it generates an alert when it matches and the condition is not set in the flow.

flowbits: noalert
No alert will be generated by this rule.

Example:

When you take a look at the first rule you will notice it would generate an alert if it would match, if it were not for the
'flowbits: noalert' at the end of that rule.

The purpose of this rule is to check for a match on 'userlogin' and mark that in the flow. So, there is no need to generate
an alert. The second rule has no effect without the first rule. If the first rule matches, the flowbit sets that specific
condition to be present in the flow. Now the second rule can be checked whether or not the previous packet fulfills the
first condition. If the second rule matches now, an alert will be generated.

Note: flowbit names are case-sensitive.

Note: It is possible to use flowbits several times in a rule and combine the different functions.

Note: It is possible to perform an OR operation with flowbits using the | (pipe).

98 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

alert http any any -> any any (msg:"User1 or User2 logged in"; content:"login"; flowbits:isset,user1|user2; sid:1;)

8.11.2 flow

The flow keyword can be used to match on direction of the flow, so to/from client or to/from server. It can also match
if the flow is established or not. The flow keyword can also be used to say the signature has to match on stream only
(only_stream) or on packet only (no_stream).

So with the flow keyword you can match on:

to_client
Match on packets from server to client.

to_server
Match on packets from client to server.

from_client
Match on packets from client to server (same as to_server).

from_server
Match on packets from server to client (same as to_client).

established
Match on established connections.

not_established
Match on packets that are not part of an established connection.

stateless
Match on packets that are part of a flow, regardless of connection state. (This means that packets that are not
seen as part of a flow won't match).

only_stream
Match on packets that have been reassembled by the stream engine.

no_stream
Match on packets that have not been reassembled by the stream engine. Will not match packets that have been
reassembled.

only_frag
Match packets that have been reassembled from fragments.

no_frag
Match packets that have not been reassembled from fragments.

Multiple flow options can be combined, for example:

flow:to_client, established
flow:to_server, established, only_stream
flow:to_server, not_established, no_frag

The determination of established depends on the protocol:

• For TCP a connection will be established after a three way handshake.

8.11. Flow Keywords 99

Suricata User Guide, Release 8.0.0

• For other protocols (for example UDP), the connection will be considered established after seeing traffic from
both sides of the connection.

100 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.11.3 flowint

Flowint allows storage and mathematical operations using variables. It operates much like flowbits but with the addition
of mathematical capabilities and the fact that an integer can be stored and manipulated, not just a flag set. We can use
this for a number of very useful things, such as counting occurrences, adding or subtracting occurrences, or doing
thresholding within a stream in relation to multiple factors. This will be expanded to a global context very soon, so
users can perform these operations between streams.

The syntax is as follows:

flowint: name, modifier[, value];

Define a var (not required), or check that one is set or not set.

flowint: name, < +,-,=,>,<,>=,<=,==, != >, value;
flowint: name, (isset|notset|isnotset);

Compare or alter a var. Add, subtract, compare greater than or less than, greater than or equal to, and less than or equal
to are available. The item to compare with can be an integer or another variable.

For example, if you want to count how many times a username is seen in a particular stream and alert if it is over 5.

alert tcp any any -> any any (msg:"Counting Usernames"; content:"jonkman"; \
flowint: usernamecount, +, 1; noalert;)

This will count each occurrence and increment the var usernamecount and not generate an alert for each.

Now say we want to generate an alert if there are more than five hits in the stream.

alert tcp any any -> any any (msg:"More than Five Usernames!"; content:"jonkman"; \
flowint: usernamecount, +, 1; flowint:usernamecount, >, 5;)

So we'll get an alert ONLY if usernamecount is over five.

So now let's say we want to get an alert as above but NOT if there have been more occurrences of that username logging
out. Assuming this particular protocol indicates a log out with "jonkman logout", let's try:

alert tcp any any -> any any (msg:"Username Logged out"; content:"logout jonkman"; \
flowint: usernamecount, -, 1; flowint:usernamecount, >, 5;)

So now we'll get an alert ONLY if there are more than five active logins for this particular username.

This is a rather simplistic example, but I believe it shows the power of what such a simple function can do for rule
writing. I see a lot of applications in things like login tracking, IRC state machines, malware tracking, and brute force
login detection.

Let's say we're tracking a protocol that normally allows five login fails per connection, but we have vulnerability where
an attacker can continue to login after that five attempts and we need to know about it.

alert tcp any any -> any any (msg:"Start a login count"; content:"login failed"; \
flowint:loginfail, notset; flowint:loginfail, =, 1; noalert;)

So we detect the initial fail if the variable is not yet set and set it to 1 if so. Our first hit.

alert tcp any any -> any any (msg:"Counting Logins"; content:"login failed"; \
flowint:loginfail, isset; flowint:loginfail, +, 1; noalert;)

8.11. Flow Keywords 101

Suricata User Guide, Release 8.0.0

We are now incrementing the counter if it's set.

alert tcp any any -> any any (msg:"More than Five login fails in a Stream"; \
content:"login failed"; flowint:loginfail, isset; flowint:loginfail, >, 5;)

Now we'll generate an alert if we cross five login fails in the same stream.

But let's also say we also need alert if there are two successful logins and a failed login after that.

alert tcp any any -> any any (msg:"Counting Good Logins"; \
content:"login successful"; flowint:loginsuccess, +, 1; noalert;)

Here we're counting good logins, so now we'll count good logins relevant to fails:

alert tcp any any -> any any (msg:"Login fail after two successes"; \
content:"login failed"; flowint:loginsuccess, isset; \
flowint:loginsuccess, =, 2;)

Here are some other general examples:

alert tcp any any -> any any (msg:"Setting a flowint counter"; content:"GET"; \
flowint:myvar, notset; flowint:maxvar,notset; \
flowint:myvar,=,1; flowint: maxvar,=,6;)

alert tcp any any -> any any (msg:"Adding to flowint counter"; \
content:"Unauthorized"; flowint:myvar,isset; flowint: myvar,+,2;)

alert tcp any any -> any any (msg:"when flowint counter is 3 create new counter"; \
content:"Unauthorized"; flowint:myvar, isset; flowint:myvar,==,3; \
flowint:cntpackets,notset; flowint:cntpackets, =, 0;)

alert tcp any any -> any any (msg:"count the rest without generating alerts"; \
flowint:cntpackets,isset; flowint:cntpackets, +, 1; noalert;)

alert tcp any any -> any any (msg:"fire this when it reach 6"; \
flowint: cntpackets, isset; \
flowint: maxvar,isset; flowint: cntpackets, ==, maxvar;)

8.11.4 stream_size

The stream size option matches on traffic according to the registered amount of bytes by the sequence numbers. There
are several modifiers to this keyword:

> greater than
< less than
= equal
!= not equal
>= greater than or equal
<= less than or equal

Format

102 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

stream_size:<server|client|both|either>, <modifier>, <number>;

Example of the stream-size keyword in a rule:

alert tcp any any -> any any (stream_size:both, >, 5000; sid:1;)

8.11.5 flow.age

Flow age in seconds (integer) This keyword does not wait for the end of the flow, but will be checked at each packet.

flow.age uses an unsigned 32-bit integer.

Syntax:

flow.age: [op]<number>

The time can be matched exactly, or compared using the _op_ setting:

flow.age:3 # exactly 3
flow.age:<3 # smaller than 3 seconds
flow.age:>=2 # greater or equal than 2 seconds

Signature example:

alert tcp any any -> any any (msg:"Flow longer than one hour"; flow.age:>3600; flowbits:␣
→˓isnotset, onehourflow; flowbits: onehourflow, name; sid:1; rev:1;)

In this example, we combine flow.age and flowbits to get an alert on the first packet after the flow's age is older than one
hour.

8.11.6 flow.pkts

Flow number of packets (integer) This keyword does not wait for the end of the flow, but will be checked at each packet.

flow.pkts uses an unsigned 32-bit integer and supports following directions:

• toclient

• toserver

• either

Syntax:

flow.pkts:<direction>,[op]<number>

The number of packets can be matched exactly, or compared using the _op_ setting:

flow.pkts:toclient,3 # exactly 3
flow.pkts:toserver,<3 # smaller than 3
flow.pkts:either,>=2 # greater than or equal to 2

Signature example:

alert ip any any -> any any (msg:"Flow has 20 packets in toclient dir"; flow.
→˓pkts:toclient,20; sid:1;)

8.11. Flow Keywords 103

Suricata User Guide, Release 8.0.0

Note: Suricata also supports flow.pkts_toclient and flow.pkts_toserver keywords for flow.
pkts:toclient and flow.pkts:toserver respectively but that is not the preferred syntax.

8.11.7 flow.bytes

Flow number of bytes (integer) This keyword does not wait for the end of the flow, but will be checked at each packet.

flow.bytes uses an unsigned 64-bit integer and supports following directions:

• toclient

• toserver

• either

Syntax:

flow.bytes:<direction>,[op]<number>

The number of bytes can be matched exactly, or compared using the _op_ setting:

flow.bytes:toclient,3 # exactly 3
flow.bytes:toserver,<3 # smaller than 3
flow.bytes:either,>=2 # greater than or equal to 2

Signature example:

alert ip any any -> any any (msg:"Flow has less than 2000 bytes in toserver dir"; flow.
→˓bytes:toserver,<2000; sid:1;)

Note: Suricata also supports flow.bytes_toclient and flow.bytes_toserver keywords for flow.
bytes:toclient and flow.bytes:toserver respectively but that is not the preferred syntax.

8.12 Bypass Keyword

Suricata has a bypass keyword that can be used in signatures to exclude traffic from further evaluation.

The bypass keyword is useful in cases where there is a large flow expected (e.g. Netflix, Spotify, YouTube).

The bypass keyword is considered a post-match keyword.

8.12.1 bypass

Bypass a flow on matching http traffic.

alert http any any -> any any (http.host; content:"suricata.io"; bypass; sid:10001; rev:1;)

104 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.13 HTTP Keywords

Using the HTTP specific sticky buffers (see Modifier Keywords) provides a way to efficiently inspect the specific fields
of HTTP protocol communications. After specifying a sticky buffer in a rule it should be followed by one or more
Payload Keywords or using pcre (Perl Compatible Regular Expressions).

8.13.1 HTTP Primer

HTTP is considered a client-server or request-response protocol. A client requests resources from a server and a server
responds to the request.

In versions of HTTP prior to version 2 a client request could look like:

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

Example signature that would alert on the above request.

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Request Example"; flow:established,to_server;
http.method; content:"GET"; http.uri; content:"/index.html"; bsize:11; http.protocol; content:"HTTP/1.1"; bsize:8;
http.user_agent; content:"Mozilla/5.0"; bsize:11; http.host; content:"suricata.io"; bsize:11; classtype:bad-unknown;
sid:25; rev:1;)

In versions of HTTP prior to version 2 a server response could look like:

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Content-Length: 258
Date: Thu, 14 Dec 2023 20:22:41 GMT
Server: nginx/0.8.54
Connection: Close

Example signature that would alert on the above response.

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Stat Code Example"; flow:established,to_client;
http.stat_code; content:"200"; bsize:8; http.content_type; content:"text/html"; bsize:9; classtype:bad-unknown; sid:30;
rev:1;)

Request Keywords:
• file.name

• http.accept

• http.accept_enc

• http.accept_lang

• http.host

• http.host.raw

• http.method

• http.referer

8.13. HTTP Keywords 105

Suricata User Guide, Release 8.0.0

• http.request_body

• http.request_header

• http.request_line

• http.uri

• http.uri.raw

• http.user_agent

• urilen

Response Keywords:
• http.location

• http.response_body

• http.response_header

• http.response_line

• http.server

• http.stat_code

• http.stat_msg

Request or Response Keywords:
• file.data

• http.connection

• http.content_len

• http.content_type

• http.cookie

• http.header

• http.header.raw

• http.header_names

• http.protocol

• http.start

8.13.2 Normalization

There are times when Suricata performs formatting/normalization changes to traffic that is seen.

106 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Duplicate Header Names

If there are multiple values for the same header name, they are concatenated with a comma and space (", ") between
each value. More information can be found in RFC 2616 https://www.rfc-editor.org/rfc/rfc2616.html#section-4.2

In the example below, notice that the User-Agent header, regardless of the letter casing is evaluated as the same header.
The normalized header evaluation leads to the concatenated header values as described in the RFC above.

Example Duplicate HTTP Header:

GET / HTTP/1.1
Host: suricata.io
User-Agent: Mozilla/5.0
User-agent: Chrome/121.0.0

alert http $HOME_NET -> $EXTERNAL_NET (msg:"Example Duplicate Header"; flow:established,to_server;
http.user_agent; content:"Mozilla/5.0, Chrome/121.0.0"; classtype:bad-unknown; sid:103; rev:1;)

8.13.3 file.name

The file.name keyword can be used with HTTP requests.

It is possible to use any of the Payload Keywords with the file.name keyword.

Example HTTP Request:

GET /picture.jpg HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP file.name Example"; flow:established,to_client;
file.name; content:"picture.jpg"; classtype:bad-unknown; sid:129; rev:1;)

Note: Additional information can be found at File Keywords

8.13.4 http.accept

The http.accept keyword is used to match on the Accept field that can be present in HTTP request headers.

It is possible to use any of the Payload Keywords with the http.accept keyword.

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Accept: */*
Host: suricata.io

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Accept Example"; flow:established,to_server;
http.accept; content:"*/*"; bsize:3; classtype:bad-unknown; sid:91; rev:1;)

Note: http.accept does not include the leading space or trailing \r\n

8.13. HTTP Keywords 107

https://www.rfc-editor.org/rfc/rfc2616.html#section-4.2

Suricata User Guide, Release 8.0.0

Note: http.accept can have additional formatting/normalization applied to buffer contents, see Normalization for
additional details.

8.13.5 http.accept_enc

The http.accept_enc keyword is used to match on the Accept-Encoding field that can be present in HTTP request
headers.

It is possible to use any of the Payload Keywords with the http.accept_enc keyword.

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Accept-Encoding: gzip, deflate
Host: suricata.io

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Accept-Encoding Example";
flow:established,to_server; http.accept_enc; content:"gzip, deflate"; bsize:13; classtype:bad-unknown; sid:92;
rev:1;)

Note: http.accept_enc does not include the leading space or trailing \r\n

Note: http.accept_enc can have additional formatting/normalization applied to buffer contents, see Normalization
for additional details.

8.13.6 http.accept_lang

The http.accept_lang keyword is used to match on the Accept-Language field that can be present in HTTP request
headers.

It is possible to use any of the Payload Keywords with the http.accept_lang keyword.

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Accept-Language: en-US
Host: suricata.io

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Accept-Encoding Example";
flow:established,to_server; http.accept_lang; content:"en-US"; bsize:5; classtype:bad-unknown; sid:93; rev:1;)

Note: http.accept_lang does not include the leading space or trailing \r\n

Note: http.accept_lang can have additional formatting/normalization applied to buffer contents, see Normalization
for additional details.

108 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.13.7 http.host

Matching on the HTTP host name has two options in Suricata, the http.host and the http.host.raw sticky buffers.

It is possible to use any of the Payload Keywords with both http.host keywords.

Note: The http.host keyword normalizes the host header contents. If a host name has uppercase characters, those
would be changed to lowercase.

Normalization Example:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: SuRiCaTa.Io

In the above example the host buffer would contain suricata.io.

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Host Example"; flow:established,to_server;
http.host; content:"suricata.io"; bsize:11; classtype:bad-unknown; sid:123; rev:1;)

Note: The nocase keyword is no longer allowed since the host names are normalized to contain only lowercase letters.

Note: http.host does not contain the port associated with the host (i.e. suricata.io:1234). To match on the host and
port or negate a host and port use http.host.raw.

Note: http.host does not include the leading space or trailing \r\n

Note: The http.host and http.host.raw buffers are populated from either the URI (if the full URI is present in
the request like in a proxy request) or the HTTP Host header. If both are present, the URI is used.

Note: http.host can have additional formatting/normalization applied to buffer contents, see Normalization for
additional details.

8.13.8 http.host.raw

The http.host.raw buffer matches on HTTP host content but does not have any normalization performed on the
buffer contents (see http.host)

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: SuRiCaTa.Io:8445

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Host Raw Example"; flow:established,to_server;
http.host.raw; content:"SuRiCaTa.Io|3a|8445"; bsize:16; classtype:bad-unknown; sid:124; rev:1;)

8.13. HTTP Keywords 109

Suricata User Guide, Release 8.0.0

Note: http.host.raw does not include the leading space or trailing \r\n

Note: The http.host and http.host.raw buffers are populated from either the URI (if the full URI is present in
the request like in a proxy request) or the HTTP Host header. If both are present, the URI is used.

Note: http.host.raw can have additional formatting/normalization applied to buffer contents, see Normalization
for additional details.

8.13.9 http.method

The http.method keyword matches on the method/verb used in an HTTP request. HTTP request methods can be any
of the following:

• GET

• POST

• HEAD

• OPTIONS

• PUT

• DELETE

• TRACE

• CONNECT

• PATCH

It is possible to use any of the Payload Keywords with the http.method keyword.

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Request Example"; flow:established,to_server;
http.method; content:"GET"; classtype:bad-unknown; sid:2; rev:1;)

8.13.10 http.referer

The http.referer keyword is used to match on the Referer field that can be present in HTTP request headers.

It is possible to use any of the Payload Keywords with the http.referer keyword.

Example HTTP Request:

GET / HTTP/1.1
Host: suricata.io
Referer: https://suricata.io

110 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Referer Example"; flow:established,to_server;
http.referer; content:"http|3a 2f 2f|suricata.io"; bsize:19; classtype:bad-unknown; sid:200; rev:1;)

Note: http.referer does not include the leading space or trailing \r\n

Note: http.referer can have additional formatting/normalization applied to buffer contents, see Normalization for
additional details.

8.13.11 http.request_body

The http.request_body keyword is used to match on the HTTP request body that can be present in an HTTP request.

It is possible to use any of the Payload Keywords with the http.request_body keyword.

Example HTTP Request:

POST /suricata.php HTTP/1.1
Content-Type: application/x-www-form-urlencoded
Host: suricata.io
Content-Length: 23
Connection: Keep-Alive

Suricata request body

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Request Body Example";
flow:established,to_server; http.request_body; content:"Suricata request body"; classtype:bad-unknown; sid:115;
rev:1;)

Note: How much of the request/client body is inspected is controlled in the libhtp configuration section via the
request-body-limit setting.

Note: http.request_body replaces the previous keyword name, http_client_body. http_client_body can
still be used but it is recommended that rules be converted to use http.request_body.

8.13.12 http.request_header

The http.request_header keyword is used to match on the name and value of a HTTP/1 or HTTP/2 request.

It is possible to use any of the Payload Keywords with the http.request_header keyword.

For HTTP/2, the header name and value get concatenated by ": " (colon and space). The colon and space are commonly
noted with the hexadecimal format |3a 20| within signatures.

To detect if an HTTP/2 header name contains a ":" (colon), the keyword http2.header_name can be used.

Example HTTP/1 Request:

8.13. HTTP Keywords 111

Suricata User Guide, Release 8.0.0

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Request Example"; flow:established,to_server;
http.request_header; content:"Host|3a 20|suricata.io"; classtype:bad-unknown; sid:126; rev:1;)

Note: http.request_header does not include the trailing \r\n

8.13.13 http.request_line

The http.request_line keyword is used to match on the entire contents of the HTTP request line.

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Request Example"; flow:established,to_server;
http.request_line; content:"GET /index.html HTTP/1.1"; bsize:24; classtype:bad-unknown; sid:60; rev:1;)

Note: http.request_line does not include the trailing \r\n

8.13.14 http.uri

Matching on the HTTP URI buffer has two options in Suricata, the http.uri and the http.uri.raw sticky buffers.

It is possible to use any of the Payload Keywords with both http.uri keywords.

The http.uri keyword normalizes the URI buffer. For example, if a URI has two leading //, Suricata will normalize
the URI to a single leading /.

Normalization Example:

GET //index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

In this case //index.html would be normalized to /index.html.

Normalized HTTP Request Example:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP URI Example"; flow:established,to_server;
http.uri; content:"/index.html"; bsize:11; classtype:bad-unknown; sid:3; rev:1;)

112 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.13.15 http.uri.raw

The http.uri.raw buffer matches on HTTP URI content but does not have any normalization performed on the buffer
contents. (see http.uri)

Abnormal HTTP Request Example:

GET //index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP URI Raw Example"; flow:established,to_server;
http.uri.raw; content:"//index.html"; bsize:12; classtype:bad-unknown; sid:4; rev:1;)

Note: The http.uri.raw keyword/buffer does not allow for spaces.

Example Request:

GET /example spaces HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

http.uri.raw would be populated with /example

http.protocol would be populated with spaces HTTP/1.1

Reference: https://redmine.openinfosecfoundation.org/issues/2881

8.13.16 http.user_agent

The http.user_agent keyword is used to match on the User-Agent field that can be present in HTTP request headers.

It is possible to use any of the Payload Keywords with the http.user_agent keyword.

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Cookie: PHPSESSION=123
Host: suricata.io

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP User-Agent Example";
flow:established,to_server; http.user_agent; content:"Mozilla/5.0"; bsize:11; classtype:bad-unknown; sid:90;
rev:1;)

Note: http.user_agent does not include the leading space or trailing \r\n

Note: Using the http.user_agent generally provides better performance than using http.header.

Note: http.user_agent can have additional formatting/normalization applied to buffer contents, see Normalization
for additional details.

8.13. HTTP Keywords 113

https://redmine.openinfosecfoundation.org/issues/2881

Suricata User Guide, Release 8.0.0

8.13.17 urilen

The urilen keyword is used to match on the length of the normalized request URI. It is possible to use the < and >
operators, which indicate respectively less than and larger than.

urilen uses an unsigned 64-bit integer.

The urilen keyword does not require a content match on the http.uri buffer or the http.uri.raw buffer.

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Request"; flow:established,to_server; urilen:11;
http.method; content:"GET"; classtype:bad-unknown; sid:40; rev:1;)

The above signature would match on any HTTP GET request that has a URI length of 11, regardless of the content or
structure of the URI.

The following signatures would all alert on the example request above as well and show the different urilen options.

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"urilen greater than 10"; flow:established,to_server;
urilen:>10; classtype:bad-unknown; sid:41; rev:1;)

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"urilen less than 12"; flow:established,to_server;
urilen:<12; classtype:bad-unknown; sid:42; rev:1;)

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"urilen greater/less than example";
flow:established,to_server; urilen:10<>12; classtype:bad-unknown; sid:43; rev:1;)

8.13.18 http.location

The http.location keyword is used to match on the HTTP response location header contents.

It is possible to use any of the Payload Keywords with the http.location keyword.

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54
Location: suricata.io

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Location Example"; flow:established,to_client;
http.location; content:"suricata.io"; bsize:11; classtype:bad-unknown; sid:122; rev:1;)

Note: http.location does not include the leading space or trailing \r\n

Note: http.location can have additional formatting/normalization applied to buffer contents, see Normalization
for additional details.

114 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.13.19 http.response_body

The http.response_body keyword is used to match on the HTTP response body.

It is possible to use any of the Payload Keywords with the http.response_body keyword.

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54

Server response body

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Response Body Example";
flow:established,to_client; http.response_body; content:"Server response body"; classtype:bad-unknown; sid:120;
rev:1;)

Note: http.response_body will match on gzip decoded data just like file.data does.

Note: How much of the response/server body is inspected is controlled in your libhtp configuration section via the
response-body-limit setting.

Note: http.response_body replaces the previous keyword name, http_server_body. http_server_body can
still be used but it is recommended that rules be converted to use http.response_body.

8.13.20 http.response_header

The http.response_header keyword is used to match on the name and value of an HTTP/1 or HTTP/2 request.

It is possible to use any of the Payload Keywords with the http.response_header keyword.

For HTTP/2, the header name and value get concatenated by ": " (colon and space). The colon and space are commonly
noted with the hexadecimal format |3a 20| within signatures.

To detect if an HTTP/2 header name contains a ":" (colon), the keyword http2.header_name can be used.

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54
Location: suricata.io

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Response Example"; flow:established,to_client;
http.response_header; content:"Location|3a 20|suricata.io"; classtype:bad-unknown; sid:127; rev:1;)

8.13. HTTP Keywords 115

Suricata User Guide, Release 8.0.0

8.13.21 http.response_line

The http.response_line keyword is used to match on the entire HTTP response line.

It is possible to use any of the Payload Keywords with the http.response_line keyword.

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Response Line Example";
flow:established,to_client; http.response_line; content:"HTTP/1.1 200 OK"; classtype:bad-unknown; sid:119;
rev:1;)

Note: http.response_line does not include the trailing \r\n

8.13.22 http.server

The http.server keyword is used to match on the HTTP response server header contents.

It is possible to use any of the Payload Keywords with the http.server keyword.

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Server Example"; flow:established,to_client;
http.server; content:"nginx/0.8.54"; bsize:12; classtype:bad-unknown; sid:121; rev:1;)

Note: http.server does not include the leading space or trailing \r\n

Note: http.server can have additional formatting/normalization applied to buffer contents, see Normalization for
additional details.

8.13.23 http.stat_code

The http.stat_code keyword is used to match on the HTTP status code that can be present in an HTTP response.

It is possible to use any of the Payload Keywords with the http.stat_code keyword.

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54

116 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Stat Code Response Example";
flow:established,to_client; http.stat_code; content:"200"; classtype:bad-unknown; sid:117; rev:1;)

Note: http.stat_code does not include the leading or trailing space

8.13.24 http.stat_msg

The http.stat_msg keyword is used to match on the HTTP status message that can be present in an HTTP response.

For HTTP/2, an empty buffer is returned by Suricata. See rfc 7540 section 8.1.2.4. about Response Pseudo-Header
Fields.

It is possible to use any of the Payload Keywords with the http.stat_msg keyword.

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Stat Message Response Example";
flow:established,to_client; http.stat_msg; content:"OK"; classtype:bad-unknown; sid:118; rev:1;)

Note: http.stat_msg does not include the leading space or trailing \r\n

Note: http.stat_msg will always be empty when used with HTTP/2

8.13.25 file.data

With file.data, the HTTP response body is inspected, just like with http.response_body. file.data also works
for HTTP request body and can be used in protocols other than HTTP.

It is possible to use any of the Payload Keywords with the file.data keyword.

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54

Server response body

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP file.data Example"; flow:established,to_client;
file.data; content:"Server response body"; classtype:bad-unknown; sid:128; rev:1;)

The body of an HTTP response can be very large, therefore the response body is inspected in definable chunks.

How much of the response/server body is inspected is controlled in the libhtp configuration section via the
response-body-limit setting.

8.13. HTTP Keywords 117

Suricata User Guide, Release 8.0.0

Note: If the HTTP body is a flash file compressed with 'deflate' or 'lzma', it can be decompressed and file.data can
match on the decompressed data. Flash decompression must be enabled under 'libhtp' configuration:

Decompress SWF files.
2 types: 'deflate', 'lzma', 'both' will decompress deflate and lzma
compress-depth:
Specifies the maximum amount of data to decompress,
set 0 for unlimited.
decompress-depth:
Specifies the maximum amount of decompressed data to obtain,
set 0 for unlimited.
swf-decompression:
enabled: yes
type: both
compress-depth: 0
decompress-depth: 0

Note: file.data replaces the previous keyword name, file_data. file_data can still be used but it is recom-
mended that rules be converted to use file.data.

Note: If an HTTP body is using gzip or deflate, file.data will match on the decompressed data.

Note: Negated matching is affected by the chunked inspection. E.g. 'content:!"<html";' could not match on the first
chunk, but would then possibly match on the 2nd. To avoid this, use a depth setting. The depth setting takes the body
size into account. Assuming that the response-body-minimal-inspect-size is bigger than 1k, 'content:!"<html";
depth:1024;' can only match if the pattern '<html' is absent from the first inspected chunk.

Note: Additional information can be found at File Keywords

Note: file.data supports multiple buffer matching, see Multiple Buffer Matching.

8.13.26 http.connection

The http.connection keyword is used to match on the Connection field that can be present in HTTP request or
response headers.

It is possible to use any of the Payload Keywords with the http.connection keyword.

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Accept-Language: en-US

(continues on next page)

118 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

(continued from previous page)

Host: suricata.io
Connection: Keep-Alive

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Connection Example";
flow:established,to_server; http.connection; content:"Keep-Alive"; bsize:10; classtype:bad-unknown; sid:94;
rev:1;)

Note: http.connection does not include the leading space or trailing \r\n

Note: http.connection can have additional formatting/normalization applied to buffer contents, see Normalization
for additional details.

8.13.27 http.content_len

The http.content_len keyword is used to match on the Content-Length field that can be present in HTTP request or
response headers. Use flow:to_server or flow:to_client to force inspection of the request or response respec-
tively.

It is possible to use any of the Payload Keywords with the http.content_len keyword.

Example HTTP Request:

POST /suricata.php HTTP/1.1
Content-Type: multipart/form-data; boundary=---------------123
Host: suricata.io
Content-Length: 100
Connection: Keep-Alive

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54
Connection: Close
Content-Length: 20

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Content-Length Request Example";
flow:established,to_server; http.content_len; content:"100"; bsize:3; classtype:bad-unknown; sid:97; rev:1;)

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Content-Length Response Example";
flow:established,to_client; http.content_len; content:"20"; bsize:2; classtype:bad-unknown; sid:98; rev:1;)

To do numeric evaluation of the content length, byte_test can be used.

If we want to match on an HTTP request content length equal to and greater than 100 we could use the following
signature.

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Content-Length Request Byte Test Example";
flow:established,to_server; http.content_len; byte_test:0,>=,100,0,string,dec; classtype:bad-unknown; sid:99; rev:1;)

Note: http.content_len does not include the leading space or trailing \r\n

8.13. HTTP Keywords 119

Suricata User Guide, Release 8.0.0

8.13.28 http.content_type

The http.content_type keyword is used to match on the Content-Type field that can be present in HTTP request or
response headers. Use flow:to_server or flow:to_client to force inspection of the request or response respec-
tively.

It is possible to use any of the Payload Keywords with the http.content_type keyword.

Example HTTP Request:

POST /suricata.php HTTP/1.1
Content-Type: multipart/form-data; boundary=---------------123
Host: suricata.io
Content-Length: 100
Connection: Keep-Alive

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54
Connection: Close

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Content-Type Request Example";
flow:established,to_server; http.content_type; content:"multipart/form-data|3b 20|"; startswith; classtype:bad-
unknown; sid:95; rev:1;)

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Content-Type Response Example";
flow:established,to_client; http.content_type; content:"text/html"; bsize:9; classtype:bad-unknown; sid:96; rev:1;)

Note: http.content_type does not include the leading space or trailing \r\n

Note: http.content_type can have additional formatting/normalization applied to buffer contents, see Normaliza-
tion for additional details.

8.13.29 http.cookie

The http.cookie keyword is used to match on the cookie field that can be present in HTTP request (Cookie) or HTTP
response (Set-Cookie) headers.

It is possible to use any of the Payload Keywords with both http.header keywords.

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Cookie: PHPSESSION=123
Host: suricata.io

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Cookie Example"; flow:established,to_server;
http.cookie; content:"PHPSESSIONID=123"; bsize:14; classtype:bad-unknown; sid:80; rev:1;)

120 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Note: Cookies are passed in HTTP headers but Suricata extracts the cookie data to http.cookie and will not match
cookie content put in the http.header sticky buffer.

Note: http.cookie does not include the leading space or trailing \r\n

Note: http.cookie can have additional formatting/normalization applied to buffer contents, see Normalization for
additional details.

8.13.30 http.header

Matching on HTTP headers has two options in Suricata, the http.header and the http.header.raw.

It is possible to use any of the Payload Keywords with both http.header keywords.

The http.header keyword normalizes the header contents. For example if header contents contain trailing white-
space or tab characters, those would be removed.

To match on non-normalized header data, use the http.header.raw keyword.

Normalization Example:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0 \r\n
Host: suricata.io

Would be normalized to Mozilla/5.0\r\n

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Header Example 1"; flow:established,to_server;
http.header; content:"User-Agent|3a 20|Mozilla/5.0|0d 0a|"; classtype:bad-unknown; sid:70; rev:1;)

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Header Example 2"; flow:established,to_server;
http.header; content:"Host|3a 20|suricata.io|0d 0a|"; classtype:bad-unknown; sid:71; rev:1;)

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Header Example 3"; flow:established,to_server;
http.header; content:"User-Agent|3a 20|Mozilla/5.0|0d 0a|"; startswith; content:"Host|3a 20|suricata.io|0d 0a|";
classtype:bad-unknown; sid:72; rev:1;)

Note: There are headers that will not be included in the http.header buffer, specifically the http.cookie buffer.

Note: http.header can have additional formatting/normalization applied to buffer contents, see Normalization for
additional details.

8.13. HTTP Keywords 121

Suricata User Guide, Release 8.0.0

8.13.31 http.header.raw

The http.header.raw buffer matches on HTTP header content but does not have any normalization performed on
the buffer contents (see http.header)

Abnormal HTTP Header Example:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
User-Agent: Chrome
Host: suricata.io

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Header Raw Example";
flow:established,to_server; http.header.raw; content:"User-Agent|3a 20|Mozilla/5.0|0d 0a|"; content:"User-Agent|3a
20|Chrome|0d 0a|"; classtype:bad-unknown; sid:73; rev:1;)

Note: http.header.raw can have additional formatting applied to buffer contents, see Normalization for additional
details.

8.13.32 http.header_names

The http.header_names keyword is used to match on the names of the headers in an HTTP request or response. This
is useful for checking for a header's presence, absence and/or header order. Use flow:to_server or flow:to_client
to force inspection of the request or response respectively.

It is possible to use any of the Payload Keywords with the http.header_names keyword.

Example HTTP Request:

GET / HTTP/1.1
Host: suricata.io
Connection: Keep-Alive

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54

Examples to match exactly on header order:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Header Names Request Example";
flow:established,to_server; http.header_names; content:"|0d 0a|Host|0d 0a|Connection|0d 0a 0d 0a|"; bsize:22;
classtype:bad-unknown; sid:110; rev:1;)

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Header Names Response Example";
flow:established,to_client; http.header_names; content:"|0d 0a|Content-Type|0d 0a|Server|0d 0a 0d a0|"; bsize:26;
classtype:bad-unknown; sid:111; rev:1;)

Examples to match on header existence:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Header Names Request Example 2";
flow:established,to_server; http.header_names; content:"|0d 0a|Host|0d 0a|"; classtype:bad-unknown; sid:112; rev:1;)

122 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Header Names Response Example 2";
flow:established,to_client; http.header_names; content:"|0d 0a|Content-Type|0d 0a|"; classtype:bad-unknown; sid:113;
rev:1;)

Examples to match on header absence:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Header Names Request Example 3";
flow:established,to_server; http.header_names; content:!"|0d 0a|User-Agent|0d 0a|"; classtype:bad-unknown; sid:114;
rev:1;)

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Header Names Response Example 3";
flow:established,to_client; http.header_names; content:!"|0d 0a|Date|0d 0a|"; classtype:bad-unknown; sid:115; rev:1;)

Example to check for the User-Agent header and that the Host header is after User-Agent but not necessarily directly
after.

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Header Names Request Example 4";
flow:established,to_server; http.header_names; content:"|0d 0a|Host|0d 0a|"; content:"User-Agent|0d 0a|"; distance:-
2; classtype:bad-unknown; sid:114; rev:1;)

Note: http.header_names starts with a \r\n and ends with an extra \r\n.

Note: http.header_names can have additional formatting/normalization applied to buffer contents, see Normaliza-
tion for additional details.

8.13.33 http.protocol

The http.protocol keyword is used to match on the protocol field that is contained in HTTP requests and responses.

For HTTP/2, the constant string "HTTP/2" is used. See rfc 7540 section 8.1.2.4. about Response Pseudo-Header
Fields.

It is possible to use any of the Payload Keywords with the http.protocol keyword.

Note: http.protocol does not include the leading space or trailing \r\n

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Protocol Example"; flow:established,to_server;
http.protocol; content:"HTTP/1.1"; bsize:9; classtype:bad-unknown; sid:50; rev:1;)

8.13. HTTP Keywords 123

Suricata User Guide, Release 8.0.0

8.13.34 http.start

The http.start keyword is used to match on the start of an HTTP request or response. This will contain the re-
quest/response line plus the request/response headers. Use flow:to_server or flow:to_client to force inspection
of the request or response respectively.

It is possible to use any of the Payload Keywords with the http.start keyword.

Example HTTP Request:

GET / HTTP/1.1
Host: suricata.io
Connection: Keep-Alive

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Start Request Example";
flow:established,to_server; http.start; content:"POST / HTTP/1.1|0d 0a|Host|0d 0a|Connection|0d 0a 0d 0a|";
classtype:bad-unknown; sid:101; rev:1;)

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Start Response Example";
flow:established,to_client; http.start; content:"HTTP/1.1 200 OK|0d 0a|Content-Type|0d 0a|Server|0d 0a 0d a0|";
classtype:bad-unknown; sid:102; rev:1;)

Note: http.start contains the normalized headers and is terminated by an extra \r\n to indicate the end of the
headers.

8.14 File Keywords

Suricata comes with several rule keywords to match on various file properties. They depend on properly configured
File Extraction.

8.14.1 file.data

The file.data sticky buffer matches on contents of files that are seen in flows that Suricata evaluates. The various
payload keywords can be used (e.g. startswith, nocase and bsize) with file.data.

Example:

alert smtp any any -> any any (msg:"smtp app layer file.data example"; \
file.data; content:"example file content"; sid:1; rev:1)

alert http any any -> any any (msg:"http app layer file.data example"; \
file.data; content:"example file content"; sid:2; rev:1)

alert http2 any any -> any any (msg:"http2 app layer file.data example"; \
file.data; content:"example file content"; sid:3; rev:1;)

(continues on next page)

124 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

(continued from previous page)

alert nfs any any -> any any (msg:"nfs app layer file.data example"; \
file.data; content:" "; sid:5; rev:1)

alert ftp-data any any -> any any (msg:"ftp app layer file.data example"; \
file.data; content:"example file content"; sid:6; rev:1;)

alert tcp any any -> any any (msg:"tcp file.data example"; \
file.data; content:"example file content"; sid:4; rev:1)

Note file_data is the legacy notation but can still be used.

8.14.2 file.name

file.name is a sticky buffer that is used to look at filenames that are seen in flows that Suricata evaluates. The various
payload keywords can be used (e.g. startswith, nocase and bsize) with file.name.

Example:

file.name; content:"examplefilename";

file.name supports multiple buffer matching, see Multiple Buffer Matching.

Note filename can still be used. A notable difference between file.name and filename is that filename assumes
nocase by default. In the example below the two signatures are considered the same.

Example:

filename:"examplefilename";

file.name; content:"examplefilename"; nocase;

8.14.3 fileext

fileext is used to look at individual file extensions that are seen in flows that Suricata evaluates.

Example:

fileext:"pdf";

Note: fileext does not allow partial matches. For example, if a PDF file (.pdf) is seen by a Suricata signature with
fileext:"pd"; the signature will not produce an alert.

Note: fileext assumes nocase by default. This means that a file with the extension .PDF will be seen the same as if
the file had an extension of .pdf.

Note: fileext and file.name can both be used to match on file extensions. In the example below the two signatures
are considered the same.

Example:

fileext:"pdf";

file.name; content:".pdf"; nocase; endswith;

8.14. File Keywords 125

Suricata User Guide, Release 8.0.0

Note: While``fileeext`` and file.name can both be used to match on file extensions, file.name allows for partial
matching on file extensions. The following would match on a file with the extension of .pd as well as .pdf.

Example:

file.name; content:".pd";

8.14.4 file.magic

Matches on the information libmagic returns about a file.

Example:

file.magic; content:"executable for MS Windows";

Note filemagic can still be used. The only difference between file.magic and file.magic is that filemagic
assumes nocase by default. In the example below the two signatures are considered the same.

Example:

filemagic:"executable for MS Windows";

file.magic; content:"executable for MS Windows"; nocase;

Note: Suricata currently uses its underlying operating systems version/implementation of libmagic. Different versions
and implementations of libmagic do not return the same information. Additionally there are varying Suricata per-
formance impacts based on the version and implementation of libmagic. Additional information about Suricata and
libmagic can be found here: https://redmine.openinfosecfoundation.org/issues/437

file.magic supports multiple buffer matching, see Multiple Buffer Matching.

8.14.5 filestore

Stores files to disk if the signature matched.

Syntax:

filestore:<direction>,<scope>;

direction can be:

• request/to_server: store a file in the request / to_server direction

• response/to_client: store a file in the response / to_client direction

• both: store both directions

scope can be:

• file: only store the matching file (for filename,fileext,filemagic matches)

• tx: store all files from the matching HTTP transaction

• ssn/flow: store all files from the TCP session/flow.

If direction and scope are omitted, the direction will be the same as the rule and the scope will be per file.

126 Chapter 8. Suricata Rules

https://redmine.openinfosecfoundation.org/issues/437

Suricata User Guide, Release 8.0.0

8.14.6 filemd5

Match file MD5 against list of MD5 checksums.

Syntax:

filemd5:[!]filename;

The filename is expanded to include the rule dir. In the default case it will become /etc/suricata/rules/filename. Use
the exclamation mark to get a negated match. This allows for white listing.

Examples:

filemd5:md5-blacklist;
filemd5:!md5-whitelist;

File format

The file format is simple. It's a text file with a single md5 per line, at the start of the line, in hex notation. If there is
extra info on the line it is ignored.

Output from md5sum is fine:

2f8d0355f0032c3e6311c6408d7c2dc2 util-path.c
b9cf5cf347a70e02fde975fc4e117760 util-pidfile.c
02aaa6c3f4dbae65f5889eeb8f2bbb8d util-pool.c
dd5fc1ee7f2f96b5f12d1a854007a818 util-print.c

Just MD5's are good as well:

2f8d0355f0032c3e6311c6408d7c2dc2
b9cf5cf347a70e02fde975fc4e117760
02aaa6c3f4dbae65f5889eeb8f2bbb8d
dd5fc1ee7f2f96b5f12d1a854007a818

Memory requirements

Each MD5 uses 16 bytes of memory. 20 Million MD5's use about 310 MiB of memory.

See also: https://blog.inliniac.net/2012/06/09/suricata-md5-blacklisting/

8.14.7 filesha1

Match file SHA1 against list of SHA1 checksums.

Syntax:

filesha1:[!]filename;

The filename is expanded to include the rule dir. In the default case it will become /etc/suricata/rules/filename. Use
the exclamation mark to get a negated match. This allows for white listing.

Examples:

filesha1:sha1-blacklist;
filesha1:!sha1-whitelist;

8.14. File Keywords 127

https://blog.inliniac.net/2012/06/09/suricata-md5-blacklisting/

Suricata User Guide, Release 8.0.0

File format

Same as md5 file format.

8.14.8 filesha256

Match file SHA256 against list of SHA256 checksums.

Syntax:

filesha256:[!]filename;

The filename is expanded to include the rule dir. In the default case it will become /etc/suricata/rules/filename. Use
the exclamation mark to get a negated match. This allows for white listing.

Examples:

filesha256:sha256-blacklist;
filesha256:!sha256-whitelist;

File format

Same as md5 file format.

8.14.9 filesize

Match on the size of the file as it is being transferred.

filesize uses an unsigned 64-bit integer.

Syntax:

filesize:<value>;

Possible units are KB, MB and GB, without any unit the default is bytes.

Examples:

filesize:100; # exactly 100 bytes
filesize:100<>200; # greater than 100 and smaller than 200
filesize:>100MB; # greater than 100 megabytes
filesize:<100MB; # smaller than 100 megabytes

Note: For files that are not completely tracked because of packet loss or stream.reassembly.depth being reached on the
"greater than" is checked. This is because Suricata can know a file is bigger than a value (it has seen some of it already),
but it can't know if the final size would have been within a range, an exact value or smaller than a value.

128 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.15 DNS Keywords

Suricata supports sticky buffers as well as keywords for efficiently matching on specific fields in DNS messages.

Note that sticky buffers are expected to be followed by one or more Payload Keywords.

8.15.1 dns.opcode

This keyword matches on the opcode found in the DNS header flags.

dns.opcode uses an unsigned 8-bit integer.

Syntax

dns.opcode:[!]<number>
dns.opcode:[!]<number1>-<number2>

Examples

Match on DNS requests and responses with opcode 4:

dns.opcode:4;

Match on DNS requests where the opcode is NOT 0:

dns.opcode:!0;

Match on DNS requests where the opcode is between 7 and 15, exclusively:

dns.opcode:7-15;

Match on DNS requests where the opcode is not between 7 and 15:

dns.opcode:!7-15;

8.15.2 dns.rcode

This keyword matches on the rcode field found in the DNS header flags.

dns.rcode uses an unsigned 8-bit integer. It can also be specified by text from the enumeration.

Currently, Suricata only supports rcode values in the range [0-15], while the current DNS version supports rcode values
from [0-23] as specified in RFC 6895.

We plan to extend the rcode values supported by Suricata according to RFC 6895 as tracked by the ticket: https:
//redmine.openinfosecfoundation.org/issues/6650

8.15. DNS Keywords 129

https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-6
https://redmine.openinfosecfoundation.org/issues/6650
https://redmine.openinfosecfoundation.org/issues/6650

Suricata User Guide, Release 8.0.0

Syntax

dns.rcode:[!]<number>
dns.rcode:[!]<number1>-<number2>

Examples

Match on DNS requests and responses with rcode 4:

dns.rcode:4;

Match on DNS requests and responses where the rcode is NOT 0:

dns.rcode:!0;

8.15.3 dns.rrtype

This keyword matches on the rrtype (integer) found in the DNS message.

dns.rrtype uses an unsigned 16-bit integer.

It can also be specified by text from the enumeration.

Syntax

dns.rrtype:[!]<number>

Examples

Match on DNS requests and responses with rrtype 4:

dns.rrtype:4;

Match on DNS requests and responses where the rrtype is NOT 0:

dns.rrtype:!0;

8.15.4 dns.query

dns.query is a sticky buffer that is used to inspect DNS query names in DNS request messages. Example:

alert dns any any -> any any (msg:"Test dns.query option"; dns.query; content:"google";␣
→˓nocase; sid:1;)

Being a sticky buffer, payload keywords such as content are to be used after dns.query:

130 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

The dns.query keyword affects all following contents, until pkt_data is used or it reaches the end of the rule.

Note: dns.query is equivalent to the older dns_query.

Note: dns.query will only match on DNS request messages, to also match on DNS response message, see
dns.queries.rrname.

dns.queries.rrname supports Multiple Buffer Matching.

Normalized Buffer

Buffer contains literal domain name

• <length> values (as seen in a raw DNS request) are literal '.' characters

• no leading <length> value

• No terminating NULL (0x00) byte (use a negated relative isdataat to match the end)

Example DNS request for "mail.google.com" (for readability, hex values are encoded between pipes):

DNS query on the wire (snippet):

|04|mail|06|google|03|com|00|

dns.query buffer:

mail.google.com

8.15.5 dns.queries.rrname

dns.queries.rrname is a sticky buffer that is used to look at the name field in DNS query (question) resource records.
It is nearly identical to dns.query but supports both DNS requests and responses.

dns.queries.rrname will look at both requests and responses, so flow is recommended to confine to a specific
direction.

The buffer being matched on contains the complete re-assembled resource name, for example "www.suricata.io".

dns.queries.rrname supports Multiple Buffer Matching.

dns.queries.rrname was introduced in Suricata 8.0.0.

8.15.6 dns.answers.rrname

dns.answers.rrname is a sticky buffer that is used to look at the name field in DNS answer resource records.

dns.answers.rrname will look at both requests and responses, so flow is recommended to confine to a specific
direction.

The buffer being matched on contains the complete re-assembled resource name, for example "www.suricata.io".

dns.answers.rrname supports Multiple Buffer Matching.

dns.answers.rrname was introduced in Suricata 8.0.0.

8.15. DNS Keywords 131

Suricata User Guide, Release 8.0.0

8.15.7 dns.authorities.rrname

dns.authorities.rrname is a sticky buffer that is used to look at the rrname field in DNS authority resource records.

dns.authorities.rrname will look at both requests and responses, so flow is recommended to confine to a specific
direction.

The buffer being matched on contains the complete re-assembled resource name, for example "www.suricata.io".

dns.authorities.rrname supports Multiple Buffer Matching.

dns.authorities.rrname was introduced in Suricata 8.0.0.

8.15.8 dns.additionals.rrname

dns.additionals.rrname is a sticky buffer that is used to look at the rrname field in DNS additional resource
records.

dns.additionals.rrname will look at both requests and responses, so flow is recommended to confine to a specific
direction.

The buffer being matched on contains the complete re-assembled resource name, for example "www.suricata.io".

dns.additionals.rrname supports Multiple Buffer Matching.

dns.additionals.rrname was introduced in Suricata 8.0.0.

8.15.9 dns.response.rrname

dns.response.rrname is a sticky buffer that is used to look at all name and rdata fields of DNS response (answer)
resource records that are represented as a resource name (hostname). It supports inspecting all DNS response sections.
Example:

alert dns any any -> any any (msg:"Test dns.response.rrname option"; \
dns.response.rrname; content:"google"; nocase; sid:1;)

rdata field matching supports a subset of types that contain domain name structured data, for example:
"www.suricata.io". The list of types inspected is:

• CNAME

• PTR

• MX

• NS

• SOA (mname data: primary name server)

The buffer being matched on contains the complete re-assembled resource name, for example "www.suricata.io".

dns.response.rrname supports Multiple Buffer Matching.

dns.response.rrname was introduced in Suricata 8.0.0.

132 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.16 mDNS Keywords

Suricata supports sticky buffers for efficiently matching on specific fields in mDNS (Multicast DNS) messages.

Note that sticky buffers are expected to be followed by one or more Payload Keywords.

8.16.1 mdns.queries.rrname

mdns.queries.rrname is a sticky buffer that is used to look at the name field in mDNS query resource records.

The buffer being matched on contains the complete re-assembled resource name, for example "host.local".

mdns.queries.rrname supports Multiple Buffer Matching.

Example:

alert udp any any -> any 5353 (msg:"mDNS query for .local domain"; \
mdns.queries.rrname; content:".local"; sid:1;)

8.16.2 mdns.answers.rrname

mdns.answers.rrname is a sticky buffer that is used to look at the name field in mDNS answer resource records.

The buffer being matched on contains the complete re-assembled resource name, for example "printer.local".

mdns.answers.rrname supports Multiple Buffer Matching.

Example:

alert udp any 5353 -> any any (msg:"mDNS answer for printer.local"; \
mdns.answers.rrname; content:"printer.local"; sid:2;)

8.16.3 mdns.authorities.rrname

mdns.authorities.rrname is a sticky buffer that is used to look at the rrname field in mDNS authority resource
records.

The buffer being matched on contains the complete re-assembled resource name, for example "device.local".

mdns.authorities.rrname supports Multiple Buffer Matching.

Example:

alert udp any 5353 -> any any (msg:"mDNS authority record check"; \
mdns.authorities.rrname; content:"auth.local"; sid:3;)

8.16. mDNS Keywords 133

Suricata User Guide, Release 8.0.0

8.16.4 mdns.additionals.rrname

mdns.additionals.rrname is a sticky buffer that is used to look at the rrname field in mDNS additional resource
records.

The buffer being matched on contains the complete re-assembled resource name, for example "service.local".

mdns.additionals.rrname supports Multiple Buffer Matching.

Example:

alert udp any any -> any 5353 (msg:"mDNS additional record check"; \
mdns.additionals.rrname; content:"_companion-link._tcp.local"; nocase; sid:4;)

8.16.5 mdns.response.rrname

mdns.response.rrname is a sticky buffer that is used to inspect all the rrname fields in a response, in the queries,
answers, additionals and authorities. Additionally it will also inspect rdata fields that have the same format as an rrname
(hostname).

rdata types that will be inspected are:

• CNAME

• PTR

• MX

• NS

• SOA

Example:

alert udp any 5353 -> any any (msg:"mDNS answer data match"; \
mdns.response.rrname; content:"Apple TV"; sid:5;)

8.17 SSL/TLS Keywords

Suricata comes with several rule keywords to match on various properties of TLS/SSL handshake. Matches are string
inclusion matches.

8.17.1 tls.cert_subject

Match TLS/SSL certificate Subject field.

Examples:

tls.cert_subject; content:"CN=*.googleusercontent.com"; isdataat:!1,relative;
tls.cert_subject; content:"google.com"; nocase; pcre:"/google\.com$/";

tls.cert_subject is a 'sticky buffer'.

tls.cert_subject can be used as fast_pattern.

tls.cert_subject supports multiple buffer matching, see Multiple Buffer Matching.

134 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

tls.subject

Legacy keyword to match TLS/SSL certificate Subject field.

example:

tls.subject:"CN=*.googleusercontent.com"

Case sensitive, can't use 'nocase', or other modifiers.

Note: tls.cert_subject replaces the following legacy keywords: tls_cert_subject and tls.subject. It's
recommended that rules be converted to use the new one.

8.17.2 tls.cert_issuer

Match TLS/SSL certificate Issuer field.

Examples:

tls.cert_issuer; content:"WoSign"; nocase; isdataat:!1,relative;
tls.cert_issuer; content:"StartCom"; nocase; pcre:"/StartCom$/";

tls.cert_issuer is a 'sticky buffer'.

tls.cert_issuer can be used as fast_pattern.

tls.issuerdn

Legacy keyword to match TLS/SSL certificate IssuerDN field

example:

tls.issuerdn:!"CN=Google-Internet-Authority"

Case sensitive, can't use 'nocase', or other modifiers.

Note: tls.cert_issuer replaces the following legacy keywords: tls_cert_issuer and tls.issuerdn. It's rec-
ommended that rules be converted to use the new one.

8.17.3 tls.cert_serial

Match on the serial number in a certificate.

Example:

alert tls any any -> any any (msg:"match cert serial"; \
tls.cert_serial; content:"5C:19:B7:B1:32:3B:1C:A1"; sid:200012;)

tls.cert_serial is a 'sticky buffer'.

tls.cert_serial can be used as fast_pattern.

tls.cert_serial replaces the previous keyword name: tls_cert_serial. You may continue to use the previous
name, but it's recommended that rules be converted to use the new name.

8.17. SSL/TLS Keywords 135

Suricata User Guide, Release 8.0.0

8.17.4 tls.cert_fingerprint

Match on the SHA-1 fingerprint of the certificate.

Example:

alert tls any any -> any any (msg:"match cert fingerprint"; \
tls.cert_fingerprint; \
content:"4a:a3:66:76:82:cb:6b:23:bb:c3:58:47:23:a4:63:a7:78:a4:a1:18"; \
sid:200023;)

tls.cert_fingerprint is a 'sticky buffer'.

tls.cert_fingerprint can be used as fast_pattern.

tls.cert_fingerprint replaces the previous keyword name: tls_cert_fingerprint may continue to use the
previous name, but it's recommended that rules be converted to use the new name.

8.17.5 tls.sni

Match TLS/SSL Server Name Indication field.

Examples:

tls.sni; content:"oisf.net"; nocase; isdataat:!1,relative;
tls.sni; content:"oisf.net"; nocase; pcre:"/oisf.net$/";

tls.sni is a 'sticky buffer'.

tls.sni can be used as fast_pattern.

tls.sni replaces the previous keyword name: tls_sni. You may continue to use the previous name, but it's recom-
mended that rules be converted to use the new name.

8.17.6 tls.subjectaltname

Match TLS/SSL Subject Alternative Name field.

Examples:

tls.subjectaltname; content:"|73 75 72 69 63 61 74 61 2e 69 6f|";

tls.subjectaltname is a 'sticky buffer'.

tls.subjectaltname can be used as fast_pattern.

tls.subjectaltname supports multiple buffer matching, see Multiple Buffer Matching.

136 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.17.7 tls_cert_notbefore

Match on the NotBefore field in a certificate.

Example:

alert tls any any -> any any (msg:"match cert NotBefore"; \
tls_cert_notbefore:1998-05-01<>2008-05-01; sid:200005;)

8.17.8 tls_cert_notafter

Match on the NotAfter field in a certificate.

Example:

alert tls any any -> any any (msg:"match cert NotAfter"; \
tls_cert_notafter:>2015; sid:200006;)

8.17.9 tls_cert_expired

Match returns true if certificate is expired. It evaluates the validity date from the certificate.

Usage:

tls_cert_expired;

8.17.10 tls_cert_valid

Match returns true if certificate is not expired. It only evaluates the validity date. It does not do cert chain validation.
It is the opposite of tls_cert_expired.

Usage:

tls_cert_valid;

8.17.11 tls.certs

Do a "raw" match on each of the certificates in the TLS certificate chain.

Example:

alert tls any any -> any any (msg:"match bytes in TLS cert"; tls.certs; \
content:"|06 09 2a 86|"; sid:200070;)

tls.certs is a 'sticky buffer'.

tls.certs can be used as fast_pattern.

tls.certs supports multiple buffer matching, see Multiple Buffer Matching.

8.17. SSL/TLS Keywords 137

Suricata User Guide, Release 8.0.0

8.17.12 tls.version

Match on negotiated TLS/SSL version.

Supported values: "1.0", "1.1", "1.2", "1.3"

It is also possible to match versions using a hex string.

Examples:

tls.version:1.2;
tls.version:0x7f12;

The first example matches TLSv1.2, whilst the last example matches TLSv1.3 draft 16.

8.17.13 ssl_version

Match version of SSL/TLS record.

Supported values "sslv2", "sslv3", "tls1.0", "tls1.1", "tls1.2", "tls1.3"

Example:

alert tls any any -> any any (msg:"match TLSv1.2"; \
ssl_version:tls1.2; sid:200030;)

It is also possible to match on several versions at the same time.

Example:

alert tls any any -> any any (msg:"match SSLv2 and SSLv3"; \
ssl_version:sslv2,sslv3; sid:200031;)

8.17.14 tls.fingerprint

match TLS/SSL certificate SHA1 fingerprint

example:

tls.fingerprint:!"f3:40:21:48:70:2c:31:bc:b5:aa:22:ad:63:d6:bc:2e:b3:46:e2:5a"

Case sensitive, can't use 'nocase'.

The tls.fingerprint buffer is lower case so you must use lower case letters for this to match.

8.17.15 tls.store

store TLS/SSL certificate on disk. The location can be specified in the output.tls-store.certs-log-dir parameter of the
yaml configuration file, cf TLS parameters and certificates logging (tls.log)..

138 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.17.16 ssl_state

The ssl_state keyword matches the state of the SSL connection. The possible states are client_hello,
server_hello, client_keyx, server_keyx and unknown. You can specify several states with | (OR) to check
for any of the specified states.

8.17.17 tls.random

Matches on the 32 bytes of the TLS random field from the client hello or server hello records.

Example:

alert tls any any -> any any (msg:"TLS random test"; \
tls.random; content:"|9b ce 7a 5e 57 5d 77 02 07 c2 9d be 24 01 cc f0 5d cd e1 d2 a5␣

→˓86 9c 4a 3e ee 38 db 55 1a d9 bc|"; sid: 200074;)

tls.random is a sticky buffer.

8.17.18 tls.random_time

Matches on the first 4 bytes of the TLS random field from the client hello or server hello records.

Example:

alert tls any any -> any any (msg:"TLS random_time test"; \
tls.random_time; content:"|9b ce 7a 5e|"; sid: 200075;)

tls.random_time is a sticky buffer.

8.17.19 tls.random_bytes

Matches on the last 28 bytes of the TLS random field from the client hello or server hello records.

Example:

alert tls any any -> any any (msg:"TLS random_bytes test"; \
tls.random_bytes; content:"|57 5d 77 02 07 c2 9d be 24 01 cc f0 5d cd e1 d2 a5 86 9c␣

→˓4a 3e ee 38 db 55 1a d9 bc|"; sid: 200076;)

tls.random_bytes is a sticky buffer.

8.17.20 tls.cert_chain_len

Matches on the TLS certificate chain length.

tls.cert_chain_len uses an unsigned 32-bit integer.

tls.cert_chain_len supports <, >, <>, ! and using an exact value.

Example:

8.17. SSL/TLS Keywords 139

Suricata User Guide, Release 8.0.0

alert tls any any -> any any (msg:"cert chain exact value"; \
tls.cert_chain_len:1; classtype:misc-activity; sid:1; rev:1;)

alert tls any any -> any any (msg:"cert chain less than value"; \
tls.cert_chain_len:<2; classtype:misc-activity; sid:2; rev:1;)

alert tls any any -> any any (msg:"cert chain greater than value"; \
tls.cert_chain_len:>0; classtype:misc-activity; sid:2; rev:1;)

alert tls any any -> any any (msg:"cert chain greater than less than value";\
tls.cert_chain_len:0<>2; classtype:misc-activity; sid:3; rev:1;)

alert tls any any -> any any (msg:"cert chain not value"; \
tls.cert_chain_len:!2; classtype:misc-activity; sid:4; rev:1;)

8.17.21 tls.alpn

Matches on the ALPN buffers.

Example:

alert tls any any -> any any (msg:"TLS ALPN test"; \
tls.alpn; content:"http/1.1"; sid:1;)

tls.alpn is a sticky buffer.

8.18 SSH Keywords

Suricata has several rule keywords to match on different elements of SSH connections.

8.18.1 Hooks

The available hooks for SSH are:

Request (to_server) side:

• request_in_progress

• request_banner_wait_eol

• request_banner_done

• request_finished

Response (to_client) side:

• response_in_progress

• response_banner_wait_eol

• response_banner_done

• response_finished

140 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.18.2 Frames

The SSH parser supports the following frames:

• ssh.record_hdr

• ssh.record_data

• ssh.record_pdu

These are header + data = pdu for SSH records, after the banner and before encryption. The SSH record header is 6
bytes long : 4 bytes length, 1 byte passing, 1 byte message code.

Example:

alert ssh any any -> any any (msg:"hdr frame new keys"; frame:ssh.record.hdr; content: "|15|"; endswith; bsize: 6;
sid:2;)

This rule matches like Wireshark ssh.message_code == 0x15.

8.18.3 ssh.proto

Match on the version of the SSH protocol used. ssh.proto is a sticky buffer, and can be used as a fast pattern.
ssh.proto replaces the previous buffer name: ssh_proto. You may continue to use the previous name, but it's
recommended that existing rules be converted to use the new name.

Format:

ssh.proto;

Example:

alert ssh any any -> any any (msg:"match SSH protocol version"; ssh.proto; content:"2.0"; sid:1000010;)

The example above matches on SSH connections with SSH version 2.0.

8.18.4 ssh.software

Match on the software string from the SSH banner. ssh.software is a sticky buffer, and can be used as fast pattern.

Format:

ssh.software;

Example:

alert ssh any any -> any any (msg:"match SSH software string"; ssh.software; content:"openssh"; nocase; sid:1000020;)

The example above matches on SSH connections where the software string contains "openssh".

8.18. SSH Keywords 141

Suricata User Guide, Release 8.0.0

8.18.5 ssh.hassh

Match on hassh (md5 of of hassh algorithms of client).

Example:

alert ssh any any -> any any (msg:"match hassh"; \
ssh.hassh; content:"ec7378c1a92f5a8dde7e8b7a1ddf33d1";\
sid:1000010;)

ssh.hassh is a 'sticky buffer'.

ssh.hassh can be used as fast_pattern.

8.18.6 ssh.hassh.string

Match on Hassh string (hassh algorithms of client).

Example:

alert ssh any any -> any any (msg:"match hassh-string"; \
ssh.hassh.string; content:"none,zlib@openssh.com,zlib"; \
sid:1000030;)

ssh.hassh.string is a 'sticky buffer'.

ssh.hassh.string can be used as fast_pattern.

8.18.7 ssh.hassh.server

Match on hassh (md5 of hassh algorithms of server).

Example:

alert ssh any any -> any any (msg:"match SSH hash-server"; \
ssh.hassh.server; content:"b12d2871a1189eff20364cf5333619ee"; \
sid:1000020;)

ssh.hassh.server is a 'sticky buffer'.

ssh.hassh.server can be used as fast_pattern.

8.18.8 ssh.hassh.server.string

Match on hassh string (hassh algorithms of server).

Example::
alert ssh any any -> any any (msg:"match SSH hash-server-string";

ssh.hassh.server.string; content:"umac-64-etm@openssh.com,umac-128-etm@openssh.com";
sid:1000040;)

ssh.hassh.server.string is a 'sticky buffer'.

ssh.hassh.server.string can be used as fast_pattern.

142 Chapter 8. Suricata Rules

mailto:umac-64-etm@openssh.com
mailto:128-etm@openssh.com

Suricata User Guide, Release 8.0.0

8.19 JA3/JA4 Keywords

Suricata comes with JA3 (https://github.com/salesforce/ja3) and JA4 (https://github.com/FoxIO-LLC/ja4) integration.
JA3 and JA4 are used to fingerprint TLS and QUIC clients.

Support must be enabled in the Suricata config file (set app-layer.protocols.tls.ja{3,4}-fingerprints to
yes). If it is not explicitly disabled (no) , it will be enabled if a loaded rule requires it. Note that JA3/JA4 support can
also be disabled at compile time; it is possible to use the requires: feature ja{3,4}; keyword to skip rules if
no JA3/JA4 support is present.

8.19.1 ja3.hash

Match on JA3 hash (md5).

Example:

alert tls any any -> any any (msg:"match JA3 hash"; \
ja3.hash; content:"e7eca2baf4458d095b7f45da28c16c34"; \
sid:100001;)

ja3.hash is a 'sticky buffer'.

ja3.hash can be used as fast_pattern.

ja3.hash replaces the previous keyword name: ja3_hash. You may continue to use the previous name, but it's
recommended that rules be converted to use the new name.

8.19.2 ja3.string

Match on JA3 string.

Example:

alert tls any any -> any any (msg:"match JA3 string"; \
ja3.string; content:"19-20-21-22"; \
sid:100002;)

ja3.string is a 'sticky buffer'.

ja3.string can be used as fast_pattern.

ja3.string replaces the previous keyword name: ja3_string. You may continue to use the previous name, but it's
recommended that rules be converted to use the new name.

8.19.3 ja3s.hash

Match on JA3S hash (md5).

Example:

alert tls any any -> any any (msg:"match JA3S hash"; \
ja3s.hash; content:"b26c652e0a402a24b5ca2a660e84f9d5"; \
sid:100003;)

8.19. JA3/JA4 Keywords 143

https://github.com/salesforce/ja3
https://github.com/FoxIO-LLC/ja4

Suricata User Guide, Release 8.0.0

ja3s.hash is a 'sticky buffer'.

ja3s.hash can be used as fast_pattern.

8.19.4 ja3s.string

Match on JA3S string.

Example:

alert tls any any -> any any (msg:"match on JA3S string"; \
ja3s.string; content:"771,23-35"; sid:100004;)

ja3s.string is a 'sticky buffer'.

ja3s.string can be used as fast_pattern.

8.19.5 ja4.hash

Match on JA4 hash (e.g. q13d0310h3_55b375c5d22e_cd85d2d88918).

Example:

alert quic any any -> any any (msg:"match JA4 hash"; \
ja4.hash; content:"q13d0310h3_55b375c5d22e_cd85d2d88918"; \
sid:100001;)

ja4.hash is a 'sticky buffer'.

ja4.hash can be used as fast_pattern.

8.20 Modbus Keyword

The modbus keyword can be used for matching on various properties of Modbus requests.

There are three ways of using this keyword:

• matching on functions properties with the setting "function";

• matching on directly on data access with the setting "access";

• matching on unit identifier with the setting "unit" only or with the previous setting "function" or "access".

With the setting function, you can match on:

• an action based on a function code field and a sub-function code when applicable;

• one of three categories of Modbus functions;

• public functions that are publicly defined (setting "public")

• user-defined functions (setting "user")

• reserved functions that are dedicated to proprietary extensions of Modbus (keyword "reserved")

• one of the two sub-groups of public functions:

– assigned functions whose definition is already given in the Modbus specification (keyword "assigned");

– unassigned functions, which are reserved for future use (keyword "unassigned").

144 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Syntax:

modbus: function <value>
modbus: function <value>, subfunction <value>
modbus: function [!] <assigned | unassigned | public | user | reserved | all>

Sign '!' is negation

Examples:

modbus: function 21 # Write File record function
modbus: function 4, subfunction 4 # Force Listen Only Mode (Diagnostics) function
modbus: function assigned # defined by Modbus Application Protocol␣
→˓Specification V1.1b3
modbus: function public # validated by the Modbus.org community
modbus: function user # internal use and not supported by the specification
modbus: function reserved # used by some companies for legacy products and not␣
→˓available for public use
modbus: function !reserved # every function but reserved function

With the access setting, you can match on:

• a type of data access (read or write);

• one of primary tables access (Discretes Input, Coils, Input Registers and Holding Registers);

• a range of addresses access;

• a written value.

Syntax:

modbus: access <read | write>
modbus: access read <discretes | coils | input | holding>
modbus: access read <discretes | coils | input | holding>, address <value>
modbus: access write < coils | holding>
modbus: access write < coils | holding>, address <value>
modbus: access write < coils | holding>, address <value>, value <value>

With _<value>_ setting matches on the address or value as it is being accessed or written as follows:

address 100 # exactly address 100
address 100<>200 # greater than address 100 and smaller than address 200
address >100 # greater than address 100
address <100 # smaller than address 100

Examples:

modbus: access read # Read access
modbus: access write # Write access
modbus: access read input # Read access to Discretes Input␣
→˓table
modbus: access write coils # Write access to Coils table
modbus: access read discretes, address <100 # Read access at address smaller␣
→˓than 100 of Discretes Input table
modbus: access write holding, address 500, value >200 # Write value greater than 200 at␣
→˓address 500 of Holding Registers table

8.20. Modbus Keyword 145

Suricata User Guide, Release 8.0.0

With the setting unit, you can match on:

• a MODBUS slave address of a remote device connected on the sub-network behind a bridge or a gateway. The
destination IP address identifies the bridge itself and the bridge uses the MODBUS unit identifier to forward the
request to the right slave device.

Syntax:

modbus: unit <value>
modbus: unit <value>, function <value>
modbus: unit <value>, function <value>, subfunction <value>
modbus: unit <value>, function [!] <assigned | unassigned | public | user | reserved |␣
→˓all>
modbus: unit <value>, access <read | write>
modbus: unit <value>, access read <discretes | coils | input | holding>
modbus: unit <value>, access read <discretes | coils | input | holding>, address <value>
modbus: unit <value>, access write < coils | holding>
modbus: unit <value>, access write < coils | holding>, address <value>
modbus: unit <value>, access write < coils | holding>, address <value>, value <value>

With _<value>_ setting matches on the address or value as it is being accessed or written as follows:

unit 10 # exactly unit identifier 10
unit 10<>20 # greater than unit identifier 10 and smaller than unit identifier 20
unit >10 # greater than unit identifier 10
unit <10 # smaller than unit identifier 10

Examples:

modbus: unit 10 # Unit identifier␣
→˓10
modbus: unit 10, function 21 # Unit identifier␣
→˓10 and write File record function
modbus: unit 10, function 4, subfunction 4 # Unit identifier␣
→˓10 and force Listen Only Mode (Diagnostics) function
modbus: unit 10, function assigned # Unit identifier␣
→˓10 and assigned function
modbus: unit 10, function !reserved # Unit identifier␣
→˓10 and every function but reserved function
modbus: unit 10, access read # Unit identifier␣
→˓10 and Read access
modbus: unit 10, access write coils # Unit identifier␣
→˓10 and Write access to Coils table
modbus: unit >10, access read discretes, address <100 # Greater than␣
→˓unit identifier 10 and Read access at address smaller than 100 of Discretes Input table
modbus: unit 10<>20, access write holding, address 500, value >200 # Greater than␣
→˓unit identifier 10 and smaller than unit identifier 20 and Write value greater than␣
→˓200 at address 500 of Holding Registers table

(cf. http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf)

Note: Address of read and write are starting at 1. So if your system is using a start at 0, you need to add 1 the address
values.

Note: According to MODBUS Messaging on TCP/IP Implementation Guide V1.0b, it is recommended to keep the
TCP connection opened with a remote device and not to open and close it for each MODBUS/TCP transaction. In that
case, it is important to set the depth of the stream reassembling as unlimited (stream.reassembly.depth: 0)

146 Chapter 8. Suricata Rules

http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf

Suricata User Guide, Release 8.0.0

Note: According to MODBUS Messaging on TCP/IP Implementation Guide V1.0b, the MODBUS slave device ad-
dresses on serial line are assigned from 1 to 247 (decimal). Address 0 is used as broadcast address.

(cf. http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf)

Paper and presentation (in french) on Modbus support are available : http://www.ssi.gouv.fr/agence/publication/
detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/

8.21 DCERPC Keywords

Following keywords can be used for matching on fields in headers and payloads of DCERPC packets over UDP, TCP
and SMB.

8.21.1 dcerpc.iface

Match on the value of the interface UUID in a DCERPC header. If any_frag option is given, the match shall be done
on all fragments. If it's not, the match shall only happen on the first fragment.

The format of the keyword:

dcerpc.iface:<uuid>;
dcerpc.iface:<uuid>,[>,<,!,=]<iface_version>;
dcerpc.iface:<uuid>,any_frag;
dcerpc.iface:<uuid>,[>,<,!,=]<iface_version>,any_frag;

Examples:

dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003;
dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003,!10;
dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003,any_frag;
dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003,>1,any_frag;

ET Open rule example:

alert tcp any any -> $HOME_NET any (msg:"ET NETBIOS DCERPC WMI Remote Process Execution";
flow:to_server,established; dce_iface:00000143-0000-0000-c000-000000000046; classtype:bad-unknown;
sid:2027167; rev:1; metadata:affected_product Windows_XP_Vista_7_8_10_Server_32_64_Bit, attack_target
Client_Endpoint, created_at 2019_04_09, deployment Internal, former_category NETBIOS, signature_severity
Informational, updated_at 2019_04_09;)

8.21.2 dcerpc.opnum

Match on one or many operation numbers and/or operation number range within the interface in a DCERPC header.

The format of the keyword:

dcerpc.opnum:<u16>;
dcerpc.opnum:[>,<,!,=]<u16>;
dcerpc.opnum:<u16>,<u16>,<u16>....;
dcerpc.opnum:<u16>-<u16>;

Examples:

8.21. DCERPC Keywords 147

http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
http://www.ssi.gouv.fr/agence/publication/detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/
http://www.ssi.gouv.fr/agence/publication/detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/

Suricata User Guide, Release 8.0.0

dcerpc.opnum:15;
dcerpc.opnum:>10;
dcerpc.opnum:12,24,62,61;
dcerpc.opnum:12,18-24,5;
dcerpc.opnum:12-14,12,121,62-78;

8.21.3 dcerpc.stub_data

Match on the stub data in a given DCERPC packet. It is a 'sticky buffer'.

Example:

dcerpc.stub_data; content:"123456";

8.21.4 Additional information

More information on the protocol can be found here:

• DCERPC: https://pubs.opengroup.org/onlinepubs/9629399/chap1.htm

8.22 DHCP keywords

8.22.1 dhcp.leasetime

DHCP lease time (integer).

dhcp.leasetime uses an unsigned 64-bit integer.

Syntax:

dhcp.leasetime:[op]<number>

The time can be matched exactly, or compared using the _op_ setting:

dhcp.leasetime:3 # exactly 3
dhcp.leasetime:<3 # smaller than 3
dhcp.leasetime:>=2 # greater or equal than 2

Signature example:

alert dhcp any any -> any any (msg:"small DHCP lease time (<3)"; dhcp.leasetime:<3;␣
→˓sid:1; rev:1;)

148 Chapter 8. Suricata Rules

https://pubs.opengroup.org/onlinepubs/9629399/chap1.htm

Suricata User Guide, Release 8.0.0

8.22.2 dhcp.rebinding_time

DHCP rebinding time (integer).

dhcp.rebinding_time uses an unsigned 64-bit integer.

Syntax:

dhcp.rebinding_time:[op]<number>

The time can be matched exactly, or compared using the _op_ setting:

dhcp.rebinding_time:3 # exactly 3
dhcp.rebinding_time:<3 # smaller than 3
dhcp.rebinding_time:>=2 # greater or equal than 2

Signature example:

alert dhcp any any -> any any (msg:"small DHCP rebinding time (<3)"; dhcp.rebinding_time:
→˓<3; sid:1; rev:1;)

8.22.3 dhcp.renewal_time

DHCP renewal time (integer).

dhcp.renewal_time uses an unsigned 64-bit integer.

Syntax:

dhcp.renewal_time:[op]<number>

The time can be matched exactly, or compared using the _op_ setting:

dhcp.renewal_time:3 # exactly 3
dhcp.renewal_time:<3 # smaller than 3
dhcp.renewal_time:>=2 # greater or equal than 2

Signature example:

alert dhcp any any -> any any (msg:"small DHCP renewal time (<3)"; dhcp.renewal_time:<3;␣
→˓sid:1; rev:1;)

8.23 DNP3 Keywords

The DNP3 keywords can be used to match on fields in decoded DNP3 messages. The keywords are based on Snort's
DNP3 keywords and aim to be 100% compatible.

8.23. DNP3 Keywords 149

Suricata User Guide, Release 8.0.0

8.23.1 dnp3_func

This keyword will match on the application function code found in DNP3 request and responses. It can be specified as
the integer value or the symbolic name of the function code.

Syntax

dnp3_func:<value>;

Where value is one of:

• An integer value between 0 and 255 inclusive.

• Function code name:

– confirm

– read

– write

– select

– operate

– direct_operate

– direct_operate_nr

– immed_freeze

– immed_freeze_nr

– freeze_clear

– freeze_clear_nr

– freeze_at_time

– freeze_at_time_nr

– cold_restart

– warm_restart

– initialize_data

– initialize_appl

– start_appl

– stop_appl

– save_config

– enable_unsolicited

– disable_unsolicited

– assign_class

– delay_measure

– record_current_time

– open_file

150 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

– close_file

– delete_file

– get_file_info

– authenticate_file

– abort_file

– activate_config

– authenticate_req

– authenticate_err

– response

– unsolicited_response

– authenticate_resp

8.23.2 dnp3_ind

This keyword matches on the DNP3 internal indicator flags in the response application header.

Syntax

dnp3_ind:<flag>{,<flag>...}

Where flag is the name of the internal indicator:

• all_stations

• class_1_events

• class_2_events

• class_3_events

• need_time

• local_control

• device_trouble

• device_restart

• no_func_code_support

• object_unknown

• parameter_error

• event_buffer_overflow

• already_executing

• config_corrupt

• reserved_2

• reserved_1

This keyword will match of any of the flags listed are set. To match on multiple flags (AND type match), use dnp3_ind
for each flag that must be set.

8.23. DNP3 Keywords 151

Suricata User Guide, Release 8.0.0

Examples

dnp3_ind:all_stations;

dnp3_ind:class_1_events,class_2_events;

8.23.3 dnp3_obj

This keyword matches on the DNP3 application data objects.

Syntax

dnp3_obj:<group>,<variation>

Where <group> and <variation> are integer values between 0 and 255 inclusive.

8.23.4 dnp3_data

This keyword will cause the following content options to match on the re-assembled application buffer. The reassembled
application buffer is a DNP3 fragment with CRCs removed (which occur every 16 bytes), and will be the complete
fragment, possibly reassembled from multiple DNP3 link layer frames.

Syntax

dnp3_data;

Example

dnp3_data; content:"|c3 06|";

8.24 ENIP/CIP Keywords

8.24.1 enip_command

For the ENIP command, we are matching against the command field found in the ENIP encapsulation.

Examples:

enip_command:99;
enip_command:list_identity;

enip_command uses an unsigned 16-bits integer. It can also be specified by text from the enumeration.

152 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.24.2 cip_service

For the CIP Service, we use a maximum of 3 comma separated values representing the Service, Class and Attribute.
These values are described in the CIP specification. CIP Classes are associated with their Service, and CIP Attributes
are associated with their Service. If you only need to match up until the Service, then only provide the Service value.
If you want to match to the CIP Attribute, then you must provide all 3 values.

Examples:

cip_service:75
cip_service:16,246,6

(cf. http://read.pudn.com/downloads166/ebook/763211/EIP-CIP-V1-1.0.pdf)

Information on the protocol can be found here: http://literature.rockwellautomation.com/idc/groups/literature/
documents/wp/enet-wp001_-en-p.pdf

8.24.3 enip.status

For the ENIP status, we are matching against the status field found in the ENIP encapsulation. It uses a 32-bit unsigned
integer as value.

enip.status uses an unsigned 32-bits integer. It can also be specified by text from the enumeration.

Examples:

enip.status:100;
enip.status:>106;
enip.status:invalid_cmd;

8.24.4 enip.protocol_version

Match on the protocol version in different messages. It uses a 16-bit unsigned integer as value.

enip.protocol_version uses an unsigned 16-bits integer.

Examples:

enip.protocol_version:1;
enip.protocol_version:>1;

8.24.5 enip.cip_attribute

Match on the cip attribute in different messages. It uses a 32-bit unsigned integer as value.

This allows to match without needing to match on cip.service.

enip.cip_attribute uses an unsigned 32-bits integer.

Examples:

enip.cip_attribute:1;
enip.cip_attribute:>1;

8.24. ENIP/CIP Keywords 153

http://read.pudn.com/downloads166/ebook/763211/EIP-CIP-V1-1.0.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-wp001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-wp001_-en-p.pdf

Suricata User Guide, Release 8.0.0

8.24.6 enip.cip_instance

Match on the cip instance in CIP request path. It uses a 32-bit unsigned integer as value.

enip.cip_instance uses an unsigned 32-bits integer.

Examples:

enip.cip_instance:1;
enip.cip_instance:>1;

8.24.7 enip.cip_class

Match on the cip class in CIP request path. It uses a 32-bit unsigned integer as value.

enip.cip_class uses an unsigned 32-bits integer.

This allows to match without needing to match on cip.service.

Examples:

enip.cip_class:1;
enip.cip_class:>1;

8.24.8 enip.cip_extendedstatus

Match on the cip extended status, if any is present. For multiple service packet, will match on any of the seen statuses.
It uses a 16-bit unsigned integer as value.

enip.cip_extendedstatus uses an unsigned 16-bits integer.

Examples:

enip.cip_extendedstatus:1;
enip.cip_extendedstatus:>1;

8.24.9 enip.revision

Match on the revision in identity message. It uses a 16-bit unsigned integer as value.

enip.revision uses an unsigned 16-bits integer.

Examples:

enip.revision:1;
enip.revision:>1;

154 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.24.10 enip.identity_status

Match on the status in identity message (not in ENIP header). It uses a 16-bit unsigned integer as value.

enip.identity_status uses an unsigned 16-bits integer.

Examples:

enip.identity_status:1;
enip.identity_status:>1;

8.24.11 enip.state

Match on the state in identity message. It uses an 8-bit unsigned integer as value.

enip.state uses an unsigned 8-bits integer.

Examples:

enip.state:1;
enip.state:>1;

8.24.12 enip.serial

Match on the serial in identity message. It uses a 32-bit unsigned integer as value.

enip.serial uses an unsigned 32-bits integer.

Examples:

enip.serial:1;
enip.serial:>1;

8.24.13 enip.product_code

Match on the product code in identity message. It uses a 16-bit unsigned integer as value.

enip.product_code uses an unsigned 16-bits integer.

Examples:

enip.product_code:1;
enip.product_code:>1;

8.24.14 enip.device_type

Match on the device type in identity message. It uses a 16-bit unsigned integer as value.

enip.device_type uses an unsigned 16-bits integer.

Examples:

enip.device_type:1;
enip.device_type:>1;

8.24. ENIP/CIP Keywords 155

Suricata User Guide, Release 8.0.0

8.24.15 enip.vendor_id

Match on the vendor id in identity message. It uses a 16-bit unsigned integer as value.

enip.vendor_id uses an unsigned 16-bits integer.

Examples:

enip.vendor_id:1;
enip.vendor_id:>1;

8.24.16 enip.product_name

Match on the product name in identity message.

Examples:

enip.product_name; pcre:"/^123[0-9]*/";
enip.product_name; content:"swordfish";

enip.product_name is a 'sticky buffer' and can be used as fast_pattern.

8.24.17 enip.service_name

Match on the service name in list services message.

Examples:

enip.service_name; pcre:"/^123[0-9]*/";
enip.service_name; content:"swordfish";

enip.service_name is a 'sticky buffer' and can be used as fast_pattern.

8.24.18 enip.capabilities

Match on the capabilities in list services message. It uses a 16-bit unsigned integer as value.

enip.capabilities uses an unsigned 16-bits integer.

Examples:

enip.capabilities:1;
enip.capabilities:>1;

8.24.19 enip.cip_status

Match on the cip status (one of them in case of multiple service packet). It uses an 8-bit unsigned integer as value.

enip.cip_status uses an unsigned 8-bits integer.

Examples:

enip.cip_status:1;
enip.cip_status:>1;

156 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.25 FTP/FTP-DATA Keywords

8.25.1 ftpdata_command

Filter ftp-data channel based on command used on the FTP command channel. Currently supported commands are
RETR (get on a file) and STOR (put on a file).

Syntax:

ftpdata_command:(retr|stor)

Signature Example:

alert ftp-data any any -> any any (msg:"FTP store password"; filestore; filename:"password"; ftpdata_command:stor;
sid:3; rev:1;)

8.25.2 ftpbounce

Detect FTP bounce attacks.

Syntax:

ftpbounce

8.25.3 file.name

The file.name keyword can be used at the FTP application level.

Signature Example:

alert ftp-data any any -> any any (msg:"FTP file.name usage"; file.name; content:"file.txt"; classtype:bad-unknown;
sid:1; rev:1;)

For additional information on the file.name keyword, see File Keywords.

8.25.4 ftp.command

This keyword matches on the command name from an FTP client request. ftp.command is a sticky buffer and can be
used as a fast pattern.

Syntax:

ftp.command; content: <command>;

Signature Example:

alert ftp any any -> any any (ftp.command; content:"PASS"; sid: 1;)

Examples of commands are:

• USER

• PASS

• PORT

• EPRT

8.25. FTP/FTP-DATA Keywords 157

Suricata User Guide, Release 8.0.0

• PASV

• RETR

8.25.5 ftp.command_data

This keyword matches on the command data from a FTP client request. ftp.command_data is a sticky buffer and can
be used as a fast pattern.

Syntax:

ftp.command_data; content: <command_data>;

Signature Example:

alert ftp any any -> any any (ftp.command_data; content:"anonymous"; sid: 1;)

The ftp.command_data matches the data associated with an FTP command. Consider the following FTP command
examples:

USER anonymous
RETR temp.txt
PORT 192,168,0,13,234,10

Example rules for each of the preceding FTP commands and command data.

alert ftp any any -> any any (ftp.command; content: "USER"; ftp.command_data; content:"anonymous"; sid: 1;)

alert ftp any any -> any any (ftp.command_data; content:"anonymous"; sid: 1;)

alert ftp any any -> any any (ftp.command_data; content:"temp.txt"; sid: 2;)

alert ftp any any -> any any (ftp.command_data; content:"192,168,0,13,234,10"; sid: 3;)

8.25.6 ftp.completion_code

This keyword matches on an FTP completion code string. Note that there may be multiple reply strings for an FTP
command and hence, multiple completion code values to check. ftp.completion_code is a sticky buffer and can be
used as a fast pattern. Do not include the response string in the content to match upon (see examples).

Syntax:

ftp.completion_code; content: <quoted-completion-code>;

Signature Example:

alert ftp any any -> any any (ftp.completion_code; content:"226"; sid: 1;)

Note: FTP commands can return multiple reply strings. Specify a single completion code for each ftp.
completion_code keyword.

This example shows an FTP command (RETR) followed by an FTP reply with multiple response strings.

RETR temp.txt
150 Opening BINARY mode data connection for temp.txt (1164 bytes).
226 Transfer complete.

158 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Because there are multiple completion codes and responses, the rule can match on ftp.reply and the ftp.
completion_code. Suricata cannot guarantee that these come from the same response, however.

Signature Examples:

alert ftp any any -> any any (ftp.reply; content:"Opening BINARY mode data connection for temp.";
ftp.completion_code; content: "150"; sid: 1;)

alert ftp any any -> any any (ftp.completion_code; content: "226"; sid: 2;)

alert ftp any any -> any any (ftp.reply; content: "Transfer complete."; ftp.completion_code; content: "226"; sid: 3;)

8.25.7 ftp.dynamic_port

This keyword matches on the dynamic port negotiated during an FTP session with the following FTP commands:

• IPv4: PORT and EPRT

• IPv6: PASV and EPSV

Syntax:

ftp.dynamic_port: <port-spec>;

port-spec can be one of the following:

• > (greater than)

• < (less than)

• >= (greater than or equal)

• <= (less than or equal)

• arg1-arg2 (exclusive range)

Signature Example:

alert ftp any any -> any any (ftp.dynamic_port: 59914; sid: 1;)

These rules are will also alert on port 59914:

alert ftp any any -> any any (ftp.dynamic_port: 59913-59915; sid: 1;)

alert ftp any any -> any any (ftp.dynamic_port: =59914; sid: 1;)

Example rules combining ftp.dynamic_port with ftp.command

alert ftp any any -> any any (ftp.command; content: "PORT"; ftp.dynamic_port: 59914; sid: 1;)

alert ftp any any -> any any (ftp.command; content: "EPSV"; ftp.dynamic_port: 58612; sid: 1;)

8.25.8 ftp.mode

This keyword matches on whether the FTP session is dynamic or passive. In active mode sessions, the server establishes
the data channel. In passive mode, the client establishes the data channel. Active mode sessions are established in part
with the PORT (EPRT for IPv6) command; passive mode sessions use PASV (EPSV for IPv6).

Syntax:

ftp.mode: active|passive;

8.25. FTP/FTP-DATA Keywords 159

Suricata User Guide, Release 8.0.0

Signature Example:

alert ftp any any -> any any (ftp.mode: active; sid: 1;)

alert ftp any any -> any any (ftp.mode: passive; sid: 1;)

Example rules combining ftp.command with ftp.mode

alert ftp any any -> any any (ftp.command; content: "PORT"; ftp.mode: active; sid:1;)

alert ftp any any -> any any (ftp.command; content: "PASV"; ftp.mode: passive; sid:1;)

8.25.9 ftp.reply

This keyword matches on an FTP reply string. Note that there may be multiple reply strings for an FTP command.
ftp.reply is a sticky buffer and can be used as a fast pattern. Do not include the completion code in the content to
match upon (see examples).

Syntax:

ftp.reply; content: <reply-string>;

Note: FTP commands can return multiple reply strings. Specify a single reply for each ftp.reply keyword.

This example shows an FTP command (RETR) followed by an FTP reply with multiple response strings.

RETR temp.txt
150 Opening BINARY mode data connection for temp.txt (1164 bytes).
226 Transfer complete.

Signature Example:

alert ftp any any -> any any (ftp.reply; content:"Please specify the password."; sid: 1;)

alert ftp any any -> any any (ftp.reply; content:"Opening BINARY mode data connection for temp."; sid: 1;)

alert ftp any any -> any any (ftp.reply; content:"Transfer complete."; sid: 2;)

8.25.10 ftp.reply_received

This keyword matches on whether an FTP reply string was received. EVE logs with the FTP event_type include a field
named reply_received. Use this keyword to alert when a reply is (is not) received. ftp.reply_received is not a
sticky buffer and uses a different syntax to express its value.

Note: Specify the match value without using quotes, e.g., use yes instead of "yes".

Syntax:

ftp.reply_received: yes|on|true|1|no|off|false|0;

Signature Example:

alert ftp any any -> any any (ftp.reply_received: yes; sid: 1;)

alert ftp any any -> any any (ftp.reply_received: no; sid: 1;)

160 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.26 Kerberos Keywords

8.26.1 krb5_msg_type

This keyword allows to match the Kerberos messages by its type (integer). It is possible to specify the following values
defined in RFC4120:

• 10 (AS-REQ)

• 11 (AS-REP)

• 12 (TGS-REQ)

• 13 (TGS-REP)

• 30 (ERROR)

Syntax:

krb5_msg_type:<number>

Signature examples:

alert krb5 any any -> any any (msg:"Kerberos 5 AS-REQ message"; krb5_msg_type:10; sid:3;␣
→˓rev:1;)
alert krb5 any any -> any any (msg:"Kerberos 5 AS-REP message"; krb5_msg_type:11; sid:4;␣
→˓rev:1;)
alert krb5 any any -> any any (msg:"Kerberos 5 TGS-REQ message"; krb5_msg_type:12; sid:5;
→˓ rev:1;)
alert krb5 any any -> any any (msg:"Kerberos 5 TGS-REP message"; krb5_msg_type:13; sid:6;
→˓ rev:1;)
alert krb5 any any -> any any (msg:"Kerberos 5 ERROR message"; krb5_msg_type:30; sid:7;␣
→˓rev:1;)

Note: AP-REQ and AP-REP are not currently supported since those messages are embedded in other application
protocols.

8.26.2 krb5_cname

Kerberos client name, provided in the ticket (for AS-REQ and TGS-REQ messages).

If the client name from the Kerberos message is composed of several parts, the name is compared to each part and the
match will succeed if any is identical.

Comparison is case-sensitive.

Syntax:

krb5_cname; content:"name";

Signature example:

alert krb5 any any -> any any (msg:"Kerberos 5 des server name"; krb5_cname; content:"des
→˓"; sid:4; rev:1;)

8.26. Kerberos Keywords 161

Suricata User Guide, Release 8.0.0

krb5_cname is a 'sticky buffer'.

krb5_cname can be used as fast_pattern.

krb5.cname supports multiple buffer matching, see Multiple Buffer Matching.

8.26.3 krb5_sname

Kerberos server name, provided in the ticket (for AS-REQ and TGS-REQ messages) or in the error message.

If the server name from the Kerberos message is composed of several parts, the name is compared to each part and the
match will succeed if any is identical.

Comparison is case-sensitive.

Syntax:

krb5_sname; content:"name";

Signature example:

alert krb5 any any -> any any (msg:"Kerberos 5 krbtgt server name"; krb5_sname; content:
→˓"krbtgt"; sid:5; rev:1;)

krb5_sname is a 'sticky buffer'.

krb5_sname can be used as fast_pattern.

krb5.sname supports multiple buffer matching, see Multiple Buffer Matching.

8.26.4 krb5_err_code

Kerberos error code (integer). This field is matched in Kerberos error messages only.

For a list of error codes, refer to RFC4120 section 7.5.9.

Syntax:

krb5_err_code:<number>

Signature example:

alert krb5 any any -> any any (msg:"Kerberos 5 error C_PRINCIPAL_UNKNOWN"; krb5_err_
→˓code:6; sid:6; rev:1;)

8.26.5 krb5.weak_encryption (event)

Event raised if the encryption parameters selected by the server are weak or deprecated. For example, using a key size
smaller than 128, or using deprecated ciphers like DES.

Syntax:

app-layer-event:krb5.weak_encryption

Signature example:

162 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

alert krb5 any any -> any any (msg:"SURICATA Kerberos 5 weak encryption parameters";␣
→˓flow:to_client; app-layer-event:krb5.weak_encryption; classtype:protocol-command-
→˓decode; sid:2226001; rev:1;)

8.26.6 krb5.malformed_data (event)

Event raised in case of a protocol decoding error.

Syntax:

app-layer-event:krb5.malformed_data

Signature example:

alert krb5 any any -> any any (msg:"SURICATA Kerberos 5 malformed request data"; flow:to_
→˓server; app-layer-event:krb5.malformed_data; classtype:protocol-command-decode;␣
→˓sid:2226000; rev:1;)

8.26.7 krb5.ticket_encryption

Kerberos ticket encryption (enumeration).

For a list of encryption types, refer to RFC3961 section 8.

Syntax:

krb5.ticket_encryption: (!)"weak" or (space or comma)-separated list of integer or␣
→˓string values for an encryption type

Signature example:

alert krb5 any any -> any any (krb5.ticket_encryption: weak; sid:1;)
alert krb5 any any -> any any (krb5.ticket_encryption: 23; sid:2;)
alert krb5 any any -> any any (krb5.ticket_encryption: rc4-hmac,rc4-hmac-exp; sid:3;)

8.27 SMB Keywords

SMB keywords used in both SMB1 and SMB2 protocols.

8.27.1 smb.named_pipe

Match on SMB named pipe in tree connect.

Examples:

smb.named_pipe; content:"IPC"; endswith;
smb.named_pipe; content:"strange"; nocase; pcre:"/really$/";

smb.named_pipe is a 'sticky buffer'.

smb.named_pipe can be used as fast_pattern.

8.27. SMB Keywords 163

Suricata User Guide, Release 8.0.0

8.27.2 smb.share

Match on SMB share name in tree connect.

Examples:

smb.share; content:"shared"; endswith;
smb.share; content:"strange"; nocase; pcre:"/really$/";

smb.share is a 'sticky buffer'.

smb.share can be used as fast_pattern.

8.27.3 smb.ntlmssp_user

Match on SMB ntlmssp user in session setup.

Examples:

smb.ntlmssp_user; content:"doe"; endswith;
smb.ntlmssp_user; content:"doe"; nocase; pcre:"/j(ohn|ane).*doe$/";

smb.ntlmssp_user is a 'sticky buffer'.

smb.ntlmssp_user can be used as fast_pattern.

8.27.4 smb.ntlmssp_domain

Match on SMB ntlmssp domain in session setup.

Examples:

smb.ntlmssp_domain; content:"home"; endswith;
smb.ntlmssp_domain; content:"home"; nocase; pcre:"/home(sweet)*$/";

smb.ntlmssp_domain is a 'sticky buffer'.

smb.ntlmssp_domain can be used as fast_pattern.

8.27.5 smb.version

Keyword to match on the SMB version seen in an SMB transaction.

Signature Example:

alert smb $HOME_NET any -> any any (msg:"SMBv1 version rule"; smb.version:1; sid:1;)

alert smb $HOME_NET any -> any any (msg:"SMBv2 version rule"; smb.version:2; sid:2;)

164 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Matching in transition from SMBv1 to SMBv2

In the initial protocol negotiation request, a client supporting SMBv1 and SMBv2 can send an initial SMBv1 request
and receive a SMBv2 response from server, indicating that SMBv2 will be used.

This first SMBv2 response made by the server will match as SMBv1, since the entire transaction will be considered a
SMBv1 transaction.

Will smb.version match SMBv3 traffic?

Yes, it will match SMBv3 messages using smb.version:2;, which will match SMBv2 and SMBv3, since they use the
same version identifier in the SMB header.

This keyword will use the Protocol ID specified in SMB header to determine the version. Here is a summary of the
Protocol ID codes:

• 0xffSMB is SMBv1 header

• 0xfeSMB is SMBv2 normal header (can be sync or async)

• 0xfdSMB is SMBv2 transform header. This is only valid for the SMB 3.x dialect family.

• 0xfcSMB is SMBv2 transform compression header (can be chained or unchained). These ones require the use
of the 3.1.1 dialect.

The Protocol ID in the header distinguishes only SMBv1 and SMBv2 since they are completely different protocols with
entirely different message formats, types and implementations.

On the other hand, SMBv3 is more like an extension of SMBv2. When using SMBv2 we can select one of the following
dialects for the conversation between client and server:

• 2.0.2

• 2.1

• 3.0

• 3.0.2

• 3.1.1

We say we are using SMBv3 when we select a 3.x dialect for the conversation, so you can use SMB 3.0, SMB 3.0.2
or SMB 3.1.1. The higher you choose, the more capabilities you have, but the message syntax and message command
number remains the same.

SMB version and dialect are separate components. In the case of SMBv3 for instance, the SMB version will be 2 but
the dialect will be 3.x. Dialect specification is not available currently via keyword.

8.27.6 file.name

The file.name keyword can be used at the SMB application level.

Signature Example:

alert smb any any -> any any (msg:"SMB file.name usage"; file.name; content:"file.txt"; classtype:bad-unknown; sid:1;
rev:1;)

For additional information on the file.name keyword, see File Keywords.

8.27. SMB Keywords 165

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/3c0848a6-efe9-47c2-b57a-f7e8217150b9
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/5cd64522-60b3-4f3e-a157-fe66f1228052
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/fb188936-5050-48d3-b350-dc43059638a4
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/ea4560b7-90da-4803-82b5-344754b92a79
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/d6ce2327-a4c9-4793-be66-7b5bad2175fa
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/d6ce2327-a4c9-4793-be66-7b5bad2175fa
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/aa880fe8-ebed-4409-a474-ec6e0ca0dbcb
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/793db6bb-25b4-4469-be49-a8d7045ba3a6

Suricata User Guide, Release 8.0.0

8.28 SNMP keywords

8.28.1 snmp.version

SNMP protocol version (integer). Expected values are 1, 2 (for version 2c) or 3.

snmp.version uses an, :ref:` unsigned 32-bits integer <rules-integer-keywords>`.

Syntax:

snmp.version:[op]<number>

The version can be matched exactly, or compared using the _op_ setting:

snmp.version:3 # exactly 3
snmp.version:<3 # smaller than 3
snmp.version:>=2 # greater or equal than 2

Signature example:

alert snmp any any -> any any (msg:"old SNMP version (<3)"; snmp.version:<3; sid:1;␣
→˓rev:1;)

8.28.2 snmp.community

SNMP community strings are like passwords for SNMP messages in version 1 and 2c. In version 3, the community
string is likely to be encrypted. This keyword will not match if the value is not accessible.

The default value for the read-only community string is often "public", and "private" for the read-write community
string.

Comparison is case-sensitive.

Syntax:

snmp.community; content:"private";

Signature example:

alert snmp any any -> any any (msg:"SNMP community private"; snmp.community; content:
→˓"private"; sid:2; rev:1;)

snmp.community is a 'sticky buffer'.

snmp.community can be used as fast_pattern.

166 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.28.3 snmp.usm

SNMP User-based Security Model (USM) is used in version 3. It corresponds to the user name.

Comparison is case-sensitive.

Syntax:

snmp.usm; content:"admin";

Signature example:

alert snmp any any -> any any (msg:"SNMP usm admin"; snmp.usm; content:"admin"; sid:2;␣
→˓rev:1;)

snmp.usm is a 'sticky buffer'.

snmp.usm can be used as fast_pattern.

8.28.4 snmp.pdu_type

SNMP PDU type (integer).

snmp.pdu_type uses an, :ref:` unsigned 32-bits integer <rules-integer-keywords>`.

Common values are:

• 0: GetRequest

• 1: GetNextRequest

• 2: Response

• 3: SetRequest

• 4: TrapV1 (obsolete, was the old Trap-PDU in SNMPv1)

• 5: GetBulkRequest

• 6: InformRequest

• 7: TrapV2

• 8: Report

This keyword will not match if the value is not accessible within (for ex, an encrypted SNMP v3 message).

Syntax:

snmp.pdu_type:<number>

Signature example:

alert snmp any any -> any any (msg:"SNMP response"; snmp.pdu_type:2; sid:3; rev:1;)

8.28. SNMP keywords 167

Suricata User Guide, Release 8.0.0

8.29 Base64 keywords

Suricata supports decoding base64 encoded data from buffers and matching on the decoded data.

This is achieved by using two keywords, base64_decode and base64_data. Both keywords must be used in order to
generate an alert.

8.29.1 base64_decode

Decodes base64 data from a buffer and makes it available for the base64_data function.

We recommend using the base64 transform instead -- see from_base64.

Syntax:

base64_decode:bytes <value>, offset <value>, relative;

The bytes option specifies how many bytes Suricata should decode and make available for base64_data. This number
is limited to 64KiB. The decoding will stop at the end of the buffer.

The offset option specifies how many bytes Suricata should skip before decoding. Bytes are skipped relative to the
start of the payload buffer if the relative is not set.

The relative option makes the decoding start relative to the previous content match. Default behavior is to start at
the beginning of the buffer. This option makes offset skip bytes relative to the previous match.

Note: Regarding relative and base64_decode:

The content match that you want to decode relative to must be the first match in the stream.

Note: base64_decode follows RFC 4648 by default i.e. encounter with any character that is not found in the base64
alphabet leads to rejection of that character and the rest of the string.

See Redmine Bug 5223: https://redmine.openinfosecfoundation.org/issues/5223 and RFC 4648: https://www.
rfc-editor.org/rfc/rfc4648#section-3.3

8.29.2 base64_data

base64_data is a sticky buffer.

Enables content matching on the data previously decoded by base64_decode.

8.29.3 Example

Here is an example of a rule matching on the base64 encoded string "test" that is found inside the http_uri buffer.

It starts decoding relative to the known string "somestring" with the known offset of 1. This must be the first occurrence
of "somestring" in the buffer.

Example:

168 Chapter 8. Suricata Rules

https://redmine.openinfosecfoundation.org/issues/5223
https://www.rfc-editor.org/rfc/rfc4648#section-3.3
https://www.rfc-editor.org/rfc/rfc4648#section-3.3

Suricata User Guide, Release 8.0.0

Buffer content:
http_uri = "GET /en/somestring&dGVzdAo=¬_base64"

Rule:
alert http any any -> any any (msg:"Example"; http.uri; content:"somestring"; \

base64_decode:bytes 8, offset 1, relative; \
base64_data; content:"test"; sid:10001; rev:1;)

Buffer content:
http_uri = "GET /en/somestring&dGVzdAo=¬_base64"

Rule:
alert http any any -> any any (msg:"Example"; content:"somestring"; http_uri; \

base64_decode:bytes 8, offset 1, relative; \
base64_data; content:"test"; sid:10001; rev:1;)

Note: base64_data cannot be used with fast_pattern and will result in a rule load error.

8.30 SIP Keywords

The SIP keywords are implemented as sticky buffers and can be used to match on fields in SIP messages.

As described in RFC3261, common header field names can be represented in a short form. In such cases, the header
name is normalized to its regular form to be matched by its corresponding sticky buffer.

Keyword Direction
sip.method Request
sip.uri Request
sip.request_line Request
sip.stat_code Response
sip.stat_msg Response
sip.response_line Response
sip.protocol Both
sip.from Both
sip.to Both
sip.via Both
sip.user_agent Both
sip.content_type Both
sip.content_length Both

8.30. SIP Keywords 169

Suricata User Guide, Release 8.0.0

8.30.1 sip.method

This keyword matches on the method found in a SIP request.

Syntax

sip.method; content:<method>;

Examples of methods are:

• INVITE

• BYE

• REGISTER

• CANCEL

• ACK

• OPTIONS

Examples

sip.method; content:"INVITE";

8.30.2 sip.uri

This keyword matches on the uri found in a SIP request.

Syntax

sip.uri; content:<uri>;

Where <uri> is an uri that follows the SIP URI scheme.

Examples

sip.uri; content:"sip:sip.url.org";

8.30.3 sip.request_line

This keyword forces the whole SIP request line to be inspected.

170 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Syntax

sip.request_line; content:<request_line>;

Where <request_line> is a partial or full line.

Examples

sip.request_line; content:"REGISTER sip:sip.url.org SIP/2.0"

8.30.4 sip.stat_code

This keyword matches on the status code found in a SIP response.

Syntax

sip.stat_code; content:<stat_code>

Where <status_code> belongs to one of the following groups of codes:

• 1xx - Provisional Responses

• 2xx - Successful Responses

• 3xx - Redirection Responses

• 4xx - Client Failure Responses

• 5xx - Server Failure Responses

• 6xx - Global Failure Responses

Examples

sip.stat_code; content:"100";

8.30.5 sip.stat_msg

This keyword matches on the status message found in a SIP response.

Syntax

sip.stat_msg; content:<stat_msg>

Where <stat_msg> is a reason phrase associated to a status code.

8.30. SIP Keywords 171

Suricata User Guide, Release 8.0.0

Examples

sip.stat_msg; content:"Trying";

8.30.6 sip.response_line

This keyword forces the whole SIP response line to be inspected.

Syntax

sip.response_line; content:<response_line>;

Where <response_line> is a partial or full line.

Examples

sip.response_line; content:"SIP/2.0 100 OK"

8.30.7 sip.protocol

This keyword matches the protocol field from a SIP request or response line.

If the response line is 'SIP/2.0 100 OK', then this buffer will contain 'SIP/2.0'

Syntax

sip.protocol; content:<protocol>

Where <protocol> is the SIP protocol version.

Example

sip.protocol; content:"SIP/2.0"

8.30.8 sip.from

This keyword matches on the From field that can be present in SIP headers. It matches both the regular and short forms,
though it cannot distinguish between them.

172 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Syntax

sip.from; content:<from>

Where <from> is the value of the From header.

Example

sip.from; content:"user"

8.30.9 sip.to

This keyword matches on the To field that can be present in SIP headers. It matches both the regular and short forms,
though it cannot distinguish between them.

Syntax

sip.to; content:<to>

Where <to> is the value of the To header.

Example

sip.to; content:"user"

8.30.10 sip.via

This keyword matches on the Via field that can be present in SIP headers. It matches both the regular and short forms,
though it cannot distinguish between them.

Syntax

sip.via; content:<via>

Where <via> is the value of the Via header.

Example

sip.via; content:"SIP/2.0/UDP"

8.30. SIP Keywords 173

Suricata User Guide, Release 8.0.0

8.30.11 sip.user_agent

This keyword matches on the User-Agent field that can be present in SIP headers.

Syntax

sip.user_agent; content:<user_agent>

Where <user_agent> is the value of the User-Agent header.

Example

sip.user_agent; content:"Asterisk"

8.30.12 sip.content_type

This keyword matches on the Content-Type field that can be present in SIP headers. It matches both the regular and
short forms, though it cannot distinguish between them.

Syntax

sip.content_type; content:<content_type>

Where <content_type> is the value of the Content-Type header.

Example

sip.content_type; content:"application/sdp"

8.30.13 sip.content_length

This keyword matches on the Content-Length field that can be present in SIP headers. It matches both the regular and
short forms, though it cannot distinguish between them.

Syntax

sip.content_length; content:<content_length>

Where <content_length> is the value of the Content-Length header.

174 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Example

sip.content_length; content:"200"

8.31 SDP Keywords

The SDP keywords are implemented as sticky buffers and can be used to match on fields in SDP messages.

Keyword Direction
sdp.origin Both
sdp.session_name Both
sdp.session_info Both
sdp.uri Both
sdp.email Both
sdp.connection_data Both
sdp.bandwidth Both
sdp.time Both
sdp.repeat_time Both
sdp.timezone Both
sdp.encryption_key Both
sdp.attribute Both
sdp.media.media Both
sdp.media.session_info Both
sdp.media.connection_data Both
sdp.media.encryption_key Both

8.31.1 sdp.origin

This keyword matches on the originator found in an SDP request or response.

Syntax

sdp.origin; content:<origin>;

Where <origin> is an originator that follows the SDP Origin (o=) scheme.

Examples

sdp.origin; content:"SIPPS 105015165 105015162 IN IP4 192.168.1.2";

8.31. SDP Keywords 175

Suricata User Guide, Release 8.0.0

8.31.2 sdp.session_name

This keyword matches on the session name found in an SDP request or response.

Syntax

sdp.session_name; content:<session_name>;

Where <session_name> is a name that follows the SDP Session name (s=) scheme.

Examples

sdp.session_name; content:"SIP call";

8.31.3 sdp.session_info

This keyword matches on the session information found in an SDP request or response.

Syntax

sdp.session_info; content:<session_info>;

Where <session_info> is a description that follows the SDP Session information (i=) scheme.

Examples

sdp.session_info; content:"Session Description Protocol";

8.31.4 sdp.uri

This keyword matches on the URI found in an SDP request or response.

Syntax

sdp.uri; content:<uri>;

Where <uri> is a URI (u=) that the follows the SDP scheme.

176 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Examples

sdp.uri; content:"https://www.sdp.proto"

8.31.5 sdp.email

This keyword matches on the email found in an SDP request or response.

Syntax

sdp.email; content:<email>

Where <email> is an email address (e=) that follows the SDP scheme.

Examples

sdp.email; content:"j.doe@example.com (Jane Doe)";

8.31.6 sdp.phone_number

This keyword matches on the phone number found in an SDP request or response.

Syntax

sdp.phone_number; content:<phone_number>

Where <phone_number> is a phone number (p=) that follows the SDP scheme.

Examples

sdp.phone_number; content:"+1 617 555-6011 (Jane Doe)";

8.31.7 sdp.connection_data

This keyword matches on the connection found in an SDP request or response.

8.31. SDP Keywords 177

Suricata User Guide, Release 8.0.0

Syntax

sdp.connection_data; content:<connection_data>;

Where <connection_data> is a connection (c=) that follows the SDP scheme.

Examples

sdp.connection_data; content:"IN IP4 192.168.1.2"

8.31.8 sdp.bandwidth

This keyword matches on the bandwidths found in an SDP request or response.

Syntax

sdp.bandwidth; content:<bandwidth>

Where <bandwidth> is a bandwidth (b=) that follows the SDP scheme.

Example

sdp.bandwidth; content:"AS:64"

8.31.9 sdp.time

This keyword matches on the time found in an SDP request or response.

Syntax

sdp.time; content:<time>

Where <time> is a time (t=) that follows the SDP scheme.

Example

sdp.time; content:"3034423619 3042462419"

178 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.31.10 sdp.repeat_time

This keyword matches on the repeat time found in an SDP request or response.

Syntax

sdp.repeat_time; content:<repeat_time>

Where <repeat_time> is a repeat time (r=) that follows the SDP scheme.

Example

sdp.repeat_time; content:"604800 3600 0 90000"

8.31.11 sdp.timezone

This keyword matches on the timezone found in an SDP request or response.

Syntax

sdp.timezone; content:<timezone>

Where <timezone> is a timezone (z=) that follows the SDP scheme.

Example

sdp.timezone; content:"2882844526 -1h 2898848070 0"

8.31.12 sdp.encryption_key

This keyword matches on the encryption key found in an SDP request or response.

Syntax

sdp.encryption_key; content:<encryption_key>

Where <encryption_key> is a key (k=) that follows the SDP scheme.

8.31. SDP Keywords 179

Suricata User Guide, Release 8.0.0

Example

sdp.encryption_key; content:"prompt"

8.31.13 sdp.attribute

This keyword matches on the attributes found in an SDP request or response.

Syntax

sdp.attribute; content:<attribute>

Where <attribute> is an attribute (a=) that follows the SDP scheme.

Example

sdp.attribute; content:"sendrecv"

8.31.14 sdp.media.media

This keyword matches on the Media subfield of a Media description field found in an SDP request or response.

Syntax

sdp.media.media; content:<media>

Where <media> is a media (m=) that follows the SDP scheme.

Example

sdp.media.media; content:"audio 30000 RTP/AVP 0 8 97 2 3"

8.31.15 sdp.media.session_info

This keyword matches on the Session information subfield of a Media description field found in an SDP request or
response.

180 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Syntax

sdp.media.session_info; content:<session_info>

Where <session_info> is a description (i=) that follows the SDP scheme.

Example

sdp.media.session_info; content:"Session Description Protocol"

8.31.16 sdp.media.connection_data

This keyword matches on the Connection data subfield of a Media description field found in an SDP request or response.

Syntax

sdp.media.connection_data; content:<connection_data>

Where <connection_data> is a connection (c=) that follows the SDP scheme.

Example

sdp.media.connection_data; content:"IN IP4 192.168.1.2"

8.31.17 sdp.media.encryption_key

This keyword matches on the Encryption key subfield of a Media description field found in an SDP request or response.

Syntax

sdp.media.encryption_key; content:<encryption_key>

Where <encryption_key> is a key (k=) that follows the SDP scheme.

Example

sdp.media.encryption_key; content:"prompt"

8.31. SDP Keywords 181

Suricata User Guide, Release 8.0.0

8.32 RFB Keywords

The rfb.name and rfb.sectype keywords can be used for matching on various properties of RFB (Remote Frame-
buffer, i.e. VNC) handshakes.

8.32.1 rfb.name

Match on the value of the RFB desktop name field.

Examples:

rfb.name; content:"Alice's desktop";
rfb.name; pcre:"/.* \(screen [0-9]\)$/";

rfb.name is a 'sticky buffer'.

rfb.name can be used as fast_pattern.

8.32.2 rfb.secresult

Match on the value of the RFB security result, e.g. ok, fail, toomany or unknown.

rfb.secresult uses an unsigned 32-bit integer.

Examples:

rfb.secresult: ok;
rfb.secresult: !0;
rfb.secresult: unknown;

8.32.3 rfb.sectype

Match on the value of the RFB security type field, e.g. 2 for VNC challenge-response authentication, 0 for no authen-
tication, and 30 for Apple's custom Remote Desktop authentication.

rfb.sectype uses an unsigned 32-bit integer.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

• > (greater than)

• < (less than)

• >= (greater than or equal)

• <= (less than or equal)

Examples:

rfb.sectype:2;
rfb.sectype:>=3;

182 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.32.4 Additional information

More information on the protocol can be found here: https://tools.ietf.org/html/rfc6143

8.33 MQTT Keywords

Various keywords can be used for matching on fields in fixed and variable headers of MQTT messages as well as
payload values.

8.33.1 mqtt.protocol_version

Match on the value of the MQTT protocol version field in the fixed header.

mqtt.protocol_version uses an unsigned 8-bit integer.

The format of the keyword:

mqtt.protocol_version:<min>-<max>;
mqtt.protocol_version:[<|>]<number>;
mqtt.protocol_version:<value>;

Examples:

mqtt.protocol_version:5;

8.33.2 mqtt.type

Match on the MQTT message type (also: control packet type). Valid values are :

• CONNECT

• CONNACK

• PUBLISH

• PUBACK

• PUBREC

• PUBREL

• PUBCOMP

• SUBSCRIBE

• SUBACK

• UNSUBSCRIBE

• UNSUBACK

• PINGREQ

• PINGRESP

• DISCONNECT

• AUTH

• UNASSIGNED

8.33. MQTT Keywords 183

https://tools.ietf.org/html/rfc6143

Suricata User Guide, Release 8.0.0

where UNASSIGNED refers to message type code 0.

mqtt.type uses an unsigned 8-bits integer.

Examples:

mqtt.type:CONNECT;
mqtt.type:PUBLISH;
mqtt.type:2;

8.33.3 mqtt.flags

Match on a combination of MQTT header flags, separated by commas (,). Flags may be prefixed by ! to indicate
negation, i.e. a flag prefixed by ! must not be set to match.

mqtt.flags uses an unsigned 8-bits integer

Valid flags are:

• dup (duplicate message)

• retain (message should be retained on the broker)

Examples:

mqtt.flags:dup,!retain;
mqtt.flags:retain;

8.33.4 mqtt.qos

Match on the Quality of Service request code in the MQTT fixed header. Valid values are:

• 0 (fire and forget)

• 1 (at least one delivery)

• 2 (exactly one delivery)

Examples:

mqtt.qos:0;
mqtt.qos:2;

8.33.5 mqtt.reason_code

Match on the numeric value of the reason code that is used in MQTT 5.0 for some message types. Please refer to the
specification for the meaning of these values, which are often specific to the message type in question.

mqtt.reason_code uses an unsigned 8-bits integer.

Examples:

match on attempts to unsubscribe from a non-subscribed topic
mqtt.type:UNSUBACK; mqtt.reason_code:17;

match on publications that were accepted but there were no subscribers
(continues on next page)

184 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

(continued from previous page)

mqtt.type:PUBACK; mqtt.reason_code:16;

match on connection attempts by banned clients
mqtt.CONNACK; mqtt.reason_code:138;

match on failed connection attempts due to bad credentials
mqtt.CONNACK; mqtt.reason_code:134;

match on connections terminated by server shutdowns
mqtt.DISCONNECT; mqtt.reason_code:139;

This keyword is also available under the alias mqtt.connack.return_code for completeness.

8.33.6 mqtt.connack.session_present

Match on the MQTT CONNACK session_present flag. Values can be yes, true, no or false.

Examples:

mqtt.CONNACK; mqtt.connack.session_present:true;

8.33.7 mqtt.connect.clientid

Match on the self-assigned client ID in the MQTT CONNECT message.

Examples:

mqtt.connect.clientid; pcre:"/^mosq.*/";
mqtt.connect.clientid; content:"myclient";

mqtt.connect.clientid is a 'sticky buffer' and can be used as fast_pattern.

8.33.8 mqtt.connect.flags

Match on a combination of MQTT CONNECT flags, separated by commas (,). Flags may be prefixed by ! to indicate
negation, i.e. a flag prefixed by ! must not be set to match.

mqtt.connect.flags uses an unsigned 8-bits integer

Valid flags are:

• username (message contains a username)

• password (message contains a password)

• will (message contains a will definition)

• will_retain (will should be retained on broker)

• clean_session (start with a clean session)

Examples:

8.33. MQTT Keywords 185

Suricata User Guide, Release 8.0.0

mqtt.connect.flags:username,password,!will;
mqtt.connect.flags:username,!password;
mqtt.connect.flags:clean_session;

8.33.9 mqtt.connect.password

Match on the password credential in the MQTT CONNECT message.

Examples:

mqtt.connect.password; pcre:"/^123[0-9]*/";
mqtt.connect.password; content:"swordfish";

mqtt.connect.password is a 'sticky buffer' and can be used as fast_pattern.

8.33.10 mqtt.connect.protocol_string

Match on the protocol string in the MQTT CONNECT message. In contrast to mqtt.protocol_version this is a
property that is only really relevant in the initial CONNECT communication and never used again; hence it is organized
under mqtt.connect.

Examples:

mqtt.connect.protocol_string; content:"MQTT";
mqtt.connect.protocol_string; content:"MQIsdp";

mqtt.connect.protocol_string is a 'sticky buffer' and can be used as fast_pattern.

8.33.11 mqtt.connect.username

Match on the username credential in the MQTT CONNECT message.

Examples:

mqtt.connect.username; content:"benson";

mqtt.connect.username is a 'sticky buffer' and can be used as fast_pattern.

8.33.12 mqtt.connect.willmessage

Match on the will message in the MQTT CONNECT message, if a will is defined.

Examples:

mqtt.connect.willmessage; pcre:"/^fooba[rz]/";
mqtt.connect.willmessage; content:"hunter2";

mqtt.connect.willmessage is a 'sticky buffer' and can be used as fast_pattern.

186 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.33.13 mqtt.connect.willtopic

Match on the will topic in the MQTT CONNECT message, if a will is defined.

Examples:

mqtt.connect.willtopic; pcre:"/^hunter[0-9]/";

mqtt.connect.willtopic is a 'sticky buffer' and can be used as fast_pattern.

8.33.14 mqtt.publish.message

Match on the payload to be published in the MQTT PUBLISH message.

Examples:

mqtt.type:PUBLISH; mqtt.publish.message; pcre:"/uid=[0-9]+/";
match on published JPEG images
mqtt.type:PUBLISH; mqtt.publish.message; content:"|FF D8 FF E0|"; startswith;

mqtt.publish.message is a 'sticky buffer' and can be used as fast_pattern.

8.33.15 mqtt.publish.topic

Match on the topic to be published to in the MQTT PUBLISH message.

Examples:

mqtt.publish.topic; content:"mytopic";

mqtt.publish.topic is a 'sticky buffer' and can be used as fast_pattern.

8.33.16 mqtt.subscribe.topic

Match on any of the topics subscribed to in a MQTT SUBSCRIBE message.

Examples:

mqtt.subscribe.topic; content:"mytopic";

mqtt.subscribe.topic is a 'sticky buffer' and can be used as fast_pattern.

mqtt.subscribe.topic supports multiple buffer matching, see Multiple Buffer Matching.

8.33.17 mqtt.unsubscribe.topic

Match on any of the topics unsubscribed from in a MQTT UNSUBSCRIBE message.

Examples:

mqtt.unsubscribe.topic; content:"mytopic";

mqtt.unsubscribe.topic is a 'sticky buffer' and can be used as fast_pattern.

mqtt.unsubscribe.topic supports multiple buffer matching, see Multiple Buffer Matching.

8.33. MQTT Keywords 187

Suricata User Guide, Release 8.0.0

8.33.18 Additional information

More information on the protocol can be found here:

• MQTT 3.1: https://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html

• MQTT 3.1.1: https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html

• MQTT 5.0: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

8.34 IKE Keywords

The keywords

• ike.init_spi

• ike.resp_spi

• ike.chosen_sa_attribute

• ike.exchtype

• ike.vendor

• ike.key_exchange_payload

• ike.key_exchange_payload_length

• ike.nonce_payload

• ike.nonce_payload_length

can be used for matching on various properties of IKE connections.

8.34.1 ike.init_spi, ike.resp_spi

Match on an exact value of the Security Parameter Index (SPI) for the Initiator or Responder.

Examples:

ike.init_spi; content:"18fe9b731f9f8034";
ike.resp_spi; content:"a00b8ef0902bb8ec";

ike.init_spi and ike.resp_spi are 'sticky buffer'.

ike.init_spi and ike.resp_spi can be used as fast_pattern.

8.34.2 ike.chosen_sa_attribute

Match on an attribute value of the chosen Security Association (SA) by the Responder. Supported for IKEv1
are: alg_enc, alg_hash, alg_auth, alg_dh, alg_prf, sa_group_type, sa_life_type, sa_life_duration,
sa_key_length and sa_field_size. IKEv2 supports alg_enc, alg_auth, alg_prf and alg_dh.

If there is more than one chosen SA the event MultipleServerProposal is set. The attributes of the first SA are used
for this keyword.

Examples:

188 Chapter 8. Suricata Rules

https://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

Suricata User Guide, Release 8.0.0

ike.chosen_sa_attribute:alg_hash=2;
ike.chosen_sa_attribute:sa_key_length=128;

8.34.3 ike.exchtype

Match on the value of the Exchange Type.

ike.exchtype uses an unsigned 8-bit integer.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

• > (greater than)

• < (less than)

• >= (greater than or equal)

• <= (less than or equal)

• arg1-arg2 (range)

Examples:

ike.exchtype:5;
ike.exchtype:>=2;

8.34.4 ike.vendor

Match a vendor ID against the list of collected vendor IDs.

Examples:

ike.vendor:4a131c81070358455c5728f20e95452f;

ike.vendor supports multiple buffer matching, see Multiple Buffer Matching.

8.34.5 ike.key_exchange_payload

Match against the public key exchange payload (e.g. Diffie-Hellman) of the server or client.

Examples:

ike.key_exchange_payload; content:"|6d026d5616c45be05e5b898411e9|"

ike.key_exchange_payload is a 'sticky buffer'.

ike.key_exchange_payload can be used as fast_pattern.

8.34. IKE Keywords 189

Suricata User Guide, Release 8.0.0

8.34.6 ike.key_exchange_payload_length

Match against the length of the public key exchange payload (e.g. Diffie-Hellman) of the server or client.

ike.key_exchange_payload_length uses an unsigned 32-bit integer.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

• > (greater than)

• < (less than)

• >= (greater than or equal)

• <= (less than or equal)

• arg1-arg2 (range)

Examples:

ike.key_exchange_payload_length:>132

8.34.7 ike.nonce_payload

Match against the nonce of the server or client.

Examples:

ike.nonce_payload; content:"|6d026d5616c45be05e5b898411e9|"

ike.nonce_payload is a 'sticky buffer'.

ike.nonce_payload can be used as fast_pattern.

8.34.8 ike.nonce_payload_length

Match against the length of the nonce of the server or client.

ike.nonce_payload_length uses an unsigned 32-bit integer.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

• > (greater than)

• < (less than)

• >= (greater than or equal)

• <= (less than or equal)

• arg1-arg2 (range)

Examples:

ike.nonce_payload_length:132
ike.nonce_payload_length:>132

190 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.34.9 Additional information

More information on the protocol and the data contained in it can be found here: https://tools.ietf.org/html/rfc2409

8.35 HTTP2 Keywords

HTTP2 frames are grouped into transactions based on the stream identifier it it is not 0. For frames with stream identifier
0, whose effects are global for the connection, a transaction is created for each frame.

8.35.1 Frames

The HTTP2 parser supports the following frames (as defined by Suricata) which are created for each HTTP2 frame (as
defined by the HTTP2 RFC) :

• http2.hdr

• http2.data

• http2.pdu

8.35.2 http2.frametype

Match on the frame type present in a transaction.

Examples:

http2.frametype:GOAWAY;

8.35.3 http2.errorcode

Match on the error code in a GOWAY or RST_STREAM frame

Examples:

http2.errorcode: NO_ERROR;
http2.errorcode: INADEQUATE_SECURITY;

8.35.4 http2.priority

Match on the value of the HTTP2 priority field present in a PRIORITY or HEADERS frame.

http2.priority uses an unsigned 8-bit integer.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

• > (greater than)

• < (less than)

• x-y (range between values x and y)

Examples:

8.35. HTTP2 Keywords 191

https://tools.ietf.org/html/rfc2409

Suricata User Guide, Release 8.0.0

http2.priority:2;
http2.priority:>100;
http2.priority:32-64;

8.35.5 http2.window

Match on the value of the HTTP2 value field present in a WINDOWUPDATE frame.

http2.window uses an unsigned 32-bit integer.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

• > (greater than)

• < (less than)

• x-y (range between values x and y)

Examples:

http2.window:1;
http2.window:<100000;

8.35.6 http2.size_update

Match on the size of the HTTP2 Dynamic Headers Table. More information on the protocol can be found here: https:
//tools.ietf.org/html/rfc7541#section-6.3

http2.size_update uses an unsigned 64-bit integer.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

• > (greater than)

• < (less than)

• x-y (range between values x and y)

Examples:

http2.size_update:1234;
http2.size_update:>4096;

8.35.7 http2.settings

Match on the name and value of a HTTP2 setting from a SETTINGS frame.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

• > (greater than)

• < (less than)

• x-y (range between values x and y)

Examples:

192 Chapter 8. Suricata Rules

https://tools.ietf.org/html/rfc7541#section-6.3
https://tools.ietf.org/html/rfc7541#section-6.3

Suricata User Guide, Release 8.0.0

http2.settings:SETTINGS_ENABLE_PUSH=0;
http2.settings:SETTINGS_HEADER_TABLE_SIZE>4096;

8.35.8 http2.header_name

Match on the name of a HTTP2 header from a HEADER frame (or PUSH_PROMISE or CONTINUATION).

Examples:

http2.header_name; content:"agent";

http2.header_name is a 'sticky buffer'.

http2.header_name can be used as fast_pattern.

http2.header_name supports multiple buffer matching, see Multiple Buffer Matching.

8.35.9 Additional information

More information on the protocol can be found here: https://tools.ietf.org/html/rfc7540

8.36 Quic Keywords

Suricata implements initial support for Quic by parsing the Quic version.

Suricata also derives a CYU hash for earlier versions of Quic.

Quic app-layer parsing must be enabled in the Suricata config file (set 'app-layer.protocols.quic.enabled' to 'yes').

8.36.1 quic.cyu.hash

Match on the CYU hash

Examples:

alert quic any any -> any any (msg:"QUIC CYU HASH"; \
quic.cyu.hash; content:"7b3ceb1adc974ad360cfa634e8d0a730"; \
sid:1;)

quic.cyu.hash supports multiple buffer matching, see Multiple Buffer Matching.

8.36.2 quic.cyu.string

Match on the CYU string

Examples:

alert quic any any -> any any (msg:"QUIC CYU STRING"; \
quic.cyu.string; content:"46,PAD-SNI-VER-CCS-UAID-TCID-PDMD-SMHL-ICSL-NONP-MIDS-SCLS-

→˓CSCT-COPT-IRTT-CFCW-SFCW"; \
sid:2;)

8.36. Quic Keywords 193

https://tools.ietf.org/html/rfc7540

Suricata User Guide, Release 8.0.0

quic.cyu.string supports multiple buffer matching, see Multiple Buffer Matching.

8.36.3 quic.version

Sticky buffer for matching on the Quic header version in long headers.

Examples:

alert quic any any -> any any (msg:"QUIC VERSION"; \
quic.version; content:"Q046"; \
sid:3;)

8.36.4 Additional information

More information on CYU Hash can be found here: https://engineering.salesforce.com/
gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f

More information on the protocol can be found here: https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-17

8.37 NFS Keywords

8.37.1 file.name

The file.name keyword can be used at the NFS application level.

Signature Example:

alert nfs any any -> any any (msg:"NFS file.name usage"; file.name; content:"file.txt"; classtype:bad-unknown; sid:1;
rev:1;)

For additional information on the file.name keyword, see File Keywords.

8.38 SMTP Keywords

8.38.1 file.name

The file.name keyword can be used at the SMTP application level.

Signature Example:

alert smtp any any -> any any (msg:"SMTP file.name usage"; file.name; content:"winmail.dat"; classtype:bad-
unknown; sid:1; rev:1;)

For additional information on the file.name keyword, see File Keywords.

194 Chapter 8. Suricata Rules

https://engineering.salesforce.com/gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f
https://engineering.salesforce.com/gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-17

Suricata User Guide, Release 8.0.0

8.38.2 smtp.helo

SMTP helo is the parameter passed to the first HELO command from the client. This keyword matches per transaction,
so it can match more than once per flow, even if the helo occured only once at the beginning of the flow.

Syntax:

smtp.helo; content:"localhost";

Signature example:

alert smtp any any -> any any (msg:"SMTP helo localhost"; smtp.helo; content:"localhost";
→˓ sid:2; rev:1;)

smtp.helo is a 'sticky buffer'.

smtp.helo can be used as fast_pattern.

This keyword maps to the eve.json log field smtp.helo

8.38.3 smtp.mail_from

SMTP mail from is the parameter passed to the first MAIL FROM command from the client.

Syntax:

smtp.mail_from; content:"spam";

Signature example:

alert smtp any any -> any any (msg:"SMTP mail from spam"; smtp.mail_from; content:"spam";
→˓ sid:2; rev:1;)

smtp.mail_from is a 'sticky buffer'.

smtp.mail_from can be used as fast_pattern.

This keyword maps to the eve.json log field smtp.mail_from

8.38.4 smtp.rcpt_to

SMTP rcpt to is the one of the parameters passed to one RCPT TO command from the client.

Syntax:

smtp.rcpt_to; content:"sensitive@target";

Signature example:

alert smtp any any -> any any (msg:"SMTP rcpt to sensitive"; smtp.rcpt_to; content:
→˓"sensitive@target"; sid:2; rev:1;)

smtp.rcpt_to is a 'sticky buffer'.

smtp.rcpt_to is a 'multi buffer'.

smtp.rcpt_to can be used as fast_pattern.

This keyword maps to the eve.json log field smtp.rcpt_to[]

8.38. SMTP Keywords 195

Suricata User Guide, Release 8.0.0

8.38.5 Frames

The SMTP parser supports the following frames:

• smtp.command_line

• smtp.response_line

• smtp.data

• smtp.stream

smtp.command_line

A single line from the client to the server. Multi-line commands will have a frame per line. Lines part of the SMTP
DATA transfer are excluded.

alert smtp any any -> any any (frame:smtp.command_line; content:"MAIL|20|FROM:"; startswith; sid:1;)

smtp.response_line

A single line from the server to the client. Multi-line commands will have a frame per line.

alert smtp any any -> any any (frame:smtp.response_line; content:"354 go ahead"; startswith; sid:1;)

smtp.data

A streaming buffer containing the DATA bytes sent from client to server.

alert smtp any any -> any any (frame:smtp.data; content:"Reply-To:"; startswith; content:"Subject"; distance:0; sid:1;)

smtp.stream

Streaming buffer of the entire TCP data for the SMTP session.

alert smtp any any -> any any (flow:to_client; frame:smtp.stream; content:"250 ok|0d 0a|354 go ahead"; sid:1;)

8.39 WebSocket Keywords

8.39.1 websocket.payload

A sticky buffer on the unmasked payload, limited by suricata.yaml config value websocket.max-payload-size.

Examples:

websocket.payload; pcre:"/^123[0-9]*/";
websocket.payload content:"swordfish";

websocket.payload is a 'sticky buffer' and can be used as fast_pattern.

196 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.39.2 websocket.flags

Matches on the websocket flags. It uses a 8-bit unsigned integer as value. Only the four upper bits are used.

The value can also be a list of strings (comma-separated), where each string is the name of a specific bit like fin and
comp, and can be prefixed by ! for negation.

websocket.flags uses an unsigned 8-bits integer

Examples:

websocket.flags:128;
websocket.flags:&0x40=0x40;
websocket.flags:fin,!comp;

8.39.3 websocket.mask

Matches on the websocket mask if any. It uses a 32-bit unsigned integer as value (big-endian).

websocket.mask uses an unsigned 32-bits integer

Examples:

websocket.mask:123456;
websocket.mask:>0;

8.39.4 websocket.opcode

Matches on the websocket opcode. It uses a 8-bit unsigned integer as value. Only 16 values are relevant. It can also be
specified by text from the enumeration

websocket.opcode uses an unsigned 8-bits integer

Examples:

websocket.opcode:1;
websocket.opcode:>8;
websocket.opcode:ping;

8.40 Generic App Layer Keywords

8.40.1 app-layer-protocol

Match on the detected app-layer protocol.

Syntax:

app-layer-protocol:[!]<protocol>(,<mode>);

Examples:

8.40. Generic App Layer Keywords 197

Suricata User Guide, Release 8.0.0

app-layer-protocol:ssh;
app-layer-protocol:!tls;
app-layer-protocol:failed;
app-layer-protocol:!http,final;
app-layer-protocol:http,to_server; app-layer-protocol:tls,to_client;
app-layer-protocol:http2,final; app-layer-protocol:http1,original;
app-layer-protocol:unknown;

A special value 'failed' can be used for matching on flows in which protocol detection failed. This can happen if Suricata
doesn't know the protocol or when certain 'bail out' conditions happen.

A special value 'unknown' can be used to match on a protocol being not yet known. It can not be negated.

The different modes are * direction : protocol recognized on the direction of the current packet * to_server : protocol
recognized in the direction to server * to_client : protocol recognized in the direction to client * either : tries to match
protocols found on both directions * final : final protocol chosen by Suricata for parsing * original : original protocol
(in case of protocol change)

By default, (if no mode is specified), the mode is direction.

Note: when negation is used, like !http, it will not match on the "unknown" state in the flow.

Here is an example of a rule matching non-http traffic on port 80:

alert tcp any any -> any 80 (msg:"non-HTTP traffic over HTTP standard port"; flow:to_server; app-layer-
protocol:!http,final; sid:1;)

Bail out conditions

Protocol detection gives up in several cases:

• both sides are inspected and no match was found

• side A detection failed, side B has no traffic at all (e.g. FTP data channel)

• side A detection failed, side B has so little data detection is inconclusive

In these last 2 cases the app-layer-event:applayer_proto_detection_skipped is set.

8.40.2 app-layer-event

Match on events generated by the App Layer Parsers and the protocol detection engine.

Syntax:

app-layer-event:<event name>;

Examples:

app-layer-event:applayer_mismatch_protocol_both_directions;
app-layer-event:http.gzip_decompression_failed;

198 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Protocol Detection

applayer_mismatch_protocol_both_directions

The toserver and toclient directions have different protocols. For example a client talking HTTP to a SSH server.

applayer_wrong_direction_first_data

Some protocol implementations in Suricata have a requirement with regards to the first data direction. The HTTP parser
is an example of this.

https://redmine.openinfosecfoundation.org/issues/993

applayer_detect_protocol_only_one_direction

Protocol detection only succeeded in one direction. For FTP and SMTP this is expected.

applayer_proto_detection_skipped

Protocol detection was skipped because of Bail out conditions.

8.40.3 app-layer-state

Match on the detected app-layer protocol transaction state.

Syntax:

app-layer-state:[<>]<state>;

Examples:

app-layer-state:request_headers;
app-layer-state:>request_body;

8.41 Generic Decode Layer Keywords

8.41.1 decode-event

Match on events generated by the decode layer. Decode events are generated during the packet decoding phase that
indicate structural or invalid values for the Ethernet and layer 2 and layer 3 protocol data.

Syntax:

decode-event:<event name>;

Examples:

decode-event:ipv4.opt_duplicate
decode-event:ethernet.unknown_ethertype

8.41. Generic Decode Layer Keywords 199

https://redmine.openinfosecfoundation.org/issues/993

Suricata User Guide, Release 8.0.0

Decode Events

ethernet.unknown_ethertype

The ethertype value was not recognized by Suricata. Suricata recognizes the following ethertype values:

ETHERNET_TYPE_IP
ETHERNET_TYPE_IPV6
ETHERNET_TYPE_VLAN
ETHERNET_TYPE_8021QINQ
ETHERNET_TYPE_8021AD
ETHERNET_TYPE_8021AH
ETHERNET_TYPE_ARP
ETHERNET_TYPE_MPLS_UNICAST
ETHERNET_TYPE_MPLS_MULTICAST
ETHERNET_TYPE_DCE
ETHERNET_TYPE_VNTAG
ETHERNET_TYPE_NSH
ETHERNET_TYPE_PPOE_SESS
ETHERNET_TYPE_PPOE_DISC

8.42 Xbits Keyword

Set, unset, toggle and check for bits stored per host or ip_pair.

Syntax:

xbits:<set|unset|isset|isnotset|toggle>,<name>,track <ip_src|ip_dst|ip_pair>;
xbits:<set|unset|isset|toggle>,<name>,track <ip_src|ip_dst|ip_pair> \

[,expire <seconds>];
xbits:<set|unset|isset|toggle>,<name>,track <ip_src|ip_dst|ip_pair> \

[,expire <seconds>];

8.42.1 Notes

• No difference between using hostbits and xbits with track ip_<src|dst>

• If you set on a client request and use track ip_dst, if you want to match on the server response, you check it
(isset) with track ip_src.

• To not alert, use noalert;

• the toggle option will flip the value of the xbits.

• See also:

– https://blog.inliniac.net/2014/12/21/crossing-the-streams-in-suricata/

– http://www.cipherdyne.org/blog/2013/07/crossing-the-streams-in-ids-signature-languages.html

200 Chapter 8. Suricata Rules

https://blog.inliniac.net/2014/12/21/crossing-the-streams-in-suricata/
http://www.cipherdyne.org/blog/2013/07/crossing-the-streams-in-ids-signature-languages.html

Suricata User Guide, Release 8.0.0

YAML settings

Bits that are stored per host are stored in the Host table. This means that host table settings affect hostsbits and xbits
per host.

Bits that are stored per IP pair are stored in the IPPair table. This means that ippair table settings, especially memcap,
affect xbits per ip_pair.

Threading

Due to subtle timing issues between threads the order of sets and checks can be slightly unpredictable.

Unix Socket

Hostbits can be added, removed and listed through the unix socket.

Add:

suricatasc -c "add-hostbit <ip> <bit name> <expire in seconds>"
suricatasc -c "add-hostbit 1.2.3.4 blacklist 3600"

If a hostbit is added for an existing hostbit, it's expiry timer is updated.

Remove:

suricatasc -c "remove-hostbit <ip> <bit name>"
suricatasc -c "remove-hostbit 1.2.3.4 blacklist"

List:

suricatasc -c "list-hostbit <ip>"
suricatasc -c "list-hostbit 1.2.3.4"

This results in:

{
"message":
{

"count": 1,
"hostbits":

[{
"expire": 89,
"name": "blacklist"

}]
},
"return": "OK"

}

8.42. Xbits Keyword 201

Suricata User Guide, Release 8.0.0

Examples

Creating a SSH blacklist

Below is an example of rules incoming to a SSH server.

The first 2 rules match on a SSH software version often used in bots. They drop the traffic and create an 'xbit' 'badssh'
for the source ip. It expires in an hour:

drop ssh any any -> $MYSERVER 22 (msg:"DROP libssh incoming"; \
flow:to_server,established; ssh.software; content:"libssh"; \
xbits:set, badssh, track ip_src, expire 3600; sid:4000000005;)

drop ssh any any -> $MYSERVER 22 (msg:"DROP PUTTY incoming"; \
flow:to_server,established; ssh.software; content:"PUTTY"; \
xbits:set, badssh, track ip_src, expire 3600; sid:4000000007;)

Then the following rule simply drops any incoming traffic to that server that is on that 'badssh' list:

drop ssh any any -> $MYSERVER 22 (msg:"DROP BLACKLISTED"; \
xbits:isset, badssh, track ip_src; sid:4000000006;)

8.43 Alert Keywords

In addition to the action, alerting behavior can be controlled in the rule body using the noalert and alert keywords.
Additionally, alerting behavior is controlled by Thresholding Keywords.

8.43.1 noalert

A rule that specifies noalert will not generate an alert when it matches, but rule actions will still be performed.

noalert is often used in rules that set a flowbit for common patterns.

noalert is meant for use with rule actions alert, drop, reject that all explicitly or implicitly include alert.

alert http any any -> any any (http.user_agent; content:"Mozilla/5.0"; startwith; endswith; flowbits:set,mozilla-ua;
noalert; sid:1;)

This example sets a flowbit "mozilla-ua" on matching, but does not generate an alert due to the presence of noalert.

Note: this option is also used as flowbits:noalert;, see Flow Keywords

8.43.2 alert

A rule that specifies alert will generate an alert, even if the rule action doesn't imply alerting.

This keyword can be used to implement an "alert then pass"-logic.

pass http any any -> any any (http.user_agent; content:"Mozilla/5.0"; startwith; endswith; alert; sid:1;)

This example would pass the rest of the HTTP flow with the Mozilla/5.0 user-agent, generating an alert for the "pass"
event.

202 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.44 Thresholding Keywords

Thresholding can be configured per rule and also globally, see Global-Thresholds.

Thresholds are tracked in a hash table that is sized according to configuration, see: Thresholding Settings.

IMPORTANT for both threshold and detection_filter keywords

Note: Rules that contain flowbits, flowints, etc will still have those actions performed when the rule contains one
of the threshold keywords. Those actions are not subject to the threshold limits.

Rule actions drop (IPS mode) and reject are applied to each packet (not only the one that meets the limit condition).

8.44.1 threshold

The threshold keyword can be used to control the rule's alert frequency. There are four threshold modes:

1. threshold

2. limit

3. both

4. backoff

Syntax:

threshold: type <threshold|limit|both|backoff>, track <by_src|by_dst|by_rule|by_both|by_
→˓flow>, count <N>, <seconds <T>|multiplier <M>>

Specify seconds to control the number of alerts per time period.

type "threshold"

This type sets a minimum threshold for a rule before it generates alerts.

A threshold setting with a count value of C will generate an alert the Cth time the alert matches. If seconds is
specified, an alert is generated when count matches have occurred within N seconds.

Syntax:

threshold: type threshold, track by_flow, count <C>, seconds <N>;

Example:

alert tcp !$HOME_NET any -> $HOME_NET 25 (msg:"ET POLICY Inbound Frequent Emails - Possible Spambot
Inbound"; flow:established; content:"mail from|3a|"; nocase; threshold: type threshold, track by_src, count 10, seconds
60; reference:url,doc.emergingthreats.net/2002087; classtype:misc-activity; sid:2002087; rev:10;)

This signature generates an alert if there are 10 or more inbound emails from the same server within one minute.

8.44. Thresholding Keywords 203

Suricata User Guide, Release 8.0.0

type "limit"

The limit type prevents a flood of alerts by limiting the number of alerts. A limit with a count of N won't generate
more than N alerts.

Limit the number of alerts per time period by specifying seconds with count.

Syntax:

threshold: type limit, track by_dst, count <C>, seconds <N>;

Example:

alert http $HOME_NET any -> any any (msg:"ET INFO Internet Explorer 6 in use - Significant Security Risk";
flow:established,to_server; http.user_agent; content:"Mozilla/4.0 (compatible|3b| MSIE 6.0|3b|"; threshold: type limit,
track by_src, seconds 180, count 1; classtype:policy-violation; sid:2010706; rev:10; metadata:created_at 2010_07_30,
updated_at 2024_03_16;)

In this example, at most 1 alert is generated per host within a period of 3 minutes if "MSIE 6.0" is detected.

type "both"

This type combines threshold and limit to control when alerts are generated.

Syntax:

threshold: type both, track by_flow, count <C>, multiplier <M>;

Example:

alert tcp $HOME_NET 5060 -> $EXTERNAL_NET any (msg:"ET VOIP Multiple Unauthorized SIP Responses TCP";
flow:established,from_server; content:"SIP/2.0 401 Unauthorized"; depth:24; threshold: type both, track by_src, count
5, seconds 360; reference:url,doc.emergingthreats.net/2003194; classtype:attempted-dos; sid:2003194; rev:6;)

This rule will generate at most one alert every 6 minutes if there have been 5 or more occurrences of "SIP2.0 401
Unauthorized" responses.

The type backoff section describes the multiplier keyword.

type "backoff"

This type limits the alert output by using a backoff algorithm between alerts.

Note: backoff can only be used with track by_flow

Syntax:

threshold: type backoff, track by_flow, count <C>, multiplier <M>;

track: backoff is only supported for by_flow count: number of alerts before the first match generates an alert.
multiplier: value to multiply count with each time the next value is reached

A count of 1 with a multiplier of 10 would generate alerts for matching packets:

1, 10, 100, 1000, 10000, 100000, etc.

A count of 1 with a multiplier of 2 would generate alerts for matching packets:

204 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

1, 2, 4, 8, 16, 32, 64, etc.

A count of 5 with multiplier 5 would generate alerts for matching packets:

5, 25, 125, 625, 3125, 15625, etc

In the following example, the pkt_invalid_ack would only lead to alerts the 1st, 10th, 100th, etc.

alert tcp any any -> any any (stream-event:pkt_invalid_ack; threshold:type backoff, track by_flow, count 1, multiplier
10; sid:2210045; rev:2;)

track

Option Tracks By
by_src source IP
by_dst destination IP
by_both pair of src IP and dst IP
by_rule signature id
by_flow flow

8.44.2 detection_filter

The detection_filter keyword can be used to alert on every match after an initial threshold has been reached. It
differs from threshold with type threshold in that it generates an alert for each rule match after the initial threshold
has been reached, where the latter will reset its internal counter and alert each time the threshold has been reached.

Syntax:

detection_filter: track <by_src|by_dst|by_rule|by_both|by_flow>, count <N>, seconds <T>

Example:

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"ET WEB_SERVER WebResource.axd access
without t (time) parameter - possible ASP padding-oracle exploit"; flow:established,to_server; content:"GET";
http_method; content:"WebResource.axd"; http_uri; nocase; content:!"&t="; http_uri; nocase; content:!"&|3b|t=";
http_uri; nocase; detection_filter:track by_src,count 15,seconds 2; reference:url,netifera.com/research/; ref-
erence:url,www.microsoft.com/technet/security/advisory/2416728.mspx; classtype:web-application-attack;
sid:2011807; rev:5;)

This rule will generate alerts after 15 or more matches have occurred within 2 seconds.

8.45 IP Reputation Keyword

IP Reputation can be used in rules through a new rule keyword "iprep".

For more information about IP Reputation see IP Reputation Config and IP Reputation Format.

8.45. IP Reputation Keyword 205

Suricata User Guide, Release 8.0.0

8.45.1 iprep

The iprep directive matches on the IP reputation information for a host.

iprep:<side to check>,<category>,<operator>,<reputation score>

side to check: <any|src|dst|both>

category: the category short name

operator: <, <=, >, >=, =

reputation score: 0-127

Example:

alert ip $HOME_NET any -> any any (msg:"IPREP internal host talking to CnC server";␣
→˓flow:to_server; iprep:dst,CnC,>,30; sid:1; rev:1;)

This rule will alert when a system in $HOME_NET acts as a client while communicating with any IP in the CnC category
that has a reputation score set to greater than 30.

isset and isnotset

isset and isnotset can be used to test reputation "membership"

iprep:<side to check>,<category>,<isset|issnotset>

side to check: <any|src|dst|both>

category: the category short name

To test whether an IP is part of an iprep set at all, the isset can be used. It acts as a >=,0 statement.

drop ip $HOME_NET any -> any any (iprep:src,known-bad-hosts,isset; sid:1;)

In this example traffic to any IP with a score in known-bad-hosts would be blocked.

isnotset can be used to test if an IP is not a part of the set.

drop ip $HOME_NET any -> any any (iprep:src,trusted-hosts,isnotset; sid:1;)

In this example traffic for a host w/o a trust score would be blocked.

Compatibility with IP-only

The "iprep" keyword is compatible with "IP-only" rules. This means that a rule like:

alert ip any any -> any any (msg:"IPREP High Value CnC"; iprep:src,CnC,>,100; sid:1;␣
→˓rev:1;)

will only be checked once per flow-direction.

206 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.46 IP Addresses Match

Matching on IP addresses can be done via the IP tuple parameters or via the iprep keywords (see IP Reputation Key-
word). Some keywords providing interaction with datasets are also available.

8.46.1 ip.src

The ip.src keyword is a sticky buffer to match on source IP address. It matches on the binary representation and is
compatible with datasets of types ip and ipv4.

Example:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"Inbound bad list"; flow:to_server; ip.
→˓src; dataset:isset,badips,type ip,load badips.list; sid:1; rev:1;)

8.46.2 ip.dst

The ip.dst keyword is a sticky buffer to match on destination IP address. It matches on the binary representation and is
compatible with the dataset of type ip and ipv4.

Example:

alert tcp $HOME_NET any -> any any (msg:"Outbound bad list"; flow:to_server; ip.dst;␣
→˓dataset:isset,badips,type ip,load badips.list; sid:1; rev:1;)

8.47 Config Rules

Config rules are rules that when matching, will change the configuration of Suricata for a flow, transaction, packet or
other unit.

Example:

config dns any any -> any any (dns.query; content:"suricata"; config: logging disable,␣
→˓type tx, scope tx; sid:1;)

This example will detect if a DNS query contains the string suricata and if so disable the DNS transaction logging.
This means that eve.json records, but also Lua output, will not be generated/triggered for this DNS transaction.

Example:

config tcp:pre_flow any any <> any 666 (config: tracking disable, type flow, scope␣
→˓packet; sid:1;)

This example skips flow tracking for any packet from or to tcp port 666.

8.46. IP Addresses Match 207

Suricata User Guide, Release 8.0.0

8.47.1 Keyword

The config rule keyword provides the setting and the scope of the change.

Syntax:

config:<subsys> <action>, type <type>, scope <scope>;

subsys can be set to:

• logging setting affects logging.

• tracking setting affects tracking.

type can be set to:

• tx sub type of the subsys. If subsys is set to logging, setting the type to tx means transaction logging is affected.

• flow sub type of the subsys. If subsys is set to flow, setting the type to flow means flow tracking is disabled.

scope can be set to:

• tx setting affects the matching transaction.

• packet setting affects the matching packet.

The action in <subsys> is currently limited to disable.

8.47.2 Action

Config rules can, but don't have to, use the config rule action. The config rule action won't generate an alert when the
rule matches, but the rule actions will still be applied. It is equivalent to alert ... (noalert; ...).

8.48 Datasets

Using the dataset and datarep keyword it is possible to match on large amounts of data against any sticky buffer.

For example, to match against a DNS black list called dns-bl:

dns.query; dataset:isset,dns-bl;

These keywords are aware of transforms. So to look up a DNS query against a MD5 black list:

dns.query; to_md5; dataset:isset,dns-bl;

8.48.1 Global config (optional)

Datasets can optionally be defined in the main config. Sets can also be declared from the rule syntax.

Example of sets for tracking unique values:

datasets:
ua-seen:
type: string
state: ua-seen.lst

dns-sha256-seen:
(continues on next page)

208 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

(continued from previous page)

type: sha256
state: dns-sha256-seen.lst

Rules to go with the above:

alert dns any any -> any any (msg:"dns list test"; dns.query; to_sha256; dataset:isset,dns-sha256-seen; sid:123; rev:1;)

alert http any any -> any any (msg: "http user-agent test"; http.user_agent; dataset:set,ua-seen; sid:234; rev:1;)

It is also possible to optionally define global default memcap and hashsize.

Example:

datasets:
defaults:
memcap: 100mb
hashsize: 2048

ua-seen:
type: string
load: ua-seen.lst

or define memcap and hashsize per dataset.

Example:

datasets:
ua-seen:
type: string
load: ua-seen.lst
memcap: 10mb
hashsize: 1024

Note: The hashsize should be close to the amount of entries in the dataset to avoid collisions. If it's set too low, this
could result in rather long startup time.

8.48.2 Rule keywords

dataset

Datasets are binary: something is in the set or it's not.

Syntax:

dataset:<cmd>,<name>,<options>;

dataset:<set|unset|isset|isnotset>,<name> \
[, type <string|md5|sha256|ipv4|ip>, save <file name>, load <file name>, state <file␣

→˓name>, memcap <size>, hashsize <size>
, format <csv|json|ndjson>, context_key <output_key>, value_key <json_key>, array_

→˓key <json_path>,
remove_key];

8.48. Datasets 209

Suricata User Guide, Release 8.0.0

type <type>
the data type: string, md5, sha256, ipv4, ip

load <file name>
file name for load the data when Suricata starts up

state
sets file name for loading and saving a dataset

save <file name>
advanced option to set the file name for saving the in-memory data when Suricata exits.

memcap <size>
maximum memory limit for the respective dataset

hashsize <size>
allowed size of the hash for the respective dataset

format <type>
the format of the file: csv, json. Defaut to csv. See dataset with json format for json and ndjson option

context_key <key>
the key to use for the enrichment of the alert event for json format

value_key <key>
the key to use for the value of the alert for json format

array_key <key>
the key to use for the array of the alert for json format

remove_key
if set, the JSON object pointed by value key will be removed from the alert event

Note: 'type' is mandatory and needs to be set.

Note: 'load' and 'state' or 'save' and 'state' cannot be mixed.

Example rules could look like:

1. Detect unique User-Agents:

alert http any any -> any any (msg:"LOCAL HTTP new UA"; http.user_agent; dataset:set,http-ua-seen, type string,
state http-ua-seen.csv; sid:8000001; rev:1;)

2. Detect unique TLDs:

alert dns $HOME_NET any -> any any (msg:"LOCAL DNS unique TLD"; dns.query; pcrexform:"\.([^\.]+)$";
dataset:set,dns-tld-seen, type string, state dns-tld-seen.csv; sid:8000002; rev:1;)

Following image is a pictorial representation of how the pcrexform works on domain names to find TLDs in the
dataset dns-tld-seen:

210 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Notice how it is not possible to do certain operations alone with datasets (example 2 above), but, it is possible to use a
combination of other rule keywords. Keep in mind the cost of additional keywords though e.g. in the second example
rule above, negative performance impact can be expected due to pcrexform.

datarep

Data Reputation allows matching data against a reputation list.

Syntax:

datarep:<name>,<operator>,<value>, \
[, load <file name>, type <string|md5|sha256|ipv4|ip>, memcap <size>, hashsize <size>

→˓];

Example rules could look like:

alert dns any any -> any any (dns.query; to_md5; datarep:dns_md5, >, 200, load dns_md5.
→˓rep, type md5, memcap 100mb, hashsize 2048; sid:1;)
alert dns any any -> any any (dns.query; to_sha256; datarep:dns_sha256, >, 200, load dns_
→˓sha256.rep, type sha256; sid:2;)
alert dns any any -> any any (dns.query; datarep:dns_string, >, 200, load dns_string.rep,
→˓ type string; sid:3;)

In these examples the DNS query string is checked against three different reputation lists. A MD5 list, a SHA256 list,
and a raw string (buffer) list. The rules will only match if the data is in the list and the reputation value is higher than
200.

dataset with JSON

Dataset with JSON allows matching data against a set and output data attached to the matching value in the event.

There are two formats supported: json and ndjson. The difference is that json format is a single JSON object, while
ndjson is handling file with one JSON object per line. The ndjson format is useful for large files as the parsing is
done line by line.

Syntax:

dataset:<cmd>,<name>,<options>;

dataset:<isset|isnotset>,<name> \
[, type <string|md5|sha256|ipv4|ip>, load <file name>, format <json|ndjson>, memcap

→˓<size>, hashsize <size>, context_key <json_key> \
, value_key <json_key>, array_key <json_path>];

Example rules could look like:

8.48. Datasets 211

Suricata User Guide, Release 8.0.0

alert http any any -> any any (msg:"IP match"; ip.dst; dataset:isset,bad_ips, type ip,␣
→˓load bad_ips.json, format json, context_key bad_ones, value_key ip; sid:8000001;)

In this example, the match will occur if the destination IP is in the set and the alert will have an alert.content.
bad_ones subobject that will contain the JSON data associated to the value (bad_ones coming from context_key
option).

When format is json or ndjson, the value_key is used to get the value in the line (ndjson format) or in the array
(json format). At least one single element needs to have the value_key present in the data file to have a successful
load. If array_key is present, Suricata will extract the corresponding subobject that has to be a JSON array and search
for element to add to the set in this array. This is only valid for json format.

If you don't want to have the value_key in the alert, you can use the remove_key option. This will remove the key
from the alert event.

See Dataset with JSON format for more information.

8.48.3 Rule Reloads

Sets that are defined in the yaml, or sets that only use state or save, are considered dynamic sets. These are not reloaded
during rule reloads.

Sets that are defined in rules using only load are considered static tests. These are not expected to change during
runtime. During rule reloads these are reloaded from disk. This reload is effective when the complete rule reload
process is complete.

8.48.4 Unix Socket

dataset-add

Unix Socket command to add data to a set. On success, the addition becomes active instantly.

Syntax:

dataset-add <set name> <set type> <data>

set name
Name of an already defined dataset

type
Data type: string, md5, sha256, ipv4, ip

data
Data to add in serialized form (base64 for string, hex notation for md5/sha256, string representation for ipv4/ip)

Example adding 'google.com' to set 'myset':

dataset-add myset string Z29vZ2xlLmNvbQ==

212 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

dataset-remove

Unix Socket command to remove data from a set. On success, the removal becomes active instantly.

Syntax:

dataset-remove <set name> <set type> <data>

set name
Name of an already defined dataset

type
Data type: string, md5, sha256, ipv4, ip

data
Data to remove in serialized form (base64 for string, hex notation for md5/sha256, string representation for
ipv4/ip)

dataset-clear

Unix Socket command to remove all data from a set. On success, the removal becomes active instantly.

Syntax:

dataset-clear <set name> <set type>

set name
Name of an already defined dataset

type
Data type: string, md5, sha256, ipv4, ip

dataset-lookup

Unix Socket command to test if data is in a set.

Syntax:

dataset-lookup <set name> <set type> <data>

set name
Name of an already defined dataset

type
Data type: string, md5, sha256, ipv4, ip

data
Data to test in serialized form (base64 for string, hex notation for md5/sha256, string notation for ipv4/ip)

Example testing if 'google.com' is in the set 'myset':

dataset-lookup myset string Z29vZ2xlLmNvbQ==

8.48. Datasets 213

Suricata User Guide, Release 8.0.0

dataset-dump

Unix socket command to trigger a dump of datasets to disk.

Syntax:

dataset-dump

dataset-add-json

Unix Socket command to add data to a set. On success, the addition becomes active instantly.

Syntax:

dataset-add-json <set name> <set type> <data> <json_info>

set name
Name of an already defined dataset

type
Data type: string, md5, sha256, ipv4, ip

data
Data to add in serialized form (base64 for string, hex notation for md5/sha256, string representation for ipv4/ip)

Example adding 'google.com' to set 'myset':

dataset-add-json myset string Z29vZ2xlLmNvbQ== {"city":"Mountain View"}

8.48.5 File formats

Datasets use a simple CSV format where data is per line in the file.

data types

string
in the file as base64 encoded string

md5
in the file as hex encoded string

sha256
in the file as hex encoded string

ipv4
in the file as string

ip
in the file as string, it can be IPv6 or IPv4 address (standard notation or IPv4 in IPv6 one)

214 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

dataset

Datasets have a simple structure, where there is one piece of data per line in the file.

Syntax:

<data>

e.g. for ua-seen with type string:

TW96aWxsYS80LjAgKGNvbXBhdGlibGU7ICk=

which when piped to base64 -d reveals its value:

Mozilla/4.0 (compatible;)

datarep

The datarep format follows the dataset, except that there are 1 more CSV field:

Syntax:

<data>,<value>

dataset with JSON enrichment

If format json is used in the parameters of a dataset keyword, then the loaded file has to contain a valid JSON object.

If value_key` option is present then the file has to contain a valid JSON object containing an array where the key
equal to value_key value is present.

For example, if the file file.json is like the following example (typical of return of REST API call)

{
"time": "2024-12-21",
"response": {

"threats":
[

{"host": "toto.com", "origin": "japan"},
{"host": "grenouille.com", "origin": "french"}

]
}

}

then the match to check the list of threats using dataset with JSON can be defined as

http.host; dataset:isset,threats,load file.json, context_key threat, value_key host,␣
→˓array_key response.threats;

If the signature matches, it will result in an alert with the following

{
"alert": {

"context": {
(continues on next page)

8.48. Datasets 215

Suricata User Guide, Release 8.0.0

(continued from previous page)

"threat": {
"host": "toto.com",
"origin": "japan"

}
}

}
}

8.48.6 File Locations

Dataset filenames configured in the suricata.yaml can exist anywhere on your filesytem.

When a dataset filename is specified in rule, the following rules are applied:

• For load, the filename is opened relative to the rule file containing the rule. Absolute filenames and parent
directory traversals are allowed.

• For save and state the filename is relative to $LOCALSTATEDIR/suricata/data. On many installs this will
be /var/lib/suricata/data, but run suricata --build-info and check the value of --localstatedir
to verify this location onn your installation.

– Absolute filenames, or filenames containing parent directory traversal (..) are not allowed unless the con-
figuration paramater datasets.allow-absolute-filenames is set to true.

8.48.7 Security

As datasets potentially allow a rule distributor write access to your system with save and state dataset rules, the
locations allowed are strict by default, however there are two dataset options to tune the security of rules utilizing
dataset filenames:

datasets:
rules:
Set to true to allow absolute filenames and filenames that use
".." components to reference parent directories in rules that specify
their filenames.
allow-absolute-filenames: false

Allow datasets in rules write access for "save" and
"state". This is enabled by default, however write access is
limited to the data directory.
allow-write: true

By setting datasets.rules.allow-write to false, all save and state rules will fail to load. This option is enabled
by default to preserve compatiblity with previous 6.0 Suricata releases, however may change in a future major release.

Pre-Suricata 6.0.13 behavior can be restored by setting datasets.rules.allow-absolute-filenames to true,
however allowing so will allow any rule to overwrite any file on your system that Suricata has write access to.

216 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.49 Lua Scripting for Detection

There are 2 ways that Lua can be used with detection. These are

• lua rule keyword.

• luaxform transform.

Note: Lua is disabled by default for use in rules, it must be enabled in the configuration file. See the security.lua
section of suricata.yaml and enable allow-rules.

8.49.1 Lua Rule Keyword

Syntax:

lua:[!]<scriptfilename>;

The script filename will be appended to your default rules location.

A Lua rule script has 2 required functions, an init function and match function, discussed below.

Additionally, the script will run in a limited sandbox by default.

Init function

function init (args)
local needs = {}
needs["http.request_line"] = tostring(true)
return needs

end

The init function registers the buffer(s) that need inspection. Currently the following are available:

• packet -- entire packet, including headers

• payload -- packet payload (not stream)

• buffer -- the current sticky buffer

• stream

• dnp3

• ssh

• smtp

• tls

• http.uri

• http.uri.raw

• http.request_line

• http.request_headers

• http.request_headers.raw

8.49. Lua Scripting for Detection 217

Suricata User Guide, Release 8.0.0

• http.request_body

• http.response_headers

• http.response_headers.raw

• http.response_body

All the HTTP buffers have a limitation: only one can be inspected by a script at a time.

Match function

function match(args)
a = tostring(args["http.request_line"])
if #a > 0 then

if a:find("^POST%s+/.*%.php%s+HTTP/1.0$") then
return 1

end
end

return 0
end

The script can return 1 or 0. It should return 1 if the condition(s) it checks for match, 0 if not.

Entire script:

function init (args)
local needs = {}
needs["http.request_line"] = tostring(true)
return needs

end

function match(args)
a = tostring(args["http.request_line"])
if #a > 0 then

if a:find("^POST%s+/.*%.php%s+HTTP/1.0$") then
return 1

end
end

return 0
end

return 0

218 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.49.2 Lua Transform: luaxform

More details in luaxform.

8.49.3 Lua Sandbox and Available functions

Lua rule scripts are run in a sandbox environment the applies the following restrictions:

• reduced libraries

• only allowed functions available

• instruction count limit

• memory allocation limit

The following table lists the library and functions available:

Pack-
age
Name

Functions

base assert, ipairs, next, pairs, print, rawequal, rawlen, select, tonumber, tostring, type, warn, rawget, rawset,
error

table concat, insert, move, pack, remove, sort, unpack
string byte, char, dump, find, format, gmatch, gsub, len, lower, match, pack, packsize, rep, reverse, sub,

unpack, upper
math abs, acos, asin, atan, atan2, ceil, cos, cosh, deg, exp, floor, fmod, frexp, ldexp, log, log10, max, min,

modf, pow, rad, random, randomseed, sin, sinh, sqrt, tan, tanh, tointeger, type, ult
utf8 offset, len, codes, char, codepoint

Of note, the following standard libraries are not available:

• coroutine

• package

• input and output

• operating system facilities

• debug

This behavior can be modified via the security.lua section of Lua

Note: Suricata 8.0 has moved to Lua 5.4 and now has builtin support for bitwise and utf8 operations.

A comprehensive list of existing lua functions - with examples - can be found at Lua functions (some of them, however,
work only for the lua-output functionality).

8.49. Lua Scripting for Detection 219

Suricata User Guide, Release 8.0.0

8.50 Differences From Snort

This document is intended to highlight the major differences between Suricata and Snort that apply to rules and rule
writing.

Where not specified, the statements below apply to Suricata. In general, references to Snort refer to the version 2.9
branch.

8.50.1 Automatic Protocol Detection

• Suricata does automatic protocol detection of the following application layer protocols:

– dcerpc

– dnp3

– dns

– http

– imap (detection only by default; no parsing)

– pop3 (detection only by default; no parsing)

– ftp

– modbus (disabled by default; minimalist probe parser; can lead to false positives)

– smb

– smb2 (disabled internally inside the engine)

– smtp

– ssh

– tls (SSLv2, SSLv3, TLSv1, TLSv1.1 and TLSv1.2)

• In Suricata, protocol detection is port agnostic (in most cases). In Snort, in order for the http_inspect and
other preprocessors to be applied to traffic, it has to be over a configured port.

– Some configurations for app-layer in the Suricata yaml can/do by default specify specific destination ports
(e.g. DNS)

– You can look on 'any' port without worrying about the performance impact that you would have to
be concerned about with Snort.

• If the traffic is detected as HTTP by Suricata, the http_* buffers are populated and can be used, regardless of
port(s) specified in the rule.

• You don't have to check for the http protocol (i.e. alert http ...) to use the http_* buffers although it is
recommended.

• If you are trying to detect legitimate (supported) application layer protocol traffic and don't want to look on
specific port(s), the rule should be written as alert <protocol> ... with any in place of the usual protocol
port(s). For example, when you want to detect HTTP traffic and don't want to limit detection to a particular port
or list of ports, the rules should be written as alert http ... with any in place of $HTTP_PORTS.

– You can also use app-layer-protocol:<protocol>; inside the rule instead.

So, instead of this Snort rule:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS ...

220 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Do this for Suricata:

alert http $HOME_NET -> $EXTERNAL_NET any ...

Or:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (app-layer-protocol:http; ...

8.50.2 urilen Keyword

• Ranges given in the urilen keyword are inclusive for Snort but not inclusive for Suricata.

Example: urilen:2<>10

– Snort interprets this as, "the URI length must be greater than or equal to 2, and less than or equal to 10".

– Suricata interprets this as "the URI length must be greater than 2 and less than 10".

– There is a request to have Suricata behave like Snort in future versions – https://redmine.
openinfosecfoundation.org/issues/1416

∗ Currently on hold

• By default, with Suricata, urilen applies to the normalized buffer

– Use ,raw for raw buffer

– e.g. urilen:>20,raw;

• By default, with Snort, urilen applies to the raw buffer

– Use ,norm for normalized buffer

– e.g. urilen:>20,norm;

8.50.3 http_uri Buffer

• In Snort, the http_uri buffer normalizes '+' characters (0x2B) to spaces (0x20).

– Suricata can do this as well but you have to explicitly set query-plusspace-decode: yes in the libhtp
section of Suricata's yaml file.

• https://redmine.openinfosecfoundation.org/issues/1035

• https://github.com/inliniac/suricata/pull/620

8.50.4 http_header Buffer

• In Snort, the http_header buffer includes the CRLF CRLF (0x0D 0x0A 0x0D 0x0A) that separates the end of
the last HTTP header from the beginning of the HTTP body. Suricata includes a CRLF after the last header in
the http_header buffer but not an extra one like Snort does. If you want to match the end of the buffer, use
either the http_raw_header buffer, a relative isdataat (e.g. isdataat:!1,relative) or a PCRE (although
PCRE will be worse on performance).

• Suricata will include CRLF CRLF at the end of the http_raw_header buffer like Snort does.

• Snort will include a leading CRLF in the http_header buffer of server responses (but not client requests).
Suricata does not have the leading CRLF in the http_header buffer of the server response or client request.

8.50. Differences From Snort 221

https://redmine.openinfosecfoundation.org/issues/1416
https://redmine.openinfosecfoundation.org/issues/1416
https://redmine.openinfosecfoundation.org/issues/1035
https://github.com/inliniac/suricata/pull/620

Suricata User Guide, Release 8.0.0

• In the http_header buffer, Suricata will normalize HTTP header lines such that there is a single space (0x20)
after the colon (':') that separates the header name from the header value; this single space replaces zero or more
whitespace characters (including tabs) that may be present in the raw HTTP header line immediately after the
colon. If the extra whitespace (or lack thereof) is important for matching, use the http_raw_header buffer
instead of the http_header buffer.

• Snort will also normalize superfluous whitespace between the header name and header value like Suricata does
but only if there is at least one space character (0x20 only so not 0x90) immediately after the colon. This means
that, unlike Suricata, if there is no space (or if there is a tab) immediately after the colon before the header value,
the content of the header line will remain unchanged in the http_header buffer.

• When there are duplicate HTTP headers (referring to the header name only, not the value), the normalized buffer
(http_header) will concatenate the values in the order seen (from top to bottom), with a comma and space (",
") between each of them. If this hinders detection, use the http_raw_header buffer instead.

Example request:

GET /test.html HTTP/1.1
Content-Length: 44
Accept: */*
Content-Length: 55

The Content-Length header line becomes this in the http_header buffer:

Content-Length: 44, 55

• The HTTP 'Cookie' and 'Set-Cookie' headers are NOT included in the http_header buffer; instead they are
extracted and put into their own buffer – http_cookie. See the http_cookie Buffer section.

• The HTTP 'Cookie' and 'Set-Cookie' headers ARE included in the http_raw_header buffer so if you are trying
to match on something like particular header ordering involving (or not involving) the HTTP Cookie headers,
use the http_raw_header buffer.

• If 'enable_cookie' is set for Snort, the HTTP Cookie header names and trailing CRLF (i.e. "Cookie: \r\n" and
"Set-Cooke \r\n") are kept in the http_header buffer. This is not the case for Suricata which removes the entire
"Cookie" or "Set-Cookie" line from the http_header buffer.

• Other HTTP headers that have their own buffer (http_user_agent, http_host) are not removed from the
http_header buffer like the Cookie headers are.

• When inspecting server responses and file_data is used, content matches in http_* buffers should come
before file_data unless you use pkt_data to reset the cursor before matching in http_* buffers. Snort will
not complain if you use http_* buffers after file_data is set.

8.50.5 http_cookie Buffer

• The http_cookie buffer will NOT include the header name, colon, or leading whitespace. i.e. it will not include
"Cookie: " or "Set-Cookie: ".

• The http_cookie buffer does not include a CRLF (0x0D 0x0A) at the end. If you want to match the end of the
buffer, use a relative isdataat or a PCRE (although PCRE will be worse on performance).

• There is no http_raw_cookie buffer in Suricata. Use http_raw_header instead.

• You do not have to configure anything special to use the 'http_cookie' buffer in Suricata. This is different from
Snort where you have to set enable_cookie in the http_inspect_server preprocessor config in order to
have the http_cookie buffer treated separate from the http_header buffer.

222 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

• If Snort has 'enable_cookie' set and multiple "Cookie" or "Set-Cookie" headers are seen, it will concatenate them
together (with no separator between them) in the order seen from top to bottom.

• If a request contains multiple "Cookie" or "Set-Cookie" headers, the values will be concatenated in the Suricata
http_cookie buffer, in the order seen from top to bottom, with a comma and space (", ") between each of them.

Example request:

GET /test.html HTTP/1.1
Cookie: monster
Accept: */*
Cookie: elmo

Suricata http_cookie buffer contents:

monster, elmo

Snort http_cookie buffer contents:

monsterelmo

• Corresponding PCRE modifier: C (same as Snort)

8.50.6 New HTTP keywords

Suricata supports several HTTP keywords that Snort doesn't have.

Examples are http_user_agent, http_host and http_content_type.

See HTTP Keywords for all HTTP keywords.

8.50.7 byte_extract Keyword

• Suricata supports byte_extract from http_* buffers, including http_header which does not always work
as expected in Snort.

• In Suricata, variables extracted using byte_extract must be used in the same buffer, otherwise they will have
the value "0" (zero). Snort does allow cross-buffer byte extraction and usage.

• Be sure to always positively and negatively test Suricata rules that use byte_extract and byte_test to verify
that they work as expected.

8.50.8 byte_jump Keyword

• Suricata allows a variable name from byte_extract or byte_math to be specified for the nbytes value. The
value of nbytes must adhere to the same constraints as if it were supplied directly in the rule.

8.50. Differences From Snort 223

Suricata User Guide, Release 8.0.0

8.50.9 byte_math Keyword

• Suricata accepts dce as an endian value or as a separate keyword. endian dce or dce are equivalent.

• Suricata's rule parser rejects rules that repeat keywords in a single rule. E.g., byte_math: endian big,
endian little.

• Suricata's rule parser accepts rvalue values of 0 to the maximum uint32 value. Snort rejects rvalue values of
0 and requires values to be between [1..max-uint32 value].

• Suricata will never match if there's a zero divisor. Division by 0 is undefined.

8.50.10 byte_test Keyword

• Suricata allows a variable name from byte_extract or byte_math to be specified for the nbytes value. The
value of nbytes must adhere to the same constraints as though a value was directly supplied by the rule.

• Suricata allows a variable name from byte_extract to be specified for the nbytes value. The value of nbytes
must adhere to the same constraints as if it were supplied directly in the rule.

8.50.11 isdataat Keyword

• The rawbytes keyword is supported in the Suricata syntax but doesn't actually do anything.

• Absolute isdataat checks will succeed if the offset used is less than the size of the inspection buffer. This is
true for Suricata and Snort.

• For relative isdataat checks, there is a 1 byte difference in the way Snort and Suricata do the comparisons.

– Suricata will succeed if the relative offset is less than or equal to the size of the inspection buffer. This is
different from absolute isdataat checks.

– Snort will succeed if the relative offset is less than the size of the inspection buffer, just like absolute
isdataat checks.

– Example - to check that there is no data in the inspection buffer after the last content match:

∗ Snort: isdataat:!0,relative;

∗ Suricata: isdataat:!1,relative;

• With Snort, the "inspection buffer" used when checking an isdataat keyword is generally the packet/segment
with some exceptions:

– With PAF enabled the PDU is examined instead of the packet/segment. When file_data or base64_data
has been set, it is those buffers (unless rawbytes is set).

– With some preprocessors - modbus, gtp, sip, dce2, and dnp3 - the buffer can be particular portions of those
protocols (unless rawbytes is set).

– With some preprocessors - rpc_decode, ftp_telnet, smtp, and dnp3 - the buffer can be particular decoded
portions of those protocols (unless rawbytes is set).

• With Suricata, the "inspection buffer" used when checking an absolute isdataat keyword is the packet/segment
if looking at a packet (e.g. alert tcp-pkt...) or the reassembled stream segments.

• In Suricata, a relative isdataat keyword will apply to the buffer of the previous content match. So if the
previous content match is a http_* buffer, the relative isdataat applies to that buffer, starting from the end of
the previous content match in that buffer. Snort does not behave like this!

224 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

• For example, this Suricata rule looks for the string ".exe" at the end of the URI; to do the same thing in the
normalized URI buffer in Snort you would have to use a PCRE – pcre:"/\x2Eexe$/U";

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:".EXE File Download Request";␣
→˓flow:established,to_server; content:"GET"; http_method; content:".exe"; http_uri;␣
→˓isdataat:!1,relative; priority:3; sid:18332111;)

• If you are unclear about behavior in a particular instance, you are encouraged to positively and negatively test
your rules that use an isdataat keyword.

8.50.12 Relative PCRE

• You can do relative PCRE matches in normalized/special buffers with Suricata. Example:

content:".php?sign="; http_uri; pcre:"/^[a-zA-Z0-9]{8}$/UR";

• With Snort you can't combine the "relative" PCRE option ('R') with other buffer options like normalized URI
('U') – you get a syntax error.

8.50.13 tls* Keywords

In addition to TLS protocol identification, Suricata supports the storing of certificates to disk, verifying the validity
dates on certificates, matching against the calculated SHA1 fingerprint of certificates, and matching on certain TLS/SSL
certificate fields including the following:

• Negotiated TLS/SSL version.

• Certificate Subject field.

• Certificate Issuer field.

• Certificate SNI Field

For details see SSL/TLS Keywords.

8.50.14 dns_query Keyword

• Sets the detection pointer to the DNS query.

• Works like file_data does ("sticky buffer") but for a DNS request query.

• Use pkt_data to reset the detection pointer to the beginning of the packet payload.

• See DNS Keywords for details.

8.50.15 IP Reputation and iprep Keyword

• Snort has the "reputation" preprocessor that can be used to define whitelist and blacklist files of IPs which are
used generate GID 136 alerts as well as block/drop/pass traffic from listed IPs depending on how it is configured.

• Suricata also has the concept of files with IPs in them but provides the ability to assign them:

– Categories

– Reputation score

• Suricata rules can leverage these IP lists with the iprep keyword that can be configured to match on:

8.50. Differences From Snort 225

Suricata User Guide, Release 8.0.0

– Direction

– Category

– Value (reputation score)

• Reputation

• IP Reputation Config

• IP Reputation Keyword

• IP Reputation Format

• https://blog.inliniac.net/2012/11/21/ip-reputation-in-suricata/

8.50.16 Flowbits

• Suricata fully supports the setting and checking of flowbits (including the same flowbit) on the same
packet/stream. Snort does not always allow for this.

• In Suricata, flowbits:isset is checked after the fast pattern match but before other content matches. In
Snort, flowbits:isset is checked in the order it appears in the rule, from left to right.

• If there is a chain of flowbits where multiple rules set flowbits and they are dependent on each other, then the
order of the rules or the sid values can make a difference in the rules being evaluated in the proper order and
generating alerts as expected. See bug 1399 - https://redmine.openinfosecfoundation.org/issues/1399.

• Flow Keywords

8.50.17 flowbits:noalert;

A common pattern in existing rules is to use flowbits:noalert; to make sure a rule doesn't generate an alert if it
matches.

Suricata allows using just noalert; as well. Both have an identical meaning in Suricata.

8.50.18 Negated Content Match Special Case

• For Snort, a negated content match where the starting point for searching is at or beyond the end of the inspection
buffer will never return true.

– For negated matches, you want it to return true if the content is not found.

– This is believed to be a Snort bug rather than an engine difference but it was reported to Sourcefire and
acknowledged many years ago indicating that perhaps it is by design.

– This is not the case for Suricata which behaves as expected.

Example HTTP request:

POST /test.php HTTP/1.1
Content-Length: 9

user=suri

This rule snippet will never return true in Snort but will in Suricata:

226 Chapter 8. Suricata Rules

https://blog.inliniac.net/2012/11/21/ip-reputation-in-suricata/
https://redmine.openinfosecfoundation.org/issues/1399

Suricata User Guide, Release 8.0.0

content:!"snort"; offset:10; http_client_body;

8.50.19 File Extraction

• Suricata has the ability to match on files from FTP, HTTP and SMTP streams and log them to disk.

• Snort has the "file" preprocessor that can do something similar but it is experimental, development of it has been
stagnant for years, and it is not something that should be used in a production environment.

• Files can be matched on using a number of keywords including:

– filename

– fileext

– filemagic

– filesize

– filemd5

– filesha1

– filesha256

– filesize

– See File Keywords for a full list.

• The filestore keyword tells Suricata to save the file to disk.

• Extracted files are logged to disk with meta data that includes things like timestamp, src/dst IP, protocol, src/dst
port, HTTP URI, HTTP Host, HTTP Referer, filename, file magic, md5sum, size, etc.

• There are a number of configuration options and considerations (such as stream reassembly depth and libhtp
body-limit) that should be understood if you want fully utilize file extraction in Suricata.

• File Keywords

• File Extraction

• https://blog.inliniac.net/2011/11/29/file-extraction-in-suricata/

• https://blog.inliniac.net/2014/11/11/smtp-file-extraction-in-suricata/

8.50.20 Lua Scripting

• Suricata has the lua keyword which allows for a rule to reference a Lua script that can access the packet, payload,
HTTP buffers, etc.

• Provides powerful flexibility and capabilities that Snort does not have.

• More details in: Lua Scripting for Detection

8.50. Differences From Snort 227

https://blog.inliniac.net/2011/11/29/file-extraction-in-suricata/
https://blog.inliniac.net/2014/11/11/smtp-file-extraction-in-suricata/

Suricata User Guide, Release 8.0.0

8.50.21 Fast Pattern

• Snort's fast pattern matcher is always case insensitive; Suricata's is case sensitive unless 'nocase' is set on the
content match used by the fast pattern matcher.

• Snort will truncate fast pattern matches based on the max-pattern-len config (default no limit) unless
fast_pattern:only is used in the rule. Suricata does not do any automatic fast pattern truncation cannot
be configured to do so.

• Just like in Snort, in Suricata you can specify a substring of the content string to be use as the fast pattern match.
e.g. fast_pattern:5,20;

• In Snort, leading NULL bytes (0x00) will be removed from content matches when determining/using the longest
content match unless fast_pattern is explicitly set. Suricata does not truncate anything, including NULL
bytes.

• Snort does not allow for all http_* buffers to be used for the fast pattern match (e.g. http_raw_*,
http_method, http_cookie, etc.). Suricata lets you use any 'http_*' buffer you want for the fast pattern match,
including http_raw_*' and ``http_cookie buffers.

• Suricata supports the fast_pattern:only syntax but technically it is not really implemented; the only is
silently ignored when encountered in a rule. It is still recommended that you use fast_pattern:only where
appropriate in case this gets implemented in the future and/or if the rule will be used by Snort as well.

• With Snort, unless fast_pattern is explicitly set, content matches in normalized HTTP Inspect buffers (e.g.
http content modifiers such http_uri, http_header, etc.) take precedence over non-HTTP Inspect content
matches, even if they are shorter. Suricata does the same thing and gives a higher 'priority' (precedence) to
http_* buffers (except for http_method, http_stat_code, and http_stat_msg).

• See Suricata Fast Pattern Determination Explained for full details on how Suricata automatically determines
which content to use as the fast pattern match.

• When in doubt about what is going to be use as the fast pattern match by Suricata, set fast_pattern ex-
plicitly in the rule and/or run Suricata with the --engine-analysis switch and view the generated file
(rules_fast_pattern.txt).

• Like Snort, the fast pattern match is checked before flowbits in Suricata.

• Using Hyperscan as the MPM matcher (mpm-algo setting) for Suricata can greatly improve performance, espe-
cially when it comes to fast pattern matching. Hyperscan will also take into account depth and offset when doing
fast pattern matching, something the other algorithms and Snort do not do.

• fast_pattern

8.50.22 Don't Cross The Streams

Suricata will examine network traffic as individual packets and, in the case of TCP, as part of a (reassembled) stream.
However, there are certain rule keywords that only apply to packets only (dsize, flags, ttl) and certain ones that
only apply to streams only (http_*) and you can't mix packet and stream keywords. Rules that use packet keywords
will inspect individual packets only and rules that use stream keywords will inspect streams only. Snort is a little more
forgiving when you mix these – for example, in Snort you can use dsize (a packet keyword) with http_* (stream
keywords) and Snort will allow it although, because of dsize, it will only apply detection to individual packets (unless
PAF is enabled then it will apply it to the PDU).

If dsize is in a rule that also looks for a stream-based application layer protocol (e.g. http), Suricata will not match on
the first application layer packet since dsize make Suricata evaluate the packet and protocol detection doesn't happen
until after the protocol is checked for that packet; subsequent packets in that flow should have the application protocol
set appropriately and will match rules using dsize and a stream-based application layer protocol.

228 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

If you need to check sizes on a stream in a rule that uses a stream keyword, or in a rule looking for a stream-based
application layer protocol, consider using the stream_size keyword and/or isdataat.

Suricata also supports these protocol values being used in rules and Snort does not:

• tcp-pkt – example:

– alert tcp-pkt ...

– This tells Suricata to only apply the rule to TCP packets and not the (reassembled) stream.

• tcp-stream – example:

– alert tcp-stream ...

– This tells Suricata to inspect the (reassembled) TCP stream only.

8.50.23 Alerts

• In Snort, the number of alerts generated for a packet/stream can be limited by the event_queue configuration.

• Suricata has an internal hard-coded limit of 15 alerts per packet/stream (and this cannot be configured); all rules
that match on the traffic being analyzed will fire up to that limit.

• Sometimes Suricata will generate what appears to be two alerts for the same TCP packet. This happens when
Suricata evaluates the packet by itself and as part of a (reassembled) stream.

8.50. Differences From Snort 229

Suricata User Guide, Release 8.0.0

8.50.24 Buffer Reference Chart

Buffer Snort 2.9.x Sup-
port?

Suricata Sup-
port?

PCRE
flag

Can be used
as Fast Pat-
tern?

Suricata Fast Pattern Prior-
ity (lower number is higher
priority)

content
(no mod-
ifier)

YES YES <none> YES 3

http_methodYES YES M Suricata only 3
http_stat_codeYES YES S Suricata only 3
http_stat_msgYES YES Y Suricata only 3
uricon-
tent

YES but depre-
cated, use http_uri
instead

YES but depre-
cated, use http_uri
instead

U YES 2

http_uri YES YES U YES 2
http_raw_uriYES YES I Suricata only 2
http_header YES YES H YES 2
http_raw_headerYES YES D Suricata only 2
http_cookie YES YES C Suricata only 2
http_raw_cookieYES NO (use

http_raw_header
instead)

K NO n/a

http_host NO YES W Suricata only 2
http_raw_hostNO YES Z Suricata only 2
http_client_bodyYES YES P YES 2
http_server_bodyNO YES Q Suricata only 2
http_user_agentNO YES V Suricata only 2
dns_query NO YES n/a* Suricata only 2
tls_sni NO YES n/a* Suricata only 2
tls_cert_issuerNO YES n/a* Suricata only 2
tls_cert_subjectNO YES n/a* Suricata only 2
file_data YES YES n/a* YES 2

* Sticky buffer

8.51 Multiple Buffer Matching

Suricata 7 and newer now supports matching contents in multiple buffers within the same transaction.

For example a single DNS transaction that has two queries in it:

query 1: example.net query 2: something.com

Example rule:

alert dns $HOME_NET any -> $EXTERNAL_NET any (msg:"DNS Multiple Question Example Rule"; dns.query;
content:"example"; dns.query; content:".com"; classtype:misc-activity; sid:1; rev:1;)

Within the single DNS query transaction, there are two queries and Suricata will set up two instances of a dns.query
buffer.

The first dns.query buffer will look for content:"example";

The second dns.query buffer will look for content:".com";

230 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

The example rule will alert on the example query since all the content matches are satisfied for the rule.

For matching multiple headers in HTTP2 traffic a rule using the new functionality would look like:

alert http2 any any -> any any (msg:"HTTP2 Multiple Header Buffer Example"; flow:established,to_server;
http.request_header; content:"method|3a 20|GET"; http.request_header; content:"authority|3a 20|example.com";
classtype:misc-activity; sid:1; rev:1;)

With HTTP2 there are multiple headers seen in the same flow record. We now have a way to write a rule in a more
efficient way using the multiple buffer capability.

Note Existing behavior when using sticky buffers still applies:

Example rule:

alert dns $HOME_NET any -> $EXTERNAL_NET any (msg:"DNS Query Sticky Buffer Classic Example Rule";
dns.query; content:"example"; content:".net"; classtype:misc-activity; sid:1; rev:1;)

The above rule will alert on a single dns query containing "example.net" or "example.domain.net" since the rule content
matches are within a single dns.query buffer and all content match requirements of the rule are met.

Note: This is new behavior. In versions of Suricata prior to version 7 multiple statements of the same sticky buffer did
not make a second instance of the buffer. For example:

dns.query; content:"example"; dns.query; content:".com";

would be equivalent to:

dns.query; content:"example"; content:".com";

Using our example from above, the first query is for example.net which matches content:"example"; but does not match
content:".com";

The second query is for something.com which would match on the content:".com"; but not the content:"example";

So with the Suricata behavior prior to Suricata 7, the signature would not fire in this case since both content conditions
will not be met.

Multiple buffer matching is currently enabled for use with the following keywords:

• dns.answer.name

• dns.query.name

• dns.query

• email.received

• email.url

• file.data

• file.magic

• file.name

• http.request_header

• http.response_header

• http2.header_name

• ike.vendor

• krb5_cname

• krb5_sname

• ldap.request.attribute_type

8.51. Multiple Buffer Matching 231

Suricata User Guide, Release 8.0.0

• ldap.responses.attribute_type

• ldap.responses.dn

• ldap.responses.message

• mqtt.subscribe.topic

• mqtt.unsubscribe.topic

• quic.cyu.hash

• quic.cyu.string

• sip.content_length

• sip.content_type

• sip.from

• sip.to

• sip.ua

• sip.via

• smtp.rcpt_to

• tls.alpn

• tls.cert_subject

• tls.certs

• tls.subjectaltname

8.52 Tag

The tag keyword allows tagging of the current and future packets.

Tagged packets can be logged in EVE and conditional PCAP logging.

Tagging is limited to a scope: host or session (flow). When using host a direction can be specified: src or dst. Tagging
will then occur based on the src or dst IP address of the packet generating the alert.

Tagging is further controlled by count: packets, bytes or seconds. If the count is ommited built-in defaults will be used:

• for session: 256 packets

• for host: 256 packets for the destination IP of the packet triggering the alert

The tag keyword can appear multiple times in a rule.

8.52.1 Syntax

tag:<scope>[,<count>, <metric>[,<direction>]];

Values for scope: session and host Values for metric: packets, bytes, seconds Values for direction: src and dst

Note: "direction" can only be specified if scope is "host" and both "count" and "metric" are also specified.

232 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.52.2 Examples

Keyword:

tag:session; # tags next 256 packets in the flow
tag:host; # tags next 256 packets for the dst ip of the alert
tag:host,100,packets,src; # tags next 100 packets for src ip of the alert
tag:host,3600,seconds,dst; # tags packets for dst host for the next hour

Full rule examples:

alert dns any any -> any any (dns.query; content:"evil"; tag:host,60,seconds,src; sid:1;)

alert http any any -> any any (http.method; content:"POST"; tag:session; sid:1;)

8.52.3 How to Use Tags

EVE

Tags can be set to generate EVE tag records:

outputs:
- eve-log:

enabled: yes
filename: eve.json
types:
- alert:

tagged-packets: true

The tagged packets will then be logged with event_type: packet:

{
"timestamp": "2020-06-03T10:29:17.850417+0000",
"flow_id": 1576832511820424,
"event_type": "packet",
"src_ip": "192.168.0.27",
"src_port": 54634,
"dest_ip": "192.168.0.103",
"dest_port": 22,
"proto": "TCP",
"pkt_src": "wire/pcap",
"packet":

→˓"CAAn6mWJAPSNvfrHCABFAAAogkVAAIAG9rfAqAAbwKgAZ9VqABZvnJXH5Zf6aFAQEAljEwAAAAAAAAAA",
"packet_info": {
"linktype": 1

}
}

EVE: Eve JSON Output

8.52. Tag 233

tag:host,60,seconds,src
tag:session

Suricata User Guide, Release 8.0.0

Conditional PCAP Logging

Using the conditional PCAP logging option the tag keyword can control which packets are logged by the PCAP logging.

outputs:
- pcap-log:

enabled: yes
filename: log.pcap
limit: 1000mb
max-files: 2000
compression: none
mode: normal
use-stream-depth: no #If set to "yes" packets seen after reaching stream␣

→˓inspection depth are ignored. "no" logs all packets
honor-pass-rules: no # If set to "yes", flows in which a pass rule matched will␣

→˓stop being logged.
Use "all" to log all packets or use "alerts" to log only alerted packets and␣

→˓flows or "tag"
to log only flow tagged via the "tag" keyword
conditional: tag

PCAP Logging: PCAP log

8.52.4 Tracking by Host/Flow

When the tags are using the session scope, the tag is added to the Flow structure. If a packet has no flow, no tagging
will happen. No errors/warnings are generated for this.

See Flow Settings for managing flow limits and resources.

When tags are using the host scope, the tag is stored with a Host object in the host table. The Host table size will affect
effectiveness of per host tags.

See Host Settings for managing host table size.

8.53 VLAN Keywords

8.53.1 vlan.id

Suricata has a vlan.id keyword that can be used in signatures to identify and filter network packets based on Virtual
Local Area Network IDs. By default, it matches all layers if a packet contains multiple VLAN layers. However, if a
specific layer is defined, it will only match that layer.

Syntax:

vlan.id: [op]id[,layer];

The id can be matched exactly, or compared using the op setting:

vlan.id:300 # exactly 300
vlan.id:<300,0 # smaller than 300 at layer 0
vlan.id:>=200,1 # greater or equal than 200 at layer 1

234 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

vlan.id uses unsigned 16-bit integer.

The valid range for VLAN id values is 0 - 4095.

This keyword also supports all and any as arguments for layer. all matches only if all VLAN layers match and
any matches with any layer.

Table 2: Layer values for vlan.id keyword
Value Description
[default] Match with any layer
0 - 2 Match specific layer
-3 - -1 Match specific layer with back to front indexing
all Match only if all layers match
any Match with any layer

This small illustration shows how indexing works for vlan.id:

[ethernet]
[vlan 666 (index 0 and -2)]
[vlan 123 (index 1 and -1)]
[ipv4]
[udp]

Examples

Example of a signature that would alert if any of the VLAN IDs is equal to 300:

alert ip any any -> any any (msg:"Vlan ID is equal to 300"; vlan.id:300; sid:1;)

Example of a signature that would alert if the VLAN ID at layer 1 is equal to 300:

alert ip any any -> any any (msg:"Vlan ID is equal to 300 at layer 1"; vlan.id:300,1; sid:1;)

Example of a signature that would alert if the VLAN ID at the last layer is equal to 400:

alert ip any any -> any any (msg:"Vlan ID is equal to 400 at the last layer"; vlan.id:400,-1; sid:1;)

Example of a signature that would alert only if all the VLAN IDs are greater than 100:

alert ip any any -> any any (msg:"All Vlan IDs are greater than 100"; vlan.id:>100,all; sid:1;)

It is also possible to use the vlan.id content as a fast_pattern by using the prefilter keyword, as shown in the following
example.

alert ip any any -> any any (msg:"Vlan ID is equal to 200 at layer 1"; vlan.id:200,1; prefilter; sid:1;)

8.53.2 vlan.layers

Matches based on the number of layers.

Syntax:

vlan.layers: [op]number;

It can be matched exactly, or compared using the op setting:

8.53. VLAN Keywords 235

Suricata User Guide, Release 8.0.0

vlan.layers:3 # exactly 3 vlan layers
vlan.layers:<3 # less than 3 vlan layers
vlan.layers:>=2 # more or equal to 2 vlan layers

vlan.layers uses unsigned 8-bit integer.

The minimum and maximum values that vlan.layers can be are 0 and 3.

Examples

Example of a signature that would alert if a packet has 0 VLAN layers:

alert ip any any -> any any (msg:"Packet has 0 vlan layers"; vlan.layers:0; sid:1;)

Example of a signature that would alert if a packet has more than 1 VLAN layers:

alert ip any any -> any any (msg:"Packet has more than 1 vlan layer"; vlan.layers:>1; sid:1;)

It is also possible to use the vlan.layers content as a fast_pattern by using the prefilter keyword, as shown in the
following example.

alert ip any any -> any any (msg:"Packet has 2 vlan layers"; vlan.layers:2; prefilter; sid:1;)

8.54 LDAP Keywords

8.54.1 LDAP Request and Response operations

Table 3: Operation values for ldap.request.operation and
ldap.responses.operation keywords

Code Operation
0 bind_request
1 bind_response
2 unbind_request
3 search_request
4 search_result_entry
5 search_result_done
6 modify_request
7 modify_response
8 add_request
9 add_response
10 del_request
11 del_response
12 mod_dn_request
13 mod_dn_response
14 compare_request
15 compare_response
16 abandon_request
19 search_result_reference
23 extended_request
24 extended_response
25 intermediate_response

236 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

The keywords ldap.request.operation and ldap.responses.operation accept both the operation code and the operation
name as arguments.

8.54.2 ldap.request.operation

Suricata has a ldap.request.operation keyword that can be used in signatures to identify and filter network packets
based on Lightweight Directory Access Protocol request operations.

Syntax:

ldap.request.operation: operation;

ldap.request.operation uses unsigned 8-bit integer.

This keyword maps to the EVE field ldap.request.operation

Examples

Example of a signatures that would alert if the packet has an LDAP bind request operation:

alert ldap any any -> any any (msg:"Test LDAP bind request"; ldap.request.operation:0; sid:1;)

alert ldap any any -> any any (msg:"Test LDAP bind request"; ldap.request.operation:bind_request; sid:1;)

8.54.3 ldap.responses.operation

Suricata has a ldap.responses.operation keyword that can be used in signatures to identify and filter network
packets based on Lightweight Directory Access Protocol response operations.

Syntax:

ldap.responses.operation: operation[,index];

ldap.responses.operation uses unsigned 8-bit integer.

This keyword maps to the EVE field ldap.responses[].operation

An LDAP request operation can receive multiple responses. By default, the ldap.responses.operation keyword matches
all indices, but it is possible to specify a particular index for matching and also use flags such as all and any.

Table 4: Index values for ldap.responses.operation keyword
Value Description
[default] Match with any index
all Match only if all indexes match
any Match with any index
0>= Match specific index
0< Match specific index with back to front indexing

8.54. LDAP Keywords 237

Suricata User Guide, Release 8.0.0

Examples

Example of a signatures that would alert if the packet has an LDAP bind response operation:

alert ldap any any -> any any (msg:"Test LDAP bind response"; ldap.responses.operation:1; sid:1;)

alert ldap any any -> any any (msg:"Test LDAP bind response"; ldap.responses.operation:bind_response; sid:1;)

Example of a signature that would alert if the packet has an LDAP search_result_done response operation at index 1:

alert ldap any any -> any any (msg:"Test LDAP search response"; ldap.responses.operation:search_result_done,1;
sid:1;)

Example of a signature that would alert if all the responses are of type search_result_entry:

alert ldap any any -> any any (msg:"Test LDAP search response"; ldap.responses.operation:search_result_entry,all;
sid:1;)

The keyword ldap.responses.operation supports back to front indexing with negative numbers, this means that -1 will
represent the last index, -2 the second to last index, and so on. This is an example of a signature that would alert if a
search_result_entry response is found at the last index:

alert ldap any any -> any any (msg:"Test LDAP search response"; ldap.responses.operation:search_result_entry,-1;
sid:1;)

8.54.4 ldap.responses.count

Matches based on the number of responses.

Syntax:

ldap.responses.count: [op]number;

It can be matched exactly, or compared using the op setting:

ldap.responses.count:3 # exactly 3 responses
ldap.responses.count:<3 # less than 3 responses
ldap.responses.count:>=2 # more or equal to 2 responses

ldap.responses.count uses unsigned 32-bit integer.

This keyword maps to the EVE field len(ldap.responses[])

Examples

Example of a signature that would alert if a packet has 0 LDAP responses:

alert ldap any any -> any any (msg:"Packet has 0 LDAP responses"; ldap.responses.count:0; sid:1;)

Example of a signature that would alert if a packet has more than 2 LDAP responses:

alert ldap any any -> any any (msg:"Packet has more than 2 LDAP responses"; ldap.responses.count:>2; sid:1;)

238 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.54.5 ldap.request.dn

Matches on LDAP distinguished names from request operations.

Comparison is case-sensitive.

Syntax:

ldap.request.dn; content:"<content to match against>";

ldap.request.dn is a 'sticky buffer' and can be used as a fast_pattern.

This keyword maps to the EVE fields:

• ldap.request.bind_request.name

• ldap.request.add_request.entry

• ldap.request.search_request.base_object

• ldap.request.modify_request.object

• ldap.request.del_request.dn

• ldap.request.mod_dn_request.entry

• ldap.request.compare_request.entry

Example

Example of a signature that would alert if a packet has the LDAP distinguished name uid=jdoe,ou=People,
dc=example,dc=com:

alert ldap any any -> any any (msg:"Test LDAPDN"; ldap.request.dn; con-
tent:"uid=jdoe,ou=People,dc=example,dc=com"; sid:1;)

It is possible to use the keyword ldap.request.operation in the same rule to specify the operation to match.

Here is an example of a signature that would alert if a packet has an LDAP search request operation and contains the
LDAP distinguished name dc=example,dc=com.

alert ldap any any -> any any (msg:"Test LDAPDN and operation"; ldap.request.operation:search_request;
ldap.request.dn; content:"dc=example,dc=com"; sid:1;)

8.54.6 ldap.responses.dn

Matches on LDAP distinguished names from response operations.

Comparison is case-sensitive.

Syntax:

ldap.responses.dn; content:"<content to match against>";

ldap.responses.dn is a 'sticky buffer' and can be used as a fast_pattern.

ldap.responses.dn supports multiple buffer matching, see Multiple Buffer Matching.

This keyword maps to the EVE fields:

• ldap.responses[].search_result_entry.base_object

• ldap.responses[].bind_response.matched_dn

8.54. LDAP Keywords 239

Suricata User Guide, Release 8.0.0

• ldap.responses[].search_result_done.matched_dn

• ldap.responses[].modify_response.matched_dn

• ldap.responses[].add_response.matched_dn

• ldap.responses[].del_response.matched_dn

• ldap.responses[].mod_dn_response.matched_dn

• ldap.responses[].compare_response.matched_dn

• ldap.responses[].extended_response.matched_dn

Note: If a response within the array does not contain the distinguished name field, this field will be interpreted as an
empty buffer.

Example

Example of a signature that would alert if a packet has the LDAP distinguished name dc=example,dc=com:

alert ldap any any -> any any (msg:"Test LDAPDN"; ldap.responses.dn; content:"dc=example,dc=com"; sid:1;)

It is possible to use the keyword ldap.responses.operation in the same rule to specify the operation to match.

Here is an example of a signature that would alert if a packet has an LDAP search result entry operation at index 1 on
the responses array, and contains the LDAP distinguished name dc=example,dc=com.

alert ldap any any -> any any (msg:"Test LDAPDN and operation"; ldap.responses.operation:search_result_entry,1;
ldap.responses.dn; content:"dc=example,dc=com"; sid:1;)

8.54.7 ldap.responses.result_code

Suricata has a ldap.responses.result_code keyword that can be used in signatures to identify and filter network
packets based on their LDAP result code.

Syntax:

ldap.responses.result_code: code[,index];

ldap.responses.result_code uses unsigned 32-bit integer.

This keyword maps to the following eve fields:

• ldap.responses[].bind_response.result_code

• ldap.responses[].search_result_done.result_code

• ldap.responses[].modify_response.result_code

• ldap.responses[].add_response.result_code

• ldap.responses[].del_response.result_code

• ldap.responses[].mod_dn_response.result_code

• ldap.responses[].compare_response.result_code

• ldap.responses[].extended_response.result_code

240 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Table 5: Result code values for ldap.responses.result_code
Code Name
0 success
1 operations_error
2 protocol_error
3 time_limit_exceeded
4 size_limit_exceeded
5 compare_false
6 compare_true
7 auth_method_not_supported
8 stronger_auth_required
10 referral
11 admin_limit_exceeded
12 unavailable_critical_extension
13 confidentiality_required
14 sasl_bind_in_progress
16 no_such_attribute
17 undefined_attribute_type
18 inappropriate_matching
19 constraint_violation
20 attribute_or_value_exists
21 invalid_attribute_syntax
32 no_such_object
33 alias_problem
34 invalid_dns_syntax
35 is_leaf
36 alias_dereferencing_problem
48 inappropriate_authentication
49 invalid_credentials
50 insufficient_access_rights
51 busy
52 unavailable
53 unwilling_to_perform
54 loop_detect
60 sort_control_missing
61 offset_range_error
64 naming_violation
65 object_class_violation
66 not_allowed_on_non_leaf
67 not_allowed_on_rdn
68 entry_already_exists
69 object_class_mods_prohibited
70 results_too_large
71 affects_multiple_dsas
76 control_error
80 other
81 server_down
82 local_error
83 encoding_error
84 decoding_error
85 timeout

continues on next page

8.54. LDAP Keywords 241

Suricata User Guide, Release 8.0.0

Table 5 – continued from previous page
Code Name
86 auth_unknown
87 filter_error
88 user_canceled
89 param_error
90 no_memory
91 connect_error
92 not_supported
93 control_not_found
94 no_results_returned
95 more_results_to_return
96 client_loop
97 referral_limit_exceeded
100 invalid_response
101 ambiguous_response
112 tls_not_supported
113 intermediate_response
114 unknown_type
118 canceled
119 no_such_operation
120 too_late
121 cannot_cancel
122 assertion_failed
123 authorization_denied
4096 e_sync_refresh_required
16654 no_operation

More information about LDAP result code values can be found here: https://ldap.com/ldap-result-code-reference/

An LDAP request operation can receive multiple responses. By default, the ldap.responses.result_code keyword
matches with any indices, but it is possible to specify a particular index for matching and also use flags such as all
and any.

Table 6: Index values for ldap.responses.result_code keyword
Value Description
[default] Match with any index
all Match only if all indexes match
any Match with any index
0>= Match specific index
0< Match specific index with back to front indexing

Examples

Example of signatures that would alert if the packet has a success LDAP result code at any index:

alert ldap any any -> any any (msg:"Test LDAP result code"; ldap.responses.result_code:0; sid:1;)

alert ldap any any -> any any (msg:"Test LDAP result code"; ldap.responses.result_code:success,any; sid:1;)

Example of a signature that would alert if the packet has an unavailable LDAP result code at index 1:

alert ldap any any -> any any (msg:"Test LDAP result code at index 1"; ldap.responses.result_code:unavailable,1; sid:1;)

242 Chapter 8. Suricata Rules

https://ldap.com/ldap-result-code-reference/

Suricata User Guide, Release 8.0.0

Example of a signature that would alert if all the responses have a success LDAP result code:

alert ldap any any -> any any (msg:"Test all LDAP responses have success result code";
ldap.responses.result_code:success,all; sid:1;)

The keyword ldap.responses.result_code supports back to front indexing with negative numbers, this means that -1 will
represent the last index, -2 the second to last index, and so on. This is an example of a signature that would alert if a
success result code is found at the last index:

alert ldap any any -> any any (msg:"Test LDAP success at last index"; ldap.responses.result_code:success,-1; sid:1;)

8.54.8 ldap.responses.message

Matches on LDAP error messages from response operations.

Comparison is case-sensitive.

Syntax:

ldap.responses.message; content:"<content to match against>";

ldap.responses.message is a 'sticky buffer' and can be used as a fast_pattern.

ldap.responses.message supports multiple buffer matching, see Multiple Buffer Matching.

This keyword maps to the EVE fields:

• ldap.responses[].bind_response.message

• ldap.responses[].search_result_done.message

• ldap.responses[].modify_response.message

• ldap.responses[].add_response.message

• ldap.responses[].del_response.message

• ldap.responses[].mod_dn_response.message

• ldap.responses[].compare_response.message

• ldap.responses[].extended_response.message

Note: If a response within the array does not contain the error message field, this field will be interpreted as an empty
buffer.

Example

Example of a signature that would alert if a packet has the LDAP error message Size limit exceeded:

alert ldap any any -> any any (msg:"Test LDAP error message"; ldap.responses.message; content:"Size limit exceeded";
sid:1;)

8.54. LDAP Keywords 243

Suricata User Guide, Release 8.0.0

8.54.9 ldap.request.attribute_type

Matches on LDAP attribute type from request operations.

Comparison is case-sensitive.

Syntax:

ldap.request.attribute_type; content:"<content to match against>";

ldap.request.attribute_type is a 'sticky buffer' and can be used as a fast_pattern.

ldap.request.attribute_type supports multiple buffer matching, see Multiple Buffer Matching.

This keyword maps to the EVE fields:

• ldap.request.search_request.attributes[]

• ldap.request.modify_request.changes[].modification.attribute_type

• ldap.request.add_request.attributes[].name

• ldap.request.compare_request.attribute_value_assertion.description

Example

Example of a signature that would alert if a packet has the LDAP attribute type objectClass:

alert ldap any any -> any any (msg:"Test attribute type"; ldap.request.attribute_type; content:"objectClass"; sid:1;)

It is possible to use the keyword ldap.request.operation in the same rule to specify the operation to match.

Here is an example of a signature that would alert if a packet has an LDAP add request operation and contains the
LDAP attribute type objectClass.

alert ldap any any -> any any (msg:"Test attribute type and operation"; ldap.request.operation:add_request;
ldap.request.attribute_type; content:"objectClass"; sid:1;)

8.54.10 ldap.responses.attribute_type

Matches on LDAP attribute type from response operations.

Comparison is case-sensitive.

Syntax:

ldap.responses.attribute_type; content:"<content to match against>";

ldap.responses.attribute_type is a 'sticky buffer' and can be used as a fast_pattern.

ldap.responses.attribute_type supports multiple buffer matching, see Multiple Buffer Matching.

This keyword maps to the EVE field ldap.responses[].search_result_entry.attributes[].type

244 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Example

Example of a signature that would alert if a packet has the LDAP attribute type dc:

alert ldap any any -> any any (msg:"Test responses attribute type"; ldap.responses.attribute_type; content:"dc"; sid:1;)

It is possible to use the keyword ldap.responses.operation in the same rule to specify the operation to match.

Here is an example of a signature that would alert if a packet has an LDAP search result entry operation at index 1 on
the responses array, and contains the LDAP attribute type dc.

alert ldap any any -> any any (msg:"Test attribute type and operation"; ldap.responses.operation:search_result_entry,1;
ldap.responses.attribute_type; content:"dc"; sid:1;)

8.55 PGSQL Keywords

8.55.1 pgsql.query

This keyword is a sticky buffer that allows matching on the contents of PostgreSQL's query request messages parsed
by the engine. Note that this buffer inspects only the string portion of the PostgreSQL message, skipping other fields
such as identifier and length, and focusing on the query itself.

Currently, it exposes the contents of the pgsql.request.simple_query field from EVE output.

pgsql.query can be used as a fast_pattern (see fast_pattern).

Use nocase with this keyword to avoid case sensitivity for the matches.

Examples

alert pgsql any any -> any any (msg:"Simple SELECT rule"; pgsql.query; content:"SELECT *"; sid:1;)

alert pgsql any any -> any any (msg:"Simple delete rule"; pgsql.query; content:"delete"; nocase sid:2;)

8.56 Rule Types and Categorization

Once parsed, Suricata rules are categorized for performance and further processing (as different rule types will be
handled by specific engine modules). The signature types are defined in src/detect.h:

Listing 1: src/detect.h

enum SignatureType {
SIG_TYPE_NOT_SET = 0,
SIG_TYPE_IPONLY, // rule is handled by IPONLY engine
SIG_TYPE_LIKE_IPONLY, // rule is handled by pkt engine, has action effect like ip-

→˓only
/** Proto detect only signature.
* Inspected once per direction when protocol detection is done. */

SIG_TYPE_PDONLY, // rule is handled by PDONLY engine
SIG_TYPE_DEONLY,
SIG_TYPE_PKT,
SIG_TYPE_PKT_STREAM,
SIG_TYPE_STREAM,

(continues on next page)

8.55. PGSQL Keywords 245

https://github.com/OISF/suricata/blob/master/src/detect.h

Suricata User Guide, Release 8.0.0

(continued from previous page)

SIG_TYPE_APPLAYER, // app-layer but not tx, e.g. appproto
SIG_TYPE_APP_TX, // rule is handled by TX engine

SIG_TYPE_MAX,
};

In more human readable terms:

Table 7: Suricata Rule Types, and their Engine Analysis Term
Rule Type Code Symbol Engine-Analysis Representation
Decoder Events Only SIG_TYPE_DEONLY de_only
Packet SIG_TYPE_PKT pkt
IP Only SIG_TYPE_IPONLY ip_only
IP Only (contains negated address(es)) SIG_TYPE_LIKE_IPONLY like_ip_only
Protocol Detection Only SIG_TYPE_PDONLY pd_only
Packet-Stream SIG_TYPE_PKT_STREAM pkt_stream
Stream SIG_TYPE_STREAM stream
Application Layer Protocol SIG_TYPE_APPLAYER app_layer
Application Layer Protocol Transactions SIG_TYPE_APP_TX app_tx

The rule type will impact:

• To what does the signature action apply, in case of a match (Action Scope)

• When is the rule matched against traffic (Inspection Hook)

• Against what the rule matches (Data Exposed)

This categorization is done taking into consideration the presence or absence of certain rule elements, as well as the
type of keywords used. The categorization currently takes place in src/detect-engine-build.c:void SignatureSetType().

The SignatureSetType() overall flow is described below:

246 Chapter 8. Suricata Rules

https://github.com/OISF/suricata/blob/master/src/detect-engine-build.c#L1642-L1704

Suricata User Guide, Release 8.0.0

Flowcharts expanding uncovered functions or portions of the overall algorithm above are shown in the Detailed
Flowcharts section.

The following table lists all Suricata signature types, and how they impact the aspects aforementioned.

8.56. Rule Types and Categorization 247

Suricata User Guide, Release 8.0.0

Table 8: Suricata Rule Types
Type Action Scope Inspection Hook Data Exposed Keyword Examples

(non-exhaustive)
De-
coder
Events
Only
(de_only)

Packet Per-broken/ invalid
packet

Decoding events decode-event

Packet
(pkt)

Packet Per-packet basis Packet-level info (e.g.: header
info)

tcp-pkt, itype, tcp.
hdr, tcp.seq, ttl etc.

IP Only
(ip_only)

Flow (if exist-
ing). Packets
(if not part of a
flow)

Once per direction IP addresses on the flow Source/ Destination field
of a rule

IP Only
(con-
tains
negated
ad-
dress) 2

(like_ip_only)

Flow All packets IP addresses on the flow Source/ Destination field
of a rule containing
negated address

Pro-
tocol
Detec-
tion
Only
(pd_only)

Flow Once per direction,
when protocol detec-
tion is done

Protocol detected for the flow app-layer-protocol

Packet-
Stream
(pkt_stream)

Flow, if stateful
1

Per stream chunk, if
stateful, per-packet if
not
(stream payload AND
packet payload)

The reassembled stream
and/or payload data

content with
startswith or depth

Stream
(stream)

Flow, if stateful
1

Stream chunks, if
stateful, just packets
if not

Stream reassembled payload
or packet payload data

tcp-stream in protocol
field; simple content;
byte_extract

Appli-
cation
Layer
Proto-
col
(app_layer)

Flow Per-packet basis 'protocol' field in a rule Protocol field of a rule

Appli-
cation
Layer
Pro-
tocol
Trans-
actions
(app_tx)

Flow Per transaction up-
date

Buffer keywords Application layer
protocol-related, e.g.
http.host, rfb.
secresult, dcerpc.
stub_data, frame
keywords

Note: Action Scope: Flow, if stateful

248 Chapter 8. Suricata Rules

https://suri-rtd-test.readthedocs.io/en/doc-sigtypes-et-properties-v5/rules/intro.html#protocol

Suricata User Guide, Release 8.0.0

(1) Apply to the flow. If a segment isn't accepted into a stream for any reason (such as packet anomalies, errors, memcap
reached etc), the rule will be applied on a packet level.

Warning: Although both are related to matching on application layer protocols, as the table suggests, since Suricata
7 a Protocol Detection rule (that uses the app-layer-protocol keyword) is not internally classified the same as
a rule simply matching on the application layer protocol on the protocol field.

8.56.1 Signature Properties

The Action Scope mentioned above relates to the Signature Properties, as seen in src/detect-engine.c:

Listing 2: src/detect-engine.c

const struct SignatureProperties signature_properties[SIG_TYPE_MAX] = {
/* SIG_TYPE_NOT_SET */ { SIG_PROP_FLOW_ACTION_PACKET, },
/* SIG_TYPE_IPONLY */ { SIG_PROP_FLOW_ACTION_FLOW, },
/* SIG_TYPE_LIKE_IPONLY */ { SIG_PROP_FLOW_ACTION_FLOW, },
/* SIG_TYPE_PDONLY */ { SIG_PROP_FLOW_ACTION_FLOW, },
/* SIG_TYPE_DEONLY */ { SIG_PROP_FLOW_ACTION_PACKET, },
/* SIG_TYPE_PKT */ { SIG_PROP_FLOW_ACTION_PACKET, },
/* SIG_TYPE_PKT_STREAM */ { SIG_PROP_FLOW_ACTION_FLOW_IF_STATEFUL, },
/* SIG_TYPE_STREAM */ { SIG_PROP_FLOW_ACTION_FLOW_IF_STATEFUL, },
/* SIG_TYPE_APPLAYER */ { SIG_PROP_FLOW_ACTION_FLOW, },
/* SIG_TYPE_APP_TX */ { SIG_PROP_FLOW_ACTION_FLOW, },

};

Signature: Require Real Packet

Aside from the scope of action of a signature, certain rule conditions will require that it matches against a real packet
(as opposed to a pseudo packet). These rules are flagged with SIG_MASK_REQUIRE_REAL_PKT by the engine, and will
have real_pkt listed as one of the rule's requirements. (See engine-analysis example output for the Packet rule
type.)

A pseudo packet is an internal resource used by the engine when a flow is over but there is still data to be processed,
such as when there is a flow timeout. A fake packet is then injected in the flow to finish up processing before ending it.

Those two types will be more documented soon (tracking #7424).

8.56.2 Signature Types and Variable-like Keywords

Keywords such as flow variables (flowint, flowbits), datasets, and similar ones can alter the rule type, if present
in a signature.

That happens because the variable condition can change per packet. Thus, the Signature is categorized as a packet rule.

This affects rule types:

• Application Layer (app_layer)

• Protocol Detection Only (pd_only)

• Decoder Events Only (de_only)

8.56. Rule Types and Categorization 249

https://github.com/OISF/suricata/blob/master/src/detect-engine.c
https://redmine.openinfosecfoundation.org/issues/7424

Suricata User Guide, Release 8.0.0

• IP Only (ip_only) 3

• Like IP Only (like_ip_only) 3

The rule examples provided further cover some such cases, but the table below lists those keywords with more details:

Table 9: Variable-like Keywords
Keyword Keyword Option Rule Type change?
flow to_server, to_client no type changes 3

flow established, not_established to packet
flowbits, xbits, hostbits isset, isnotset to packet
flowbits, xbits, hostbits set, unset, toggle no type change
flowint isset, notset, all operators to packet
flowint defining the variable; unseting; no type change
iprep isset, notset, all operators to packet

Note: IP Only and Like IP Only

(3) Unlike the other affected types, signatures that would otherwise be classified as ip_only or like_ip_only become
Packet rules if the flow keyword is used, regardless of option.

Note: dataset, while may look similar to the keywords above, doesn't pertain to this list as it can only be used
with sticky buffer keywords, thus being only available to Application Layer Transaction rules (app_tx), which are not
affected by this.

Flowbits: isset

If a non-stateful rule (e.g. a pkt rule) checks if a flowbit is set (like in flowbits:fb6,isset) and the rule that sets that
variable is a stateful one, such as an app_tx rule, the engine will set a flag to indicate that that rule is also stateful -
without altering its signature type. This flag is currently SIG_FLAG_INIT_STATE_MATCH (cf. ticket #7483).

There is a work-in-progress to add information about this to the engine-analysis report (ticket #7456).

8.56.3 Signatures per Type

This section offers brief descriptions for each rule type, and illustrates what signatures of each type may look like. It is
possible to learn the type of a signature, as well as other important information, by running Suricata in engine analysis
mode.

For each rule type, there is also a sample of the Engine Analysis report for one or more of rule(s) shown.

250 Chapter 8. Suricata Rules

https://redmine.openinfosecfoundation.org/issues/7483
https://redmine.openinfosecfoundation.org/issues/7456

Suricata User Guide, Release 8.0.0

Decoder Events Only

Signatures that inspect broken or invalid packets. They expose Suricata decoding events.

For more examples check https://github.com/OISF/suricata/blob/master/rules/decoder-events.rules.

Example

alert pkthdr any any -> any any (msg:"SURICATA IPv6 duplicated Hop-By-Hop Options extension header"; decode-
event:ipv6.exthdr_dupl_hh; classtype:protocol-command-decode; sid:1101;)

drop pkthdr any any -> any any (msg:"SURICATA IPv4 invalid option length"; :example-rule-emphasis:`decode-
event:ipv4.opt_invalid_len; classtype:protocol-command-decode; sid:2200005; rev:2;)

Engine-Analysis Report

{
"raw": "alert pkthdr any any -> any any (msg:\"SURICATA IPv6 duplicated Hop-By-Hop␣

→˓Options extension header\"; decode-event:ipv6.exthdr_dupl_hh; classtype:protocol-
→˓command-decode; sid:1101;)",
"id": 1101,
"gid": 1,
"rev": 0,
"msg": "SURICATA IPv6 duplicated Hop-By-Hop Options extension header",
"app_proto": "unknown",
"requirements": [
"engine_event"

],
"type": "de_only",
"flags": [
"src_any",
"dst_any",
"sp_any",
"dp_any",
"toserver",
"toclient"

],
"pkt_engines": [
{
"name": "packet",
"is_mpm": false

}
],
"frame_engines": [],
"lists": {
"packet": {
"matches": [

{
"name": "decode-event"

}
]

}
(continues on next page)

8.56. Rule Types and Categorization 251

https://github.com/OISF/suricata/blob/master/rules/decoder-events.rules

Suricata User Guide, Release 8.0.0

(continued from previous page)

}
}

Packet

Rules that expose/ inspect information on a packet-level (for instance, the header). Certain flow keywords may also
turn a rule into a pkt rule, if they require per-packet inspection (cf. Signature Types and Variable-like Keywords).

Examples

alert tcp-pkt any any -> any any (msg:"tcp-pkt, anchored content"; content:"abc"; startswith; sid:203;)

alert tcp any any -> any any (msg:"ttl"; ttl:123; sid:701;)

alert udp any any -> any any (msg:"UDP with flow direction"; flow:to_server; sid:1001;)

alert tcp any any -> any 443 (flow: to_server; flowbits:set,tls_error; sid:1604; msg:"Allow TLS error handling (outgoing
packet) - non-stateful rule";)

alert tcp-pkt any any -> any any (msg:"Flowbit isset"; flowbits:isset,fb6; flowbits:isset,fb7; sid:1919;)

Engine-Analysis Report

{
"raw": "alert tcp-pkt any any -> any any (msg:\"tcp-pkt, anchored content\"; content:\

→˓"abc\"; startswith; sid:203;)",
"id": 203,
"gid": 1,
"rev": 0,
"msg": "tcp-pkt, anchored content",
"app_proto": "unknown",
"requirements": [

"payload",
"real_pkt"

],
"type": "pkt",
"flags": [
"src_any",
"dst_any",
"sp_any",
"dp_any",
"need_packet",
"toserver",
"toclient",
"prefilter"

],
"pkt_engines": [
{
"name": "payload",
"is_mpm": true

(continues on next page)

252 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

(continued from previous page)

}
],
"frame_engines": [],
"lists": {
"payload": {
"matches": [
{
"name": "content",
"content": {
"pattern": "abc",
"length": 3,
"nocase": false,
"negated": false,
"starts_with": true,
"ends_with": false,
"is_mpm": true,
"no_double_inspect": false,
"depth": 3,
"fast_pattern": false,
"relative_next": false

}
}

]
}

},
"mpm": {
"buffer": "payload",
"pattern": "abc",
"length": 3,
"nocase": false,
"negated": false,
"starts_with": true,
"ends_with": false,
"is_mpm": true,
"no_double_inspect": false,
"depth": 3,
"fast_pattern": false,
"relative_next": false

}
}

8.56. Rule Types and Categorization 253

Suricata User Guide, Release 8.0.0

IP Only

The IP ONLY rule type is used when rules match only on source and destination IP addresses, and not on any other
flow or content modifier.

Examples

alert tcp-stream any any -> any any (msg:"tcp-stream, no content"; sid:101;)

alert tcp-pkt [192.168.0.0/16,10.0.0.0/8,172.16.0.0/12] any -> any any (msg:"tcp-pkt, no content"; sid:201;)

alert ip any any -> any any (hostbits:set,myflow2; sid:1505;)

alert udp any any -> any any (msg:"UDP with flow direction"; sid:1601;)

Engine-Analysis Report

{
"raw": "alert ip any any -> any any (hostbits:set,myflow2; sid:1505;)",
"id": 1505,
"gid": 1,
"rev": 0,
"app_proto": "unknown",
"requirements": [],
"type": "ip_only",
"flags": [
"src_any",
"dst_any",
"sp_any",
"dp_any",
"toserver",
"toclient"

],
"pkt_engines": [],
"frame_engines": [],
"lists": {
"postmatch": {
"matches": [

{
"name": "hostbits"

}
]

}
}

}

254 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

IP Only (contains negated address)

A rule that inspects IP only properties, but contains negated IP addresses.

IP Only signatures with negated addresses are like IP-only signatures, but currently handled differently due to limitations
of the algorithm processing IP Only rules. Impactful differences from a user-perspective are listed on the Signature
Types table.

Examples

alert tcp 192.168.0.0/16,10.0.0.0/8,172.16.0.0/12 any -> ![192.168.0.0/16,10.0.0.0/8,172.16.0.0/12] any (msg:"tcp, has
negated IP address"; sid:304;)

alert tcp [10.0.0.0/8,!10.10.10.10] any -> [10.0.0.0/8,!10.10.10.10] any (msg:"tcp, has negated IP address"; sid:305;)

Engine-Analysis Report

{
"raw": "alert tcp [10.0.0.0/8,!10.10.10.10] any -> [10.0.0.0/8,!10.10.10.10] any (msg:\

→˓"tcp, has negated IP address\"; sid:305;)",
"id": 305,
"gid": 1,
"rev": 0,
"msg": "tcp, has negated IP address",
"app_proto": "unknown",
"requirements": [],
"type": "like_ip_only",
"flags": [
"sp_any",
"dp_any",
"toserver",
"toclient"

],
"pkt_engines": [],
"frame_engines": [],
"lists": {}

}

Protocol Detection Only

When a signature checks for the application layer protocol but there is no need for a per-packet inspection, protocol
detection can be done with the app-layer-protocol keyword. Check the keyword documentation full for usage.

See Protocol Detection Only for a flowchart representing how the type is defined.

See Application Layer Protocol for a packet-based inspection.

Warning: Since Suricata 7, a Protocol Detection rule (that uses the app-layer-protocol keyword) is not
internally classified the same as a rule simply matching on the application layer protocol on the protocol field.

8.56. Rule Types and Categorization 255

https://docs.suricata.io/en/latest/rules/app-layer.html#app-layer-protocol

Suricata User Guide, Release 8.0.0

Examples

alert tcp any any -> any any (msg:"tcp, pd negated"; app-layer-protocol:!http; sid:401;)

alert tcp any any -> any any (msg:"tcp, pd positive"; app-layer-protocol:http; sid:402;)

alert tcp any any -> any any (msg:"tcp, pd positive dns"; app-layer-protocol:dns; sid:403;)

alert tcp any any -> any any (msg:"tcp, pd positive, dns, flow:to_server"; app-layer-protocol:dns; flow:to_server;
sid:405;)

Engine-Analysis Report

{
"raw": "alert tcp any any -> any any (msg:\"tcp, pd positive dns\"; app-layer-

→˓protocol:dns; sid:403;)",
"id": 403,
"gid": 1,
"rev": 0,
"msg": "tcp, pd positive dns",
"app_proto": "unknown",
"requirements": [],
"type": "pd_only",
"flags": [
"src_any",
"dst_any",
"sp_any",
"dp_any",
"toserver",
"toclient"

],
"pkt_engines": [
{
"name": "packet",
"is_mpm": false

}
],
"frame_engines": [],
"lists": {
"packet": {
"matches": [

{
"name": "app-layer-protocol"

}
]

}
}

}

256 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Packet-Stream

A rule is categorized as such when it inspects on traffic in specific portions of the packet payload, using content buffer
with the startswith or depth keywords.

Examples

alert tcp any any -> any any (msg:"tcp, anchored content"; content:"abc"; startswith; sid:303;)

alert http any any -> any any (msg:"http, anchored content"; content:"abc"; depth:30; sid:603;)

Engine-Analysis Report

{
"raw": "alert http any any -> any any (msg:\"http, anchored content\"; content:\"abc\";

→˓ depth:30; sid:603;)",
"id": 603,
"gid": 1,
"rev": 0,
"msg": "http, anchored content",
"app_proto": "http_any",
"requirements": [

"payload",
"flow"

],
"type": "pkt_stream",
"flags": [
"src_any",
"dst_any",
"sp_any",
"dp_any",
"applayer",
"need_packet",
"need_stream",
"toserver",
"toclient",
"prefilter"

],
"pkt_engines": [
{
"name": "payload",
"is_mpm": true

}
],
"frame_engines": [],
"lists": {
"payload": {
"matches": [
{
"name": "content",
"content": {

(continues on next page)

8.56. Rule Types and Categorization 257

Suricata User Guide, Release 8.0.0

(continued from previous page)

"pattern": "abc",
"length": 3,
"nocase": false,
"negated": false,
"starts_with": false,
"ends_with": false,
"is_mpm": true,
"no_double_inspect": false,
"depth": 30,
"fast_pattern": false,
"relative_next": false

}
}

]
}

},
"mpm": {
"buffer": "payload",
"pattern": "abc",
"length": 3,
"nocase": false,
"negated": false,
"starts_with": false,
"ends_with": false,
"is_mpm": true,
"no_double_inspect": false,
"depth": 30,
"fast_pattern": false,
"relative_next": false

}
}

Stream

A rule that matches payload traffic without regards to its position, that is, on an unanchored content buffer, uses byte
extraction or matches on tcp-stream is classified a stream rule.

Examples

alert tcp-stream any any -> any any (msg:"tcp-stream, simple content"; content:"abc"; sid:102;)

alert http any any -> any any (msg:"http, simple content"; content:"abc"; sid:602;)

alert tcp any any -> any 443 (flow: to_server; content:"abc"; flowbits:set,tls_error; sid:1605; msg:"Allow TLS error
handling (outgoing packet) with simple content - Stream rule";)

alert tcp any any -> any 443 (flow: to_server; content:"abc"; sid:160401; msg:"Allow TLS error handling (outgoing
packet) - stream rule";)

alert tcp any any -> any 443 (content:"abc"; sid:160402; msg:"Allow TLS error handling (outgoing packet) - stream
rule";)

alert tcp any any -> any any (msg:"byte_extract with dce"; byte_extract:4,0,var,dce; byte_test:4,>,var,4,little; sid:901;)

258 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Engine-Analysis Report

{
"raw": "alert tcp any any -> any any (msg:\"byte_extract with dce\"; byte_extract:4,0,

→˓var,dce; byte_test:4,>,var,4,little; sid:901;)",
"id": 901,
"gid": 1,
"rev": 0,
"msg": "byte_extract with dce",
"app_proto": "dcerpc",
"requirements": [

"payload",
"flow"

],
"type": "stream",
"flags": [
"src_any",
"dst_any",
"sp_any",
"dp_any",
"applayer",
"need_stream",
"toserver",
"toclient"

],
"pkt_engines": [
{
"name": "payload",
"is_mpm": false

}
],
"frame_engines": [],
"lists": {
"payload": {
"matches": [
{
"name": "byte_extract"

},
{
"name": "byte_test",
"byte_test": {
"nbytes": 4,
"offset": 4,
"base": "unset",
"flags": [
"little_endian"

]
}

}
]

}
}

}

8.56. Rule Types and Categorization 259

Suricata User Guide, Release 8.0.0

Application Layer Protocol

For a packet-based inspection of the application layer protocol, a rule should use the protocol field for the matches.

Warning: Since Suricata 7, a simple rule matching traffic on the protocol field is not internally classified the
same as a rule using the app-layer-protocol keyword).

Warning: As per Suricata 7, if flow:established or flow:not_established is added to a base Application
Layer Protocol rule, that signature will become a Packet rule.

Examples

alert dns any any -> any any (msg:"app-layer, dns"; sid:404;)

alert http any any -> any any (msg:"http, no content"; sid:601;)

alert tls any any -> any any (msg:"tls, pkt or app-layer?"; flowint:tls_error_int,=,0; sid:613;)

Engine-Analysis Report

{
"raw": "alert dns any any -> any any (msg:\"app-layer, dns\"; sid:404;)",
"id": 404,
"gid": 1,
"rev": 0,
"msg": "app-layer, dns",
"app_proto": "dns",
"requirements": [

"flow"
],
"type": "app_layer",
"flags": [
"src_any",
"dst_any",
"sp_any",
"dp_any",
"applayer",
"toserver",
"toclient"

],
"pkt_engines": [],
"frame_engines": [],
"lists": {}

}

260 Chapter 8. Suricata Rules

https://suri-rtd-test.readthedocs.io/en/doc-sigtypes-et-properties-v5/rules/intro.html#protocol

Suricata User Guide, Release 8.0.0

Application Layer Protocol Transactions

Rules inspecting traffic using keywords related to application layer protocols are classified with this signature type.
This also includes frame keywords.

Examples

alert tcp any any -> any any (msg:"http, pos event"; app-layer-event:http.file_name_too_long; sid:501;)

alert http any any -> any any (msg:"Test"; flow:established,to_server; http.method; content:"GET"; http.uri; con-
tent:".exe"; endswith; http.host; content:!".google.com"; endswith; sid:1102;)

alert udp any any -> any any (msg:"DNS UDP Frame"; flow:to_server; frame:dns.pdu; content:"|01 20 00 01|"; offset:2;
content:"suricata"; offset:13; sid:1402; rev:1;)

alert tcp any any -> any any (msg:"byte_extract with dce"; dcerpc.stub_data; content:"abc";
byte_extract:4,0,var,relative; byte_test:4,>,var,4,little; sid:902;)

Engine-Analysis Report

{
"raw": "alert tcp any any -> any any (msg:\"byte_extract with dce\"; dcerpc.stub_data;␣

→˓content:\"abc\"; byte_extract:4,0,var,relative; byte_test:4,>,var,4,little; sid:902;)",
"id": 902,
"gid": 1,
"rev": 0,
"msg": "byte_extract with dce",
"app_proto": "dcerpc",
"requirements": [

"flow"
],
"type": "app_tx",
"flags": [
"src_any",
"dst_any",
"sp_any",
"dp_any",
"applayer",
"toserver",
"toclient",
"prefilter"

],
"pkt_engines": [],
"frame_engines": [],
"engines": [
{
"name": "dce_stub_data",
"direction": "toclient",
"is_mpm": true,
"app_proto": "dcerpc",
"progress": 0,
"matches": [

(continues on next page)

8.56. Rule Types and Categorization 261

Suricata User Guide, Release 8.0.0

(continued from previous page)

{
"name": "content",
"content": {
"pattern": "abc",
"length": 3,
"nocase": false,
"negated": false,
"starts_with": false,
"ends_with": false,
"is_mpm": true,
"no_double_inspect": false,
"fast_pattern": false,
"relative_next": true

}
},
{
"name": "byte_extract"

},
{
"name": "byte_test",
"byte_test": {
"nbytes": 4,
"offset": 4,
"base": "unset",
"flags": [
"little_endian"

]
}

}
]

},
{
"name": "dce_stub_data",
"direction": "toserver",
"is_mpm": true,
"app_proto": "dcerpc",
"progress": 0,
"matches": [
{
"name": "content",
"content": {
"pattern": "abc",
"length": 3,
"nocase": false,
"negated": false,
"starts_with": false,
"ends_with": false,
"is_mpm": true,
"no_double_inspect": false,
"fast_pattern": false,
"relative_next": true

}

(continues on next page)

262 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

(continued from previous page)

},
{
"name": "byte_extract"

},
{
"name": "byte_test",
"byte_test": {
"nbytes": 4,
"offset": 4,
"base": "unset",
"flags": [
"little_endian"

]
}

}
]

},
{
"name": "dce_stub_data",
"direction": "toclient",
"is_mpm": true,
"app_proto": "smb",
"progress": 0,
"matches": [

{
"name": "content",
"content": {
"pattern": "abc",
"length": 3,
"nocase": false,
"negated": false,
"starts_with": false,
"ends_with": false,
"is_mpm": true,
"no_double_inspect": false,
"fast_pattern": false,
"relative_next": true

}
},
{
"name": "byte_extract"

},
{
"name": "byte_test",
"byte_test": {
"nbytes": 4,
"offset": 4,
"base": "unset",
"flags": [
"little_endian"

]
}

(continues on next page)

8.56. Rule Types and Categorization 263

Suricata User Guide, Release 8.0.0

(continued from previous page)

}
]

},
{
"name": "dce_stub_data",
"direction": "toserver",
"is_mpm": true,
"app_proto": "smb",
"progress": 0,
"matches": [
{
"name": "content",
"content": {
"pattern": "abc",
"length": 3,
"nocase": false,
"negated": false,
"starts_with": false,
"ends_with": false,
"is_mpm": true,
"no_double_inspect": false,
"fast_pattern": false,
"relative_next": true

}
},
{
"name": "byte_extract"

},
{
"name": "byte_test",
"byte_test": {
"nbytes": 4,
"offset": 4,
"base": "unset",
"flags": [
"little_endian"

]
}

}
]

}
],
"lists": {},
"mpm": {
"buffer": "dce_stub_data",
"pattern": "abc",
"length": 3,
"nocase": false,
"negated": false,
"starts_with": false,
"ends_with": false,
"is_mpm": true,

(continues on next page)

264 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

(continued from previous page)

"no_double_inspect": false,
"fast_pattern": false,
"relative_next": true

}
}

8.56.4 Detailed Flowcharts

A look into the illustrated overall representation of functions or paths that determine signature types.

IP Only and IP Only with negated addresses

ip_only and like_ip_only flows.

8.56. Rule Types and Categorization 265

Suricata User Guide, Release 8.0.0

Protocol Detection Only

pd_only flow.

266 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.56. Rule Types and Categorization 267

Suricata User Guide, Release 8.0.0

Application Layer Protocol, Transaction, Packet, Stream and Stream-Packet rules

app_layer, app_tx, pkt, stream and stream-pkt flows.

REQUIRE_PACKET and REQUIRE_STREAM can be seen as flags need_packet and need_stream in the
engine-analysis output.

8.57 Email Keywords

8.57.1 email.from

Matches the MIME From field of an email.

Comparison is case-sensitive.

Syntax:

email.from; content:"<content to match against>";

268 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

email.from is a 'sticky buffer' and can be used as a fast_pattern.

This keyword maps to the EVE field email.from

Example

Example of a signature that would alert if a packet contains the MIME field from with the value toto <toto@gmail.
com>

alert smtp any any -> any any (msg:"Test mime email from"; email.from; content:"toto <toto@gmail.com>"; sid:1;)

8.57.2 email.subject

Matches the MIME Subject field of an email.

Comparison is case-sensitive.

Syntax:

email.subject; content:"<content to match against>";

email.subject is a 'sticky buffer' and can be used as a fast_pattern.

This keyword maps to the EVE field email.subject

Example

Example of a signature that would alert if a packet contains the MIME field subject with the value This is a test
email

alert smtp any any -> any any (msg:"Test mime email subject"; email.subject; content:"This is a test email"; sid:1;)

8.57.3 email.to

Matches the MIME To field of an email.

Comparison is case-sensitive.

Syntax:

email.to; content:"<content to match against>";

email.to is a 'sticky buffer' and can be used as a fast_pattern.

This keyword maps to the EVE field email.to

8.57. Email Keywords 269

Suricata User Guide, Release 8.0.0

Example

Example of a signature that would alert if a packet contains the MIME field towith the value 172.16.92.2@linuxbox

alert smtp any any -> any any (msg:"Test mime email to"; email.to; content:"172.16.92.2@linuxbox"; sid:1;)

8.57.4 email.cc

Matches the MIME Cc field of an email.

Comparison is case-sensitive.

Syntax:

email.cc; content:"<content to match against>";

email.cc is a 'sticky buffer' and can be used as a fast_pattern.

This keyword maps to the EVE field email.cc[]

Example

Example of a signature that would alert if a packet contains the MIME field cc with the value Emily
<emily.roberts@example.com>, Ava <ava.johnson@example.com>, Sophia Wilson <sophia.
wilson@example.com>

alert smtp any any -> any any (msg:"Test mime email cc"; email.cc; content:"Emily <emily.roberts@example.com>,
Ava <ava.johnson@example.com>, Sophia Wilson <sophia.wilson@example.com>"; sid:1;)

8.57.5 email.date

Matches the MIME Date field of an email.

Comparison is case-sensitive.

Syntax:

email.date; content:"<content to match against>";

email.date is a 'sticky buffer' and can be used as a fast_pattern.

This keyword maps to the EVE field email.date

Example

Example of a signature that would alert if a packet contains the MIME field date with the value Fri, 21 Apr 2023
05:10:36 +0000

alert smtp any any -> any any (msg:"Test mime email date"; email.date; content:"Fri, 21 Apr 2023 05:10:36 +0000";
sid:1;)

270 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.57.6 email.message_id

Matches the MIME Message-Id field of an email.

Comparison is case-sensitive.

Syntax:

email.message_id; content:"<content to match against>";

email.message_id is a 'sticky buffer' and can be used as a fast_pattern.

This keyword maps to the EVE field email.message_id

Example

Example of a signature that would alert if a packet contains the MIME field message id with the value <alpine.
DEB.2.00.1311261630120.9535@sd-26634.dedibox.fr>

alert smtp any any -> any any (msg:"Test mime email message id"; email.message_id;
content:"<alpine.DEB.2.00.1311261630120.9535@sd-26634.dedibox.fr>"; sid:1;)

8.57.7 email.x_mailer

Matches the MIME X-Mailer field of an email.

Comparison is case-sensitive.

Syntax:

email.x_mailer; content:"<content to match against>";

email.x_mailer is a 'sticky buffer' and can be used as a fast_pattern.

This keyword maps to the EVE field email.x_mailer

Example

Example of a signature that would alert if a packet contains the MIME field x-mailer with the value Microsoft
Office Outlook, Build 11.0.5510

alert smtp any any -> any any (msg:"Test mime email x-mailer"; email.x_mailer; content:"Microsoft Office Outlook,
Build 11.0.5510"; sid:1;)

8.57.8 email.url

Matches URL extracted of an email.

Comparison is case-sensitive.

Syntax:

email.url; content:"<content to match against>";

8.57. Email Keywords 271

Suricata User Guide, Release 8.0.0

email.url is a 'sticky buffer' and can be used as a fast_pattern.

email.url supports multiple buffer matching, see Multiple Buffer Matching.

This keyword maps to the EVE field email.url[]

Example

Example of a signature that would alert if an email contains the url test-site.org/blah/123/.

alert smtp any any -> any any (msg:"Test mime email url"; email.url; content:"test-site.org/blah/123/"; sid:1;)

8.57.9 email.received

Matches Received field of an email.

Comparison is case-sensitive.

Syntax:

email.received; content:"<content to match against>";

email.received is a 'sticky buffer' and can be used as a fast_pattern.

email.received supports multiple buffer matching, see Multiple Buffer Matching.

This keyword maps to the EVE field email.received[]

Example

Example of a signature that would alert if a packet contains the MIME field received with the value from [65.
201.218.30] (helo=COZOXORY.club)by 173-66-46-112.wash.fios.verizon.net with esmtpa (Exim
4.86)(envelope-from)id 71cF63a9for mirjam@abrakadabra.ch; Mon, 29 Jul 2019 17:01:45
+0000

alert smtp any any -> any any (msg:"Test mime email received"; email.received; content:"from [65.201.218.30]
(helo=COZOXORY.club)by 173-66-46-112.wash.fios.verizon.net with esmtpa (Exim 4.86)(envelope-from)id
71cF63a9for mirjam@abrakadabra.ch; Mon, 29 Jul 2019 17:01:45 +0000"; sid:1;)

272 Chapter 8. Suricata Rules

CHAPTER

NINE

RULE MANAGEMENT

9.1 Rule Management with Suricata-Update

While it is possible to download and install rules manually, it is recommended to use a management tool for this.
suricata-update is the official way to update and manage rules for Suricata.

suricata-update is bundled with Suricata and is normally installed with it. For instructions on installing manually,
see http://suricata-update.readthedocs.io/en/latest/quickstart.html#install-suricata-update

Note: suricata-update is bundled with Suricata version 4.1 and later. It can be used with older versions as well.
It will have to be installed separately in that case.

To download the Emerging Threats Open ruleset, it is enough to simply run:

sudo suricata-update

This will download the ruleset into /var/lib/suricata/rules/

Suricata's configuration will have to be updated to have a rules config like this:

default-rule-path: /var/lib/suricata/rules
rule-files:
- suricata.rules

Now (re)start Suricata.

9.1.1 Updating your rules

To update the rules, simply run

sudo suricata-update

It is recommended to update your rules frequently.

273

http://suricata-update.readthedocs.io/en/latest/quickstart.html#install-suricata-update

Suricata User Guide, Release 8.0.0

9.1.2 Using other rulesets

Suricata-Update is capable of making other rulesets accessible as well.

To see what is available, fetch the master index from the OISF hosts:

sudo suricata-update update-sources

Then have a look at what is available:

sudo suricata-update list-sources

This will give a result similar to

Each of the rulesets has a name that has a 'vendor' prefix, followed by a set name. For example, OISF's traffic id ruleset
is called 'oisf/trafficid'.

To enable 'oisf/trafficid', enter:

sudo suricata-update enable-source oisf/trafficid
sudo suricata-update

Now restart Suricata again and the rules from the OISF TrafficID ruleset are loaded.

To see which rulesets are currently active, use "list-enabled-sources".

274 Chapter 9. Rule Management

Suricata User Guide, Release 8.0.0

9.1.3 Controlling which rules are used

By default suricata-update will merge all rules into a single file "/var/lib/suricata/rules/suricata.rules".

To enable rules that are disabled by default, use /etc/suricata/enable.conf

2019401 # enable signature with this sid
group:emerging-icmp.rules # enable this rulefile
re:trojan # enable all rules with this string

Similarly, to disable rules use /etc/suricata/disable.conf :

2019401 # disable signature with this sid
group:emerging-info.rules # disable this rulefile
re:heartbleed # disable all rules with this string

After updating these files, rerun suricata-update again:

sudo suricata-update

Finally restart Suricata.

9.1.4 Further reading

See https://suricata-update.readthedocs.io/en/latest/

9.2 Adding Your Own Rules

If you would like to create a rule yourself and use it with Suricata, this guide might be helpful.

Start creating a file for your rule. Use one of the following examples in your console/terminal window:

sudo nano local.rules
sudo vim local.rules

Write your rule, see Rules Format and save it.

Update the Suricata configuration file so your rule is included. Use one of the following examples:

sudo nano /etc/suricata/suricata.yaml
sudo vim /etc/suricata/suricata.yaml

and make sure your local.rules file is added to the list of rules:

default-rule-path: /usr/local/etc/suricata/rules

rule-files:
- suricata.rules
- /path/to/local.rules

Now, run Suricata and see if your rule is being loaded.

suricata -c /etc/suricata/suricata.yaml -i wlan0

9.2. Adding Your Own Rules 275

https://suricata-update.readthedocs.io/en/latest/

Suricata User Guide, Release 8.0.0

If the rule failed to load, Suricata will display as much information as it has when it deemed the rule un-loadable. Pay
special attention to the details: look for mistakes in special characters, spaces, capital characters, etc.

Next, check if your log-files are enabled in the Suricata configuration file suricata.yaml.

If you had to correct your rule and/or modify Suricata's YAML configuration file, you'll have to restart Suricata.

If you see your rule is successfully loaded, you can double check your rule by doing something that should trigger it.

By default, Suricata will log alerts to two places

• eve.json

• fast.log

These files will be located in the log output directory which is set by one of two methods:

1. Suricata configuration file: see default-log-dir for the name of the directory

2. Suricata command line: Using -l /path/to/log-dir creates log files in the named directory.

The following example assumes that the log directory is named /var/log/suricata

tail -f /var/log/suricata/fast.log

If you would make a rule like this:

alert http any any -> any any (msg:"Do not read gossip during work";
content:"Scarlett"; nocase; classtype:policy-violation; sid:1; rev:1;)

Your alert should look like this:

09/15/2011-16:50:27.725288 [**] [1:1:1] Do not read gossip during work [**]
[Classification: Potential Corporate Privacy Violation] [Priority: 1] {TCP} 192.168.0.
→˓32:55604 -> 68.67.185.210:80

9.3 Rule Reloads

Suricata can reload the rules without restarting. This way, there is minimal service disruption.

This works by sending Suricata a signal or by using the unix socket. When Suricata is told to reload the rules these are
the basic steps it takes:

• Load new config to update rule variables and values.

• Load new rules

• Construct new detection engine

• Swap old and new detection engines

• Make sure all threads are updated

• Free old detection engine

Suricata will continue to process packets normally during this process. Keep in mind though, that the system should
have enough memory for both detection engines.

Signal:

kill -USR2 $(pidof suricata)

276 Chapter 9. Rule Management

Suricata User Guide, Release 8.0.0

There are two methods available when using the Unix socket.

Blocking reload

suricatasc -c reload-rules

Non blocking reload

suricatasc -c ruleset-reload-nonblocking

It is also possible to get information about the last reload via dedicated commands. See Commands in standard running
mode for more information.

9.4 Rules Profiling

If Suricata is built with the --enable-profiling-rules then the ruleset profiling can be activated on demand from the unix
socket and dumped from it.

To start profiling

suricatasc -c ruleset-profile-start

To stop profiling

suricatasc -c ruleset-profile-stop

To dump profiling

suricatasc -c ruleset-profile

A typical scenario to get rules performance would be

suricatasc -c ruleset-profile-start
sleep 30
suricatasc -c ruleset-profile-stop
suricatasc -c ruleset-profile

On busy systems, using the sampling capability to capture performance on a subset of packets can be obtained via the
sample-rate variable in the profiling section in the suricata.yaml file.

9.4. Rules Profiling 277

Suricata User Guide, Release 8.0.0

278 Chapter 9. Rule Management

CHAPTER

TEN

MAKING SENSE OUT OF ALERTS

When an alert happens it's important to figure out what it means. Is it serious? Relevant? A false positive?

To find out more about the rule that fired, it's always a good idea to look at the actual rule.

The first thing to look at in a rule is the description that follows the msg keyword. Let's consider an example:

msg:"ET SCAN sipscan probe";

The "ET" indicates the rule came from the Emerging Threats (Proofpoint) project. "SCAN" indicates the purpose of
the rule is to match on some form of scanning. Following that, a more or less detailed description is given.

Most rules contain some pointers to more information in the form of the "reference" keyword.

Consider the following example rule:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS \
(msg:"ET CURRENT_EVENTS Adobe 0day Shovelware"; \
flow:established,to_server; content:"GET "; nocase; depth:4; \
content:!"|0d 0a|Referer\:"; nocase; \
uricontent:"/ppp/listdir.php?dir="; \
pcre:"/\/[a-z]{2}\/[a-z]{4}01\/ppp\/listdir\.php\?dir=/U"; \
classtype:trojan-activity; \
reference:url,isc.sans.org/diary.html?storyid=7747; \
reference:url,doc.emergingthreats.net/2010496; \
reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/CURRENT_EVENTS/CURRENT_

→˓Adobe; \
sid:2010496; rev:2;)

In this rule, the reference keyword indicates 3 urls to visit for more information:

isc.sans.org/diary.html?storyid=7747
doc.emergingthreats.net/2010496
www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/CURRENT_EVENTS/CURRENT_Adobe

Some rules contain a reference like: "reference:cve,2009-3958;" should allow you to find info about the specific
CVE using your favorite search engine.

It's not always straight forward and sometimes not all of that information is available publicly. Usually asking about it
on the signature support channel can be helpful.

In Rule Management with Suricata-Update more information on the rule sources and their documentation and support
methods can be found.

In many cases, looking at just the alert and the packet that triggered it won't be enough to be conclusive. When using
the default Eve settings a lot of metadata will be added to the alert.

279

Suricata User Guide, Release 8.0.0

For example, if a rule fired that indicates your web application is attacked, looking at the metadata might reveal that
the web application replied with 404 not found. This will usually mean the attack failed but not always.

Not every protocol leads to metadata generation, so when running an IDS engine like Suricata, it's often recommended
to combine it with full packet capture. Using tools like Evebox, Sguil or Snorby, the full TCP session or UDP flow can
be inspected.

Obviously there is a lot more to Incidence Response, but this should get you started.

280 Chapter 10. Making sense out of Alerts

CHAPTER

ELEVEN

PERFORMANCE

11.1 Runmodes

Suricata consists of several 'building blocks' called threads, thread-modules and queues. A thread is like a process that
runs on a computer. Suricata is multi-threaded, so multiple threads are active at once. A thread-module is a part of
a functionality. One module is for example for decoding a packet, another is the detect-module and another one the
output-module. A packet can be processed by more than one thread. The packet will then be passed on to the next
thread through a queue. Packets will be processed by one thread at a time, but there can be multiple packets being
processed at a time by the engine (see Max-pending-packets). A thread can have one or more thread-modules. If they
have more modules, they can only be active one at a time. The way threads, modules and queues are arranged together
is called the "Runmode".

11.1.1 Different runmodes

You can choose a runmode out of several predefined runmodes. The command line option --list-runmodes shows
all available runmodes. All runmodes have a name: single, workers, autofp.

Generally, the workers runmode performs the best. In this mode the NIC/driver makes sure packets are properly
balanced over Suricata's processing threads. Each packet processing thread then contains the full packet pipeline.

281

Suricata User Guide, Release 8.0.0

For processing PCAP files, or in case of certain IPS setups (like NFQ), autofp is used. Here there are one or more
capture threads, that capture the packet and do the packet decoding, after which it is passed on to the flow worker
threads.

282 Chapter 11. Performance

Suricata User Guide, Release 8.0.0

11.1. Runmodes 283

Suricata User Guide, Release 8.0.0

Finally, the single runmode is the same as the workersmode, however there is only a single packet processing thread.
This is mostly useful during development.

284 Chapter 11. Performance

Suricata User Guide, Release 8.0.0

For more information about the command line options concerning the runmode, see Command Line Options.

11.1. Runmodes 285

Suricata User Guide, Release 8.0.0

11.1.2 Load balancing

Suricata may use different ways to load balance the packets to process between different threads with the configuration
option autofp-scheduler.

The default value is hash, which means the packet is assigned to threads using the 5-7 tuple hash, which is also used
anyways to store the flows in memory.

This option can also be set to - ippair : packets are assigned to threads using addresses only. - ftp-hash : same as hash
except for flows that may be ftp or ftp-data so that these flows get processed by the same thread. Like so, there is no
concurrency issue in recognizing ftp-data flows due to processing them before the ftp flow got processed. In case of
such a flow, a variant of the hash is used.

11.2 Packet Capture

11.2.1 Load balancing

To get the best performance, Suricata will need to run in 'workers' mode. This effectively means that there are multiple
threads, each running a full packet pipeline and each receiving packets from the capture method. This means that we
rely on the capture method to distribute the packets over the various threads. One critical aspect of this is that Suricata
needs to get both sides of a flow in the same thread, in the correct order.

The AF_PACKET and PF_RING capture methods both have options to select the 'cluster-type'. These default to 'clus-
ter_flow' which instructs the capture method to hash by flow (5 tuple). This hash is symmetric. Netmap does not have
a cluster_flow mode built-in. It can be added separately by using the "'lb' tool":https://github.com/luigirizzo/netmap/
tree/master/apps/lb

On multi-queue NICs, which is almost any modern NIC, RSS settings need to be considered.

11.2.2 RSS

Receive Side Scaling is a technique used by network cards to distribute incoming traffic over various queues on the
NIC. This is meant to improve performance but it is important to realize that it was designed for normal traffic, not for
the IDS packet capture scenario. RSS using a hash algorithm to distribute the incoming traffic over the various queues.
This hash is normally not symmetrical. This means that when receiving both sides of a flow, each side may end up in
a different queue. Sadly, when deploying Suricata, this is the common scenario when using span ports or taps.

The problem here is that by having both sides of the traffic in different queues, the order of processing of packets
becomes unpredictable. Timing differences on the NIC, the driver, the kernel and in Suricata will lead to a high chance
of packets coming in at a different order than on the wire. This is specifically about a mismatch between the two traffic
directions. For example, Suricata tracks the TCP 3-way handshake. Due to this timing issue, the SYN/ACK may only
be received by Suricata long after the client to server side has already started sending data. Suricata would see this
traffic as invalid.

None of the supported capture methods like AF_PACKET, PF_RING or NETMAP can fix this problem for us. It would
require buffering and packet reordering which is expensive.

To see how many queues are configured:

$ ethtool -l ens2f1
Channel parameters for ens2f1:
Pre-set maximums:
RX: 0
TX: 0

(continues on next page)

286 Chapter 11. Performance

https://github.com/luigirizzo/netmap/tree/master/apps/lb
https://github.com/luigirizzo/netmap/tree/master/apps/lb

Suricata User Guide, Release 8.0.0

(continued from previous page)

Other: 1
Combined: 64
Current hardware settings:
RX: 0
TX: 0
Other: 1
Combined: 8

Some NIC's allow you to set it into a symmetric mode. The Intel X(L)710 card can do this in theory, but the drivers
aren't capable of enabling this yet (work is underway to try to address this). Another way to address is by setting a
special "Random Secret Key" that will make the RSS symmetrical. See http://www.ndsl.kaist.edu/~kyoungsoo/papers/
TR-symRSS.pdf (PDF).

In most scenario's however, the optimal solution is to reduce the number of RSS queues to 1:

Example:

Intel X710 with i40e driver:
ethtool -L $DEV combined 1

Some drivers do not support setting the number of queues through ethtool. In some cases there is a module load time
option. Read the driver docs for the specifics.

11.2.3 Offloading

Network cards, drivers and the kernel itself have various techniques to speed up packet handling. Generally these will
all have to be disabled.

LRO/GRO lead to merging various smaller packets into big 'super packets'. These will need to be disabled as they
break the dsize keyword as well as TCP state tracking.

Checksum offloading can be left enabled on AF_PACKET and PF_RING, but needs to be disabled on PCAP, NETMAP
and others.

11.2.4 Recommendations

Read your drivers documentation! E.g. for i40e the ethtool change of RSS queues may lead to kernel panics if done
wrong.

Generic: set RSS queues to 1 or make sure RSS hashing is symmetric. Disable NIC offloading.

AF_PACKET: 1 RSS queue and stay on kernel <=4.2 or make sure you have >=4.4.16, >=4.6.5 or >=4.7. Exception:
if RSS is symmetric cluster-type 'cluster_qm' can be used to bind Suricata to the RSS queues. Disable NIC offloading
except the rx/tx csum.

PF_RING: 1 RSS queue and use cluster-type 'cluster_flow'. Disable NIC offloading except the rx/tx csum.

NETMAP: 1 RSS queue. There is no flow based load balancing built-in, but the 'lb' tool can be helpful. Another option
is to use the 'autofp' runmode. Exception: if RSS is symmetric, load balancing is based on the RSS hash and multiple
RSS queues can be used. Disable all NIC offloading.

11.2. Packet Capture 287

http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf
http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf

Suricata User Guide, Release 8.0.0

11.3 Tuning Considerations

Settings to check for optimal performance.

11.3.1 max-pending-packets: <number>

This setting controls the number simultaneous packets that the engine can handle. Setting this higher generally keeps
the threads more busy, but setting it too high will lead to degradation.

Suggested setting: 10000 or higher. Max is ~65000. This setting is per thread. The memory is set up at start and the
usage is as follows:

number_of.threads X max-pending-packets X (default-packet-size + ~750 bytes)

11.3.2 mpm-algo: <ac|hs|ac-bs|ac-ks>

Controls the pattern matcher algorithm. AC (Aho–Corasick) is the default. On supported platforms, Hyperscan is
the best option. On commodity hardware if Hyperscan is not available the suggested setting is mpm-algo: ac-ks
(Aho–Corasick Ken Steele variant) as it performs better than mpm-algo: ac

11.3.3 detect.profile: <low|medium|high|custom>

The detection engine tries to split out separate signatures into groups so that a packet is only inspected against signatures
that can actually match. As in large rule set this would result in way too many groups and memory usage similar groups
are merged together. The profile setting controls how aggressive this merging is done. The default setting of high
usually is good enough.

The "custom" setting allows modification of the group sizes:

custom-values:
toclient-groups: 100
toserver-groups: 100

In general, increasing will improve performance. It will lead to minimal increase in memory usage. The default value
for toclient-groups and toserver-groups with detect.profile: high is 75.

11.3.4 detect.sgh-mpm-context: <auto|single|full>

The multi pattern matcher can have it's context per signature group (full) or globally (single). Auto selects between
single and full based on the mpm-algo selected. ac, ac-bs, ac-ks, hs default to "single". Setting this to "full" with
mpm-algo: ac or mpm-algo: ac-ks offers better performance. Setting this to "full" with mpm-algo: hs is not
recommended as it leads to much higher startup time. Instead with Hyperscan either detect.profile: high or
bigger custom group size settings can be used as explained above which offers better performance than ac and ac-ks
even with detect.sgh-mpm-context: full.

288 Chapter 11. Performance

Suricata User Guide, Release 8.0.0

11.3.5 af-packet

If using af-packet (default on Linux) it is recommended that af-packet v3 is used for IDS/NSM deployments. For IPS
it is recommended af-packet v2. To make sure af-packet v3 is used it can specifically be enforced it in the af-packet
config section of suricata.yaml like so:

af-packet:
- interface: eth0
....
....
....
tpacket-v3: yes

11.3.6 ring-size

Ring-size is another af-packet variable that can be considered for tuning and performance benefits. It basically means
the buffer size for packets per thread. So if the setting is ring-size: 100000 like below:

af-packet:
- interface: eth0
threads: 5
ring-size: 100000

it means there will be 100,000 packets allowed in each buffer of the 5 threads. If any of the buffers gets filled (for
example packet processing can not keep up) that will result in packet drop counters increasing in the stats logs.

The memory used for those is set up and dedicated at start and is calculated as follows:

af-packet.threads X af-packet.ring-size X (default-packet-size + ~750 bytes)

where af-packet.threads, af-packet.ring-size, default-packet-size are the values set in suricata.yaml.
Config values for example for af-packet could be quickly displayed with on the command line as well with suricata
--dump-config |grep af-packet.

11.3.7 stream.bypass

Another option that can be used to improve performance is stream.bypass. In the example below:

stream:
memcap: 64mb
checksum-validation: yes # reject wrong csums
inline: auto # auto will use inline mode in IPS mode, yes or no set it␣
→˓statically
bypass: yes
reassembly:
memcap: 256mb
depth: 1mb # reassemble 1mb into a stream
toserver-chunk-size: 2560
toclient-chunk-size: 2560
randomize-chunk-size: yes

Inspection will be skipped when stream.reassembly.depth of 1mb is reached for a particular flow.

11.3. Tuning Considerations 289

Suricata User Guide, Release 8.0.0

11.4 Hyperscan

11.4.1 Introduction

"Hyperscan is a high performance regular expression matching library (...)" (https://www.intel.com/content/www/us/
en/developer/articles/technical/introduction-to-hyperscan.html)

In Suricata it can be used to perform multi pattern matching (mpm) or single pattern matching (spm).

Support for hyperscan in Suricata was initially implemented by Justin Viiret and Jim Xu from Intel via https://github.
com/OISF/suricata/pull/1965.

Hyperscan is only for Intel x86 based processor architectures at this time. For ARM processors, vectorscan is a drop
in replacement for hyperscan, https://github.com/VectorCamp/vectorscan.

11.4.2 Basic Installation (Package)

Some Linux distributions include hyperscan in their respective package collections.

Fedora 37+/Centos 8+: sudo dnf install hyperscan-devel Ubuntu/Debian: sudo apt-get install libhyperscan-dev

11.4.3 Advanced Installation (Source)

Hyperscan has the following dependencies in order to build from source:

• boost development libraries (minimum boost library version is 1.58)

• cmake

• C++ compiler (e.g. gcc-c++)

• libpcap development libraries

• pcre2 development libraries

• python3

• ragel

• sqlite development libraries

Note: git is an additional dependency if cloning the hyperscan GitHub repository. Otherwise downloading the hyper-
scan zip from the GitHub repository will work too.

The steps to build and install hyperscan are:

git clone https://github.com/intel/hyperscan
cd hyperscan
cmake -DBUILD_STATIC_AND_SHARED=1
cmake --build ./
sudo cmake --install ./

Note: Hyperscan can take a long time to build/compile.

Note: It may be necessary to add /usr/local/lib or /usr/local/lib64 to the ld search path. Typically this is done by adding
a file under /etc/ld.so.conf.d/ with the contents of the directory location of libhs.so.5 (for hyperscan 5.x).

290 Chapter 11. Performance

https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-hyperscan.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-hyperscan.html
https://github.com/OISF/suricata/pull/1965
https://github.com/OISF/suricata/pull/1965
https://github.com/VectorCamp/vectorscan

Suricata User Guide, Release 8.0.0

11.4.4 Using Hyperscan

Confirm that the suricata version installed has hyperscan enabled.

suricata --build-info | grep Hyperscan
Hyperscan support: yes

To use hyperscan support, edit the suricata.yaml. Change the mpm-algo and spm-algo values to 'hs'.

Alternatively, use this command-line option: --set mpm-algo=hs --set spm-algo=hs

Note: The default suricata.yaml configuration settings for mpm-algo and spm-algo are "auto". Suricata will use hyper-
scan if it is present on the system in case of the "auto" setting.

If the current suricata installation does not have hyperscan support, refer to Installation

11.4.5 Hyperscan caching

Upon startup, Hyperscan compiles and optimizes the ruleset into its own internal structure. Suricata optimizes the
startup process by saving the Hyperscan internal structures to disk and loading them on the next start. This prevents
the recompilation of the ruleset and results in faster initialization. If the ruleset is changed, new necessary cache files
are automatically created.

To enable this function, in suricata.yaml configure:

detect:
Cache MPM contexts to the disk to avoid rule compilation at the startup.
Cache files are created in the standard library directory.
sgh-mpm-caching: yes
sgh-mpm-caching-path: /var/lib/suricata/cache/hs

Note: You might need to create and adjust permissions to the default caching folder path, especially if you are running
Suricata as a non-root user.

11.5 High Performance Configuration

11.5.1 NIC

One of the major dependencies for Suricata's performance is the Network Interface Card. There are many vendors and
possibilities. Some NICs have and require their own specific instructions and tools of how to set up the NIC. This
ensures the greatest benefit when running Suricata. Vendors like Napatech, Netronome, Accolade, Myricom include
those tools and documentation as part of their sources.

For Intel, Mellanox and commodity NICs the following suggestions below could be utilized.

It is recommended that the latest available stable NIC drivers are used. In general when changing the NIC settings it
is advisable to use the latest ethtool version. Some NICs ship with their own ethtool that is recommended to be
used. Here is an example of how to set up the ethtool if needed:

wget https://mirrors.edge.kernel.org/pub/software/network/ethtool/ethtool-5.2.tar.xz
tar -xf ethtool-5.2.tar.xz
cd ethtool-5.2
./configure && make clean && make && make install
/usr/local/sbin/ethtool --version

11.5. High Performance Configuration 291

Suricata User Guide, Release 8.0.0

When doing high performance optimisation make sure irqbalance is off and not running:

service irqbalance stop

Depending on the NIC's available queues (for example Intel's x710/i40 has 64 available per port/interface) the worker
threads can be set up accordingly. Usually the available queues can be seen by running:

/usr/local/sbin/ethtool -l eth1

Some NICs - generally lower end 1Gbps - do not support symmetric hashing see Packet Capture. On those systems
due to considerations for out of order packets the following setup with af-packet is suggested (the example below uses
eth1):

/usr/local/sbin/ethtool -L eth1 combined 1

then set up af-packet with number of desired workers threads threads: auto (auto by default will use number of
CPUs available) and cluster-type: cluster_flow (also the default setting)

For higher end systems/NICs a better and more performant solution could be utilizing the NIC itself a bit more. x710/i40
and similar Intel NICs or Mellanox MT27800 Family [ConnectX-5] for example can easily be set up to do a bigger
chunk of the work using more RSS queues and symmetric hashing in order to allow for increased performance on the
Suricata side by using af-packet with cluster-type: cluster_qm mode. In that mode with af-packet all packets
linked by network card to a RSS queue are sent to the same socket. Below is an example of a suggested config set up
based on a 16 core one CPU/NUMA node socket system using x710:

rmmod i40e && modprobe i40e
ifconfig eth1 down
/usr/local/sbin/ethtool -L eth1 combined 16
/usr/local/sbin/ethtool -K eth1 rxhash on
/usr/local/sbin/ethtool -K eth1 ntuple on
ifconfig eth1 up
/usr/local/sbin/ethtool -X eth1 hkey␣
→˓6D:5A:6D:5A␣
→˓equal 16
/usr/local/sbin/ethtool -A eth1 rx off
/usr/local/sbin/ethtool -C eth1 adaptive-rx off adaptive-tx off rx-usecs 125
/usr/local/sbin/ethtool -G eth1 rx 1024

The commands above can be reviewed in detail in the help or manpages of the ethtool. In brief the sequence makes
sure the NIC is reset, the number of RSS queues is set to 16, load balancing is enabled for the NIC, a low entropy
toeplitz key is inserted to allow for symmetric hashing, receive offloading is disabled, the adaptive control is disabled
for lowest possible latency and last but not least, the ring rx descriptor size is set to 1024. Make sure the RSS hash
function is Toeplitz:

/usr/local/sbin/ethtool -X eth1 hfunc toeplitz

Let the NIC balance as much as possible:

for proto in tcp4 udp4 tcp6 udp6; do
/usr/local/sbin/ethtool -N eth1 rx-flow-hash $proto sdfn

done

In some cases:

/usr/local/sbin/ethtool -N eth1 rx-flow-hash $proto sd

292 Chapter 11. Performance

Suricata User Guide, Release 8.0.0

might be enough or even better depending on the type of traffic. However not all NICs allow it. The sd specifies the
multi queue hashing algorithm of the NIC (for the particular proto) to use src IP, dst IP only. The sdfn allows for the
tuple src IP, dst IP, src port, dst port to be used for the hashing algorithm. In the af-packet section of suricata.yaml:

af-packet:
- interface: eth1
threads: 16
cluster-id: 99
cluster-type: cluster_qm
...
...

11.5.2 CPU affinity and NUMA

Intel based systems

If the system has more then one NUMA node there are some more possibilities. In those cases it is generally recom-
mended to use as many worker threads as cpu cores available/possible - from the same NUMA node. The example
below uses a 72 core machine and the sniffing NIC that Suricata uses located on NUMA node 1. In such 2 socket con-
figurations it is recommended to have Suricata and the sniffing NIC to be running and residing on the second NUMA
node as by default CPU 0 is widely used by many services in Linux. In a case where this is not possible it is recom-
mended that (via the cpu affinity config section in suricata.yaml and the irq affinity script for the NIC) CPU 0 is never
used.

In the case below 36 worker threads are used out of NUMA node 1's CPU, af-packet runmode with cluster-type:
cluster_qm.

If the CPU's NUMA set up is as follows:

lscpu
Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 72
On-line CPU(s) list: 0-71
Thread(s) per core: 2
Core(s) per socket: 18
Socket(s): 2
NUMA node(s): 2
Vendor ID: GenuineIntel
CPU family: 6
Model: 79
Model name: Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz
Stepping: 1
CPU MHz: 1199.724
CPU max MHz: 3600.0000
CPU min MHz: 1200.0000
BogoMIPS: 4589.92
Virtualization: VT-x
L1d cache: 32K
L1i cache: 32K
L2 cache: 256K
L3 cache: 46080K

(continues on next page)

11.5. High Performance Configuration 293

Suricata User Guide, Release 8.0.0

(continued from previous page)

NUMA node0 CPU(s): 0-17,36-53
NUMA node1 CPU(s): 18-35,54-71

It is recommended that 36 worker threads are used and the NIC set up could be as follows:

rmmod i40e && modprobe i40e
ifconfig eth1 down
/usr/local/sbin/ethtool -L eth1 combined 36
/usr/local/sbin/ethtool -K eth1 rxhash on
/usr/local/sbin/ethtool -K eth1 ntuple on
ifconfig eth1 up
./set_irq_affinity local eth1
/usr/local/sbin/ethtool -X eth1 hkey␣
→˓6D:5A:6D:5A␣
→˓equal 36
/usr/local/sbin/ethtool -A eth1 rx off tx off
/usr/local/sbin/ethtool -C eth1 adaptive-rx off adaptive-tx off rx-usecs 125
/usr/local/sbin/ethtool -G eth1 rx 1024
for proto in tcp4 udp4 tcp6 udp6; do

echo "/usr/local/sbin/ethtool -N eth1 rx-flow-hash $proto sdfn"
/usr/local/sbin/ethtool -N eth1 rx-flow-hash $proto sdfn

done

In the example above the set_irq_affinity script is used from the NIC driver's sources. In the cpu affinity section
of suricata.yaml config:

Suricata is multi-threaded. Here the threading can be influenced.
threading:
cpu-affinity:
management-cpu-set:
cpu: ["1-10"] # include only these CPUs in affinity settings

receive-cpu-set:
cpu: ["0-10"] # include only these CPUs in affinity settings

worker-cpu-set:
cpu: ["18-35", "54-71"]
mode: "exclusive"
prio:
low: [0]
medium: ["1"]
high: ["18-35","54-71"]
default: "high"

In the af-packet section of suricata.yaml config :

- interface: eth1
Number of receive threads. "auto" uses the number of cores
threads: 18
cluster-id: 99
cluster-type: cluster_qm
defrag: no
mmap-locked: yes
tpacket-v3: yes
ring-size: 100000

(continues on next page)

294 Chapter 11. Performance

Suricata User Guide, Release 8.0.0

(continued from previous page)

block-size: 1048576
- interface: eth1
Number of receive threads. "auto" uses the number of cores
threads: 18
cluster-id: 99
cluster-type: cluster_qm
defrag: no
mmap-locked: yes
tpacket-v3: yes
ring-size: 100000
block-size: 1048576

That way 36 worker threads can be mapped (18 per each af-packet interface slot) in total per CPUs NUMA 1 range -
18-35,54-71. That part is done via the worker-cpu-set affinity settings. ring-size and block-size in the config
section above are decent default values to start with. Those can be better adjusted if needed as explained in Tuning
Considerations.

AMD based systems

Another example can be using an AMD based system where the architecture and design of the system itself plus the
NUMA node's interaction is different as it is based on the HyperTransport (HT) technology. In that case per NUMA
thread/lock would not be needed. The example below shows a suggestion for such a configuration utilising af-packet,
cluster-type: cluster_flow. The Mellanox NIC is located on NUMA 0.

The CPU set up is as follows:

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 128
On-line CPU(s) list: 0-127
Thread(s) per core: 2
Core(s) per socket: 32
Socket(s): 2
NUMA node(s): 8
Vendor ID: AuthenticAMD
CPU family: 23
Model: 1
Model name: AMD EPYC 7601 32-Core Processor
Stepping: 2
CPU MHz: 1200.000
CPU max MHz: 2200.0000
CPU min MHz: 1200.0000
BogoMIPS: 4391.55
Virtualization: AMD-V
L1d cache: 32K
L1i cache: 64K
L2 cache: 512K
L3 cache: 8192K
NUMA node0 CPU(s): 0-7,64-71
NUMA node1 CPU(s): 8-15,72-79
NUMA node2 CPU(s): 16-23,80-87

(continues on next page)

11.5. High Performance Configuration 295

Suricata User Guide, Release 8.0.0

(continued from previous page)

NUMA node3 CPU(s): 24-31,88-95
NUMA node4 CPU(s): 32-39,96-103
NUMA node5 CPU(s): 40-47,104-111
NUMA node6 CPU(s): 48-55,112-119
NUMA node7 CPU(s): 56-63,120-127

The ethtool, show_irq_affinity.sh and set_irq_affinity_cpulist.sh tools are provided from the official
driver sources. Set up the NIC, including offloading and load balancing:

ifconfig eno6 down
/opt/mellanox/ethtool/sbin/ethtool -L eno6 combined 15
/opt/mellanox/ethtool/sbin/ethtool -K eno6 rxhash on
/opt/mellanox/ethtool/sbin/ethtool -K eno6 ntuple on
ifconfig eno6 up
/sbin/set_irq_affinity_cpulist.sh 1-7,64-71 eno6
/opt/mellanox/ethtool/sbin/ethtool -X eno6 hfunc toeplitz
/opt/mellanox/ethtool/sbin/ethtool -X eno6 hkey␣
→˓6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A

In the example above (1-7,64-71 for the irq affinity) CPU 0 is skipped as it is usually used by default on Linux systems
by many applications/tools. Let the NIC balance as much as possible:

for proto in tcp4 udp4 tcp6 udp6; do
/usr/local/sbin/ethtool -N eth1 rx-flow-hash $proto sdfn

done

In the cpu affinity section of suricata.yaml config :

Suricata is multi-threaded. Here the threading can be influenced.
threading:
set-cpu-affinity: yes
cpu-affinity:
management-cpu-set:
cpu: ["120-127"] # include only these cpus in affinity settings

receive-cpu-set:
cpu: [0] # include only these cpus in affinity settings

worker-cpu-set:
cpu: ["8-55"]
mode: "exclusive"
prio:
high: ["8-55"]
default: "high"

In the af-packet section of suricata.yaml config:

- interface: eth1
Number of receive threads. "auto" uses the number of cores
threads: 48 # 48 worker threads on cpus "8-55" above
cluster-id: 99
cluster-type: cluster_flow
defrag: no
mmap-locked: yes
tpacket-v3: yes

(continues on next page)

296 Chapter 11. Performance

Suricata User Guide, Release 8.0.0

(continued from previous page)

ring-size: 100000
block-size: 1048576

In the example above there are 15 RSS queues pinned to cores 1-7,64-71 on NUMA node 0 and 40 worker threads
using other CPUs on different NUMA nodes. The reason why CPU 0 is skipped in this set up is as in Linux systems
it is very common for CPU 0 to be used by default by many tools/services. The NIC itself in this config is positioned
on NUMA 0 so starting with 15 RSS queues on that NUMA node and keeping those off for other tools in the system
could offer the best advantage.

Note: Performance and optimization of the whole system can be affected upon regular NIC driver and pkg/kernel
upgrades so it should be monitored regularly and tested out in QA/test environments first. As a general suggestion it
is always recommended to run the latest stable firmware and drivers as instructed and provided by the particular NIC
vendor.

Other considerations

Another advanced option to consider is the isolcpus kernel boot parameter is a way of allowing CPU cores to be
isolated for use of general system processes. That way ensures total dedication of those CPUs/ranges for the Suricata
process only.

stream.wrong_thread / tcp.pkt_on_wrong_thread are counters available in stats.log or eve.json as
event_type: stats that indicate issues with the load balancing. There could be traffic/NICs settings related as well.
In very high/heavily increasing counter values it is recommended to experiment with a different load balancing method
either via the NIC or for example using XDP/eBPF. There is an issue open https://redmine.openinfosecfoundation.org/
issues/2725 that is a placeholder for feedback and findings.

11.6 Statistics

The stats.log produces statistics records on a fixed interval, by default every 8 seconds.

11.6.1 stats.log file

Counter | TM Name | Value

flow_mgr.closed_pruned | FlowManagerThread | 154033
flow_mgr.new_pruned | FlowManagerThread | 67800
flow_mgr.est_pruned | FlowManagerThread | 100921
flow.memuse | FlowManagerThread | 6557568
flow.spare | FlowManagerThread | 10002
flow.emerg_mode_entered | FlowManagerThread | 0
flow.emerg_mode_over | FlowManagerThread | 0
decoder.pkts | RxPcapem21 | 450001754
decoder.bytes | RxPcapem21 | 409520714250
decoder.ipv4 | RxPcapem21 | 449584047
decoder.ipv6 | RxPcapem21 | 9212
decoder.ethernet | RxPcapem21 | 450001754

(continues on next page)

11.6. Statistics 297

https://redmine.openinfosecfoundation.org/issues/2725
https://redmine.openinfosecfoundation.org/issues/2725

Suricata User Guide, Release 8.0.0

(continued from previous page)

decoder.raw | RxPcapem21 | 0
decoder.sll | RxPcapem21 | 0
decoder.tcp | RxPcapem21 | 448124337
decoder.udp | RxPcapem21 | 542040
decoder.sctp | RxPcapem21 | 0
decoder.icmpv4 | RxPcapem21 | 82292
decoder.icmpv6 | RxPcapem21 | 9164
decoder.ppp | RxPcapem21 | 0
decoder.pppoe | RxPcapem21 | 0
decoder.gre | RxPcapem21 | 0
decoder.vlan | RxPcapem21 | 0
decoder.avg_pkt_size | RxPcapem21 | 910
decoder.max_pkt_size | RxPcapem21 | 1514
defrag.ipv4.fragments | RxPcapem21 | 4
defrag.ipv4.reassembled | RxPcapem21 | 1
defrag.ipv4.timeouts | RxPcapem21 | 0
defrag.ipv6.fragments | RxPcapem21 | 0
defrag.ipv6.reassembled | RxPcapem21 | 0
defrag.ipv6.timeouts | RxPcapem21 | 0
tcp.sessions | Detect | 41184
tcp.ssn_memcap_drop | Detect | 0
tcp.pseudo | Detect | 2087
tcp.invalid_checksum | Detect | 8358
tcp.no_flow | Detect | 0
tcp.reused_ssn | Detect | 11
tcp.memuse | Detect | 36175872
tcp.syn | Detect | 85902
tcp.synack | Detect | 83385
tcp.rst | Detect | 84326
tcp.segment_memcap_drop | Detect | 0
tcp.stream_depth_reached | Detect | 109
tcp.reassembly_memuse | Detect | 67755264
tcp.reassembly_gap | Detect | 789
detect.alert | Detect | 14721

Detecting packet loss

At shut down, Suricata reports the packet loss statistics it gets from pcap, pfring or afpacket

[18088] 30/5/2012 -- 07:39:18 - (RxPcapem21) Packets 451595939, bytes 410869083410
[18088] 30/5/2012 -- 07:39:18 - (RxPcapem21) Pcap Total:451674222 Recv:451596129␣
→˓Drop:78093 (0.0%).

Usually, this is not the complete story though. These are kernel drop stats, but the NIC may also have dropped packets.
Use ethtool to get to those:

ethtool -S em2
NIC statistics:

rx_packets: 35430208463
tx_packets: 216072
rx_bytes: 32454370137414

(continues on next page)

298 Chapter 11. Performance

Suricata User Guide, Release 8.0.0

(continued from previous page)

tx_bytes: 53624450
rx_broadcast: 17424355
tx_broadcast: 133508
rx_multicast: 5332175
tx_multicast: 82564
rx_errors: 47
tx_errors: 0
tx_dropped: 0
multicast: 5332175
collisions: 0
rx_length_errors: 0
rx_over_errors: 0
rx_crc_errors: 51
rx_frame_errors: 0
rx_no_buffer_count: 0
rx_missed_errors: 0
tx_aborted_errors: 0
tx_carrier_errors: 0
tx_fifo_errors: 0
tx_heartbeat_errors: 0
tx_window_errors: 0
tx_abort_late_coll: 0
tx_deferred_ok: 0
tx_single_coll_ok: 0
tx_multi_coll_ok: 0
tx_timeout_count: 0
tx_restart_queue: 0
rx_long_length_errors: 0
rx_short_length_errors: 0
rx_align_errors: 0
tx_tcp_seg_good: 0
tx_tcp_seg_failed: 0
rx_flow_control_xon: 0
rx_flow_control_xoff: 0
tx_flow_control_xon: 0
tx_flow_control_xoff: 0
rx_long_byte_count: 32454370137414
rx_csum_offload_good: 35270755306
rx_csum_offload_errors: 65076
alloc_rx_buff_failed: 0
tx_smbus: 0
rx_smbus: 0
dropped_smbus: 0

11.6. Statistics 299

Suricata User Guide, Release 8.0.0

11.6.2 Kernel drops

stats.log contains interesting information in the capture.kernel_packets and capture.kernel_drops. The meaning of them
is different following the capture mode.

In AF_PACKET mode:

• kernel_packets is the number of packets correctly sent to userspace

• kernel_drops is the number of packets that have been discarded instead of being sent to userspace

In PF_RING mode:

• kernel_packets is the total number of packets seen by pf_ring

• kernel_drops is the number of packets that have been discarded instead of being sent to userspace

In the Suricata stats.log the TCP data gap counter is also an indicator, as it accounts missing data packets in TCP
streams:

tcp.reassembly_gap | Detect | 789

Ideally, this number is 0. Not only pkt loss affects it though, also bad checksums and stream engine running out of
memory.

11.6.3 Tools to plot graphs

Some people made nice tools to plot graphs of the statistics file.

• ipython and matplotlib script

• Monitoring with Zabbix or other and Code on GitHub

11.7 Ignoring Traffic

In some cases there are reasons to ignore certain traffic. Certain hosts may be trusted, or perhaps a backup stream
should be ignored.

11.7.1 Capture Filters (BPF)

Through BPFs the capture methods pcap, af-packet, netmap and pf_ring can be told what to send to Suricata, and what
not. For example a simple filter 'tcp' will only capture tcp packets.

If some hosts and or nets need to be ignored, use something like "not (host IP1 or IP2 or IP3 or net NET/24)".

Example:

not host 1.2.3.4

Capture filters are specified on the command-line after all other options:

suricata -i eth0 -v not host 1.2.3.4
suricata -i eno1 -c suricata.yaml tcp or udp

Capture filters can be set per interface in the pcap, af-packet, netmap and pf_ring sections. It can also be put in a file:

300 Chapter 11. Performance

https://github.com/regit/suri-stats
http://christophe.vandeplas.com/2013/11/suricata-monitoring-with-zabbix-or-other.html
https://github.com/cvandeplas/suricata_stats

Suricata User Guide, Release 8.0.0

echo "not host 1.2.3.4" > capture-filter.bpf
suricata -i ens5f0 -F capture-filter.bpf

Using a capture filter limits what traffic Suricata processes. So the traffic not seen by Suricata will not be inspected,
logged or otherwise recorded.

BPF and IPS

In case of IPS modes using af-packet and netmap, BPFs affect how traffic is forwarded. If a capture NIC does not
capture a packet because of a BPF, it will also not be forwarded to the peering NIC.

So in the example of not host 1.2.3.4, traffic to and from the IP 1.2.3.4 is effectively dropped.

11.7.2 pass rules

Pass rules are Suricata rules that if matching, pass the packet and in case of TCP the rest of the flow. They look like
normal rules, except that instead of alert or drop they use pass as the action.

Example:

pass ip 1.2.3.4 any <> any any (msg:"pass all traffic from/to 1.2.3.4"; sid:1;)

A big difference with capture filters is that logs such as Eve or http.log are still generated for this traffic.

11.7.3 suppress

Suppress rules can be used to make sure no alerts are generated for a host. This is not efficient however, as the sup-
pression is only considered post-matching. In other words, Suricata first inspects a rule, and only then will it consider
per-host suppressions.

Example:

suppress gen_id 0, sig_id 0, track by_src, ip 1.2.3.4

11.7.4 Encrypted Traffic

The TLS and SSH app layer parsers have the ability to stop processing encrypted traffic after the initial handshake.
By setting the app-layer.protocols.tls.encryption-handling and app-layer.protocols.ssh.encryption-handling options to
bypass Suricata bypasses flows once the handshake is completed and encrypted traffic is detected. The rest of the flow
is ignored. The bypass is done in the kernel or in hardware, similar to how flow bypass is done.

11.7.5 Bypassing Traffic

Aside from using the bypass keyword in rules, there are three other ways to bypass traffic.

• Within suricata (local bypass). Suricata reads a packet, decodes it, checks it in the flow table. If the corresponding
flow is local bypassed then it simply skips all streaming, detection and output and the packet goes directly out in
IDS mode and to verdict in IPS mode.

11.7. Ignoring Traffic 301

Suricata User Guide, Release 8.0.0

• Within the kernel (capture bypass). When Suricata decides to bypass it calls a function provided by the cap-
ture method to declare the bypass in the capture. For NFQ this is a simple mark that will be used by the ipt-
ables/nftablesruleset. For AF_PACKET this will be a call to add an element in an eBPF hash table stored in
kernel.

• Within the NIC driver. This method relies upon XDP, XDP can process the traffic prior to reaching the kernel.

Additional bypass documentation:

https://suricon.net/wp-content/uploads/2017/12/SuriCon17-Manev_Purzynski.pdf https://www.stamus-networks.
com/2016/09/28/suricata-bypass-feature/

11.8 Packet Profiling

In this guide will be explained how to enable packet profiling and use it with the most recent code of Suricata on
Ubuntu. It is based on the assumption that you have already installed Suricata once from the GIT repository.

Packet profiling is convenient in case you would like to know how long packets take to be processed. It is a way to figure
out why certain packets are being processed quicker than others, and this way a good tool for developing Suricata.

Update Suricata by following the steps from Installation from GIT . Start at the end at

cd suricata/suricata
git pull

And follow the described next steps. To enable packet profiling, make sure you enter the following during the config-
uring stage:

./configure --enable-profiling

Find a folder in which you have pcaps. If you do not have pcaps yet, you can get these with Wireshark. See Sniffing
Packets with Wireshark.

Go to the directory of your pcaps. For example:

cd ~/Desktop

With the ls command you can see the content of the folder. Choose a folder and a pcap file

for example:

cd ~/Desktop/2011-05-05

Run Suricata with that pcap:

suricata -c /etc/suricata/suricata.yaml -r log.pcap.(followed by the number/name of your␣
→˓pcap)

for example:

suricata -c /etc/suricata/suricata.yaml -r log.pcap.1304589204

302 Chapter 11. Performance

https://suricon.net/wp-content/uploads/2017/12/SuriCon17-Manev_Purzynski.pdf
https://www.stamus-networks.com/2016/09/28/suricata-bypass-feature/
https://www.stamus-networks.com/2016/09/28/suricata-bypass-feature/
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Sniffing_Packets_with_Wireshark
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Sniffing_Packets_with_Wireshark

Suricata User Guide, Release 8.0.0

11.9 Rule Profiling

Suricata can generate a rules performance report at the end of each session, if built with the enable-profiling option
(see configuring Rule profiling). With that option, the engine will also generate profiling data for other engine modules,
such as packet processing.

Rule profiling can also be enabled by building the engine with enable-profiling -rules and using the unix socket
to dump the report (see Rules Profiling). This will enable profiling of rules' statistics only.

Once the report is generated, it is stored in the default log directory used by Suricata. If not changed, the filename will
be rule_perf.log.

A Rules Profile report looks like this:

--
Date: 9/5/2013 -- 14:59:58
--
Num Rule Gid Rev Ticks % Checks Matches Max Ticks␣
→˓ Avg Ticks Avg Match Avg No Match
-------- ------------ -------- -------- ------------ ------ -------- -------- -----------
→˓ ----------- ----------- --------------
1 2210021 1 3 12037 4.96 1 1 12037 ␣
→˓ 12037.00 12037.00 0.00
2 2210054 1 1 107479 44.26 12 0 35805 ␣
→˓ 8956.58 0.00 8956.58
3 2210053 1 1 4513 1.86 1 0 4513 ␣
→˓ 4513.00 0.00 4513.00
4 2210023 1 1 3077 1.27 1 0 3077 ␣
→˓ 3077.00 0.00 3077.00
5 2210008 1 1 3028 1.25 1 0 3028 ␣
→˓ 3028.00 0.00 3028.00
6 2210009 1 1 2945 1.21 1 0 2945 ␣
→˓ 2945.00 0.00 2945.00
7 2210055 1 1 2945 1.21 1 0 2945 ␣
→˓ 2945.00 0.00 2945.00
8 2210007 1 1 2871 1.18 1 0 2871 ␣
→˓ 2871.00 0.00 2871.00
9 2210005 1 1 2871 1.18 1 0 2871 ␣
→˓ 2871.00 0.00 2871.00
10 2210024 1 1 2846 1.17 1 0 2846 ␣
→˓ 2846.00 0.00 2846.00

The meaning of the individual fields:

• Ticks -- total ticks spent on this rule, so a sum of all inspections.

• % -- share of this single signature in the total cost of inspection.

• Checks -- number of times a signature was inspected.

• Matches -- number of times it matched. This may not have resulted in an alert due to suppression and threshold-
ing.

• Max ticks -- single most expensive inspection.

• Avg ticks -- per inspection average, so "ticks" / "checks".

• Avg match -- avg ticks spent resulting in match.

11.9. Rule Profiling 303

Suricata User Guide, Release 8.0.0

• Avg No Match -- avg ticks spent resulting in no match.

The "ticks" are CPU clock ticks: http://en.wikipedia.org/wiki/CPU_time

11.10 Tcmalloc

'tcmalloc' is a library Google created as part of the google-perftools suite for improving memory handling in a threaded
program. It's very simple to use and does work fine with Suricata. It leads to minor speed ups and also reduces memory
usage quite a bit.

11.10.1 Installation

On Ubuntu, install the libtcmalloc-minimal4 package:

apt-get install libtcmalloc-minimal4

On Fedora, install the gperftools-libs package:

yum install gperftools-libs

11.10.2 Usage

Use the tcmalloc by preloading it:

Ubuntu:

LD_PRELOAD="/usr/lib/x86_64-linux-gnu/libtcmalloc_minimal.so.4" suricata -c suricata.
→˓yaml -i eth0

Fedora:

LD_PRELOAD="/usr/lib64/libtcmalloc_minimal.so.4" suricata -c suricata.yaml -i eth0

11.11 Performance Analysis

There are many potential causes for performance issues. In this section we will guide you through some options. The
first part will cover basic steps and introduce some helpful tools. The second part will cover more in-depth explanations
and corner cases.

11.11.1 System Load

The first step should be to check the system load. Run a top tool like htop to get an overview of the system load and if
there is a bottleneck with the traffic distribution. For example if you can see that only a small number of cpu cores hit
100% all the time and others don't, it could be related to a bad traffic distribution or elephant flows like in the screenshot
where one core peaks due to one big elephant flow.

304 Chapter 11. Performance

http://en.wikipedia.org/wiki/CPU_time

Suricata User Guide, Release 8.0.0

If all cores are at peak load the system might be too slow for the traffic load or it might be misconfigured. Also keep an
eye on memory usage, if the actual memory usage is too high and the system needs to swap it will result in very poor
performance.

The load will give you a first indication where to start with the debugging at specific parts we describe in more detail
in the second part.

11.11.2 Logfiles

The next step would be to check all the log files with a focus on stats.log and suricata.log if any obvious issues are
seen. The most obvious indicator is the capture.kernel_drops value that ideally would not even show up but should be
below 1% of the capture.kernel_packets value as high drop rates could lead to a reduced amount of events and alerts.

If memcap is seen in the stats the memcap values in the configuration could be increased. This can result to higher
memory usage and should be taken into account when the settings are changed.

Don't forget to check any system logs as well, even a dmesg run can show potential issues.

11.11.3 Suricata Load

Besides the system load, another indicator for potential performance issues is the load of Suricata itself. A helpful tool
for that is perf which helps to spot performance issues. Make sure you have it installed and also the debug symbols
installed for Suricata or the output won't be very helpful. This output is also helpful when you report performance
issues as the Suricata Development team can narrow down possible issues with that.

sudo perf top -p $(pidof suricata)

If you see specific function calls at the top in red it's a hint that those are the bottlenecks. For example if you see IPOn-
lyMatchPacket it can be either a result of high drop rates or incomplete flows which result in decreased performance.
To look into the performance issues on a specific thread you can pass -t TID to perf top. In other cases you can see
functions that give you a hint that a specific protocol parser is used a lot and can either try to debug a performance bug
or try to filter related traffic.

11.11. Performance Analysis 305

Suricata User Guide, Release 8.0.0

In general try to play around with the different configuration options that Suricata does provide with a focus on the
options described in High Performance Configuration.

306 Chapter 11. Performance

Suricata User Guide, Release 8.0.0

11.11.4 Traffic

In most cases where the hardware is fast enough to handle the traffic but the drop rate is still high it's related to specific
traffic issues.

Basics

Some of the basic checks are:

• Check if the traffic is bidirectional, if it's mostly unidirectional you're missing relevant parts of the flow (see
tshark example at the bottom). Another indicator could be a big discrepancy between SYN and SYN-ACK as
well as RST counter in the Suricata stats.

• Check for encapsulated traffic, while GRE, MPLS etc. are supported they could also lead to performance issues.
Especially if there are several layers of encapsulation.

• Use tools like iftop to spot elephant flows. Flows that have a rate of over 1Gbit/s for a long time can result in one
cpu core peak at 100% all the time and increasing the droprate while it might not make sense to dig deep into
this traffic.

• Another approach to narrow down issues is the usage of bpf filter. For example filter all HTTPS traffic with not
port 443 to exclude traffic that might be problematic or just look into one specific port port 25 if you expect
some issues with a specific protocol. See Ignoring Traffic for more details.

• If VLAN is used it might help to disable vlan.use-for-tracking in scenarios where only one direction of the flow
has the VLAN tag.

Advanced

There are several advanced steps and corner cases when it comes to a deep dive into the traffic.

If VLAN QinQ (IEEE 802.1ad) is used be very cautious if you use cluster_qm in combination with Intel drivers and
AF_PACKET runmode. While the RFC expects ethertype 0x8100 and 0x88A8 in this case (see https://en.wikipedia.
org/wiki/IEEE_802.1ad) most implementations only add 0x8100 on each layer. If the first seen layer has the same
VLAN tag but the inner one has different VLAN tags it will still end up in the same queue in cluster_qm mode. This
was observed with the i40e driver up to 2.8.20 and the firmware version up to 7.00, feel free to report if newer versions
have fixed this (see https://suricata.io/support/).

If you want to use tshark to get an overview of the traffic direction use this command:

sudo tshark -i $INTERFACE -q -z conv,ip -a duration:10

The output will show you all flows within 10s and if you see 0 for one direction you have unidirectional traffic, thus
you don't see the ACK packets for example. Since Suricata is trying to work on flows this will have a rather big impact
on the visibility. Focus on fixing the unidirectional traffic. If it's not possible at all you can enable async-oneside in
the stream configuration setting.

Check for other unusual or complex protocols that aren't supported very well. You can try to filter those to see if it has
any impact on the performance. In this example we filter Cisco Fabric Path (ethertype 0x8903) with the bpf filter not
ether proto 0x8903 as it's assumed to be a performance issue (see https://redmine.openinfosecfoundation.org/issues/
3637)

11.11. Performance Analysis 307

https://en.wikipedia.org/wiki/IEEE_802.1ad
https://en.wikipedia.org/wiki/IEEE_802.1ad
https://suricata.io/support/
https://redmine.openinfosecfoundation.org/issues/3637
https://redmine.openinfosecfoundation.org/issues/3637

Suricata User Guide, Release 8.0.0

Elephant Flows

The so called Elephant Flows or traffic spikes are quite difficult to deal with. In most cases those are big file transfers
or backup traffic and it's not feasible to decode the whole traffic. From a network security monitoring perspective it's
often enough to log the metadata of that flow and do a packet inspection at the beginning but not the whole flow.

If you can spot specific flows as described above then try to filter those. The easiest solution would be a bpf filter but
that would still result in a performance impact. Ideally you can filter such traffic even sooner on driver or NIC level (see
eBPF/XDP) or even before it reaches the system where Suricata is running. Some commercial packet broker support
such filtering where it's called Flow Shunting or Flow Slicing.

11.11.5 Rules

The Ruleset plays an important role in the detection but also in the performance capability of Suricata. Thus it's
recommended to look into the impact of enabled rules as well.

If you run into performance issues and struggle to narrow it down start with running Suricata without any rules enabled
and use the tools again that have been explained at the first part. Keep in mind that even without signatures enabled
Suricata still does most of the decoding and traffic analysis, so a fair amount of load should still be seen. If the load
is still very high and drops are seen and the hardware should be capable to deal with such traffic loads you should
deep dive if there is any specific traffic issue (see above) or report the performance issue so it can be investigated (see
https://suricata.io/join-our-community/).

Suricata also provides several specific traffic related signatures in the rules folder that could be enabled for testing to spot
specific traffic issues. Those are found the rules and you should start with decoder-events.rules, stream-events.rules
and app-layer-events.rules.
It can also be helpful to use Rule Profiling and/or Packet Profiling to find problematic rules or traffic pattern. This is
achieved by compiling Suricata with --enable-profiling but keep in mind that this has an impact on performance and
should only be used for troubleshooting.

308 Chapter 11. Performance

https://suricata.io/join-our-community/

CHAPTER

TWELVE

CONFIGURATION

12.1 Suricata.yaml

Suricata uses the Yaml format for configuration. The Suricata.yaml file included in the source code, is the example
configuration of Suricata. This document will explain each option.

At the top of the YAML-file you will find % YAML 1.1. Suricata reads the file and identifies the file as YAML.

12.1.1 Max-pending-packets

With the max-pending-packets setting you can set the number of packets you allow Suricata to process simultaneously.
This can range from one packet to tens of thousands/hundreds of thousands of packets. It is a trade of higher perfor-
mance and the use of more memory (RAM), or lower performance and less use of memory. A high number of packets
being processed results in a higher performance and the use of more memory. A low number of packets, results in
lower performance and less use of memory. Choosing a low number of packets being processed while having many
CPU's/CPU cores, can result in not making use of the whole computer-capacity. (For instance: using one core while
having three waiting for processing packets.)

max-pending-packets: 1024

12.1.2 Runmodes

By default the runmode option is disabled. With the runmodes setting you can set the runmode you would like to use.
For all runmodes available, enter --list-runmodes in your command line. For more information, see Runmodes.

runmode: autofp

12.1.3 Default-packet-size

For the max-pending-packets option, Suricata has to keep packets in memory. With the default-packet-size option, you
can set the size of the packets on your network. It is possible that bigger packets have to be processed sometimes. The
engine can still process these bigger packets, but processing it will lower the performance.

default-packet-size: 1514

309

Suricata User Guide, Release 8.0.0

12.1.4 User and group

It is possible to set the user and group to run Suricata as:

run-as:
user: suri
group: suri

12.1.5 PID File

This option sets the name of the PID file when Suricata is run in daemon mode. This file records the Suricata process
ID.

pid-file: /var/run/suricata.pid

Note: This configuration file option only sets the PID file when running in daemon mode. To force creation of a PID
file when not running in daemon mode, use the --pidfile command line option.

Also, if running more than one Suricata process, each process will need to specify a different pid-file location.

12.1.6 Action-order

All signatures have different properties. One of those is the Action property. This one determines what will happen
when a signature matches. There are four types of Action. A summary of what will happen when a signature matches
and contains one of those Actions:

1) Pass

If a signature matches and contains pass, Suricata stops scanning the packet and skips to the end of all rules (only for
the current packet). If the signature matches on a TCP connection, the entire flow will be passed but details of the flow
will still be logged.

2) Drop

This only concerns the IPS/inline mode. If the program finds a signature that matches, containing drop, it stops imme-
diately. The packet will not be sent any further. Drawback: The receiver does not receive a message of what is going
on, resulting in a time-out (certainly with TCP). Suricata generates an alert for this packet.

3) Reject

This is an active rejection of the packet. Both receiver and sender receive a reject packet. There are two types of reject
packets that will be automatically selected. If the offending packet concerns TCP, it will be a Reset-packet. For all other
protocols it will be an ICMP-error packet. Suricata also generates an alert. When in Inline/IPS mode, the offending
packet will also be dropped like with the 'drop' action.

4) Alert

If a signature matches and contains alert, the packet will be treated like any other non-threatening packet, except for
this one an alert will be generated by Suricata. Only the system administrator can notice this alert.

Inline/IPS can block network traffic in two ways. One way is by drop and the other by reject.

Rules will be loaded in the order of which they appear in files. But they will be processed in a different order. Signatures
have different priorities. The most important signatures will be scanned first. There is a possibility to change the order
of priority. The default order is: pass, drop, reject, alert.

310 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

action-order:
- pass
- drop
- reject
- alert

This means a pass rule is considered before a drop rule, a drop rule before a reject rule and so on.

12.1.7 Packet alert queue settings

It is possible to configure the size of the alerts queue that is used to append alerts triggered by each packet.

This will influence how many alerts would be perceived to have matched against a given packet. The default value is
15. If an invalid setting or no value is provided, the engine will fall back to the default.

#Define maximum number of possible alerts that can be triggered for the same
packet. Default is 15
packet-alert-max: 15

We recommend that you use the default value for this setting unless you are seeing a high number of discarded alerts
(alert_queue_overflow) - see the Discarded and Suppressed Alerts Stats section for more details.

Impact on engine behavior

Internally, the Suricata engine represents each packet with a data structure that has its own alert queue. The max size
of the queue is defined by packet-alert-max. The same rule can be triggered by the same packet multiple times. As
long as there is still space in the alert queue, those are appended.

Rules that have the noalert keyword will be checked - in case their signatures have actions that must be applied to the
Packet or Flow, then suppressed. They have no effect in the final alert queue.

Rules are queued by priority: higher priority rules may be kept instead of lower priority ones that may have been
triggered earlier, if Suricata reaches packet-alert-max for a given packet (a.k.a. packet alert queue overflow).

Packet alert queue overflow

Once the alert queue reaches its max size, we are potentially at packet alert queue overflow, so new alerts will only be
appended in case their rules have a higher priority id (this is the internal id attributed by the engine, not the signature
id).

This may happen in two different situations:

• a higher priority rule is triggered after a lower priority one: the lower priority rule is replaced in the queue;

• a lower priority rule is triggered: the rule is just discarded.

Note: This behavior does not mean that triggered drop rules would have their action ignored, in IPS mode.

12.1. Suricata.yaml 311

Suricata User Guide, Release 8.0.0

Discarded and Suppressed Alerts Stats

Both scenarios previously described will be logged as detect.alert_queue_overflow in the stats logs (in stats.log and
eve-log's stats event).

When noalert rules match, they appear in the stats logs as detect.alerts_suppressed.

Date: 4/6/2022 -- 17:18:08 (uptime: 0d, 00h 00m 00s)
--
Counter | TM Name | Value
--
detect.alert | Total | 3
detect.alert_queue_overflow | Total | 4
detect.alerts_suppressed | Total | 1

In this example from a stats.log, we read that 8 alerts were generated: 3 were kept in the packet queue while 4 were
discarded due to packets having reached max size for the alert queue, and 1 was suppressed due to coming from a
noalert rule.

12.1.8 Splitting configuration in multiple files

Some users might have a need or a wish to split their suricata.yaml file into separate files, this is available via the
'include' and '!include' keyword. The first example is of taking the contents of the outputs section and storing them in
outputs.yaml.

outputs.yaml
- fast

enabled: yes
filename: fast.log
append: yes

...

suricata.yaml
...

outputs: !include outputs.yaml

...

The second scenario is where multiple sections are migrated to a different YAML file.

host_1.yaml

max-pending-packets: 2048

outputs:
- fast

enabled: yes
filename: fast.log
append: yes

312 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

suricata.yaml

include: host_1.yaml

...

If the same section, say outputs is later redefined after the include statement it will overwrite the included file. Therefore
any include statement at the end of the document will overwrite the already configured sections.

12.1.9 Event output

Default logging directory

In the /var/log/suricata directory, all of Suricata's output (alerts and events) will be stored.

default-log-dir: /var/log/suricata

This directory can be overridden by entering the -l command line parameter or by changing the directory directly in
Yaml. To change it with the -l command line parameter, enter the following:

suricata -c suricata.yaml -i eth0 -l /var/log/suricata-logs/

Stats

Engine statistics such as packet counters, memory use counters and others can be logged in several ways. A separate
text log 'stats.log' and an EVE record type 'stats' are enabled by default.

The stats have a global configuration and a per logger configuration. Here the global config is documented.

global stats configuration
stats:
enabled: yes
The interval field (in seconds) controls at what interval
the loggers are invoked.
interval: 8
Add decode events as stats.
#decoder-events: true
Decoder event prefix in stats. Has been 'decoder' before, but that leads
to missing events in the eve.stats records. See issue #2225.
#decoder-events-prefix: "decoder.event"
Add stream events as stats.
#stream-events: false
Exception policy stats counters options
(Note: if exception policy: ignore, counters are not logged)
exception-policy:
#per-app-proto-errors: false # default: false. True will log errors for

each app-proto. Warning: VERY verbose

Statistics can be enabled or disabled here.

Statistics are dumped on an interval. Setting this below 3 or 4 seconds is not useful due to how threads are synchronized
internally.

12.1. Suricata.yaml 313

Suricata User Guide, Release 8.0.0

The decoder events that the decoding layer generates, can create a counter per event type. This behaviour is enabled by
default. The decoder-events option can be set to false to disable.

In 4.1.x there was a naming clash between the regular decoder counters and the decoder-event counters. This lead to
a fair amount of decoder-event counters not being shown in the EVE.stats records. To address this without breaking
existing setups, a config option decoder-events-prefix was added to change the naming of the decoder-events from
decoder.<proto>.<event> to decoder.event.<proto>.<event>. In 5.0 this became the default. See issue 2225.

Similar to the decoder-events option, the stream-events option controls whether the stream-events are added as counters
as well. This is disabled by default.

If any exception policy is enabled, stats counters are logged. To control verbosity for application layer protocol errors,
leave per-app-proto-errors as false.

Outputs

There are several types of output. The general structure is:

outputs:
- fast:
enabled: yes
filename: fast.log
append: yes/no

Enabling all of the logs, will result in a much lower performance and the use of more disc space, so enable only the
outputs you need.

Line based alerts log (fast.log)

This log contains alerts consisting of a single line. Example of the appearance of a single fast.log-file line:

10/05/10-10:08:59.667372 [**] [1:2009187:4] ET WEB_CLIENT ACTIVEX iDefense
COMRaider ActiveX Control Arbitrary File Deletion [**] [Classification: Web
Application Attack] [Priority: 3] {TCP} xx.xx.232.144:80 -> 192.168.1.4:56068

-fast: #The log-name.
enabled:yes #This log is enabled. Set to 'no' to disable.
filename: fast.log #The name of the file in the default logging directory.
append: yes/no #If this option is set to yes, the last filled fast.log-file␣

→˓will not be
#overwritten while restarting Suricata.

Eve (Extensible Event Format)

This is an JSON output for alerts and events. It allows for easy integration with 3rd party tools like logstash.

outputs:
Extensible Event Format (nicknamed EVE) event log in JSON format
- eve-log:

enabled: yes
filetype: regular #regular|syslog|unix_dgram|unix_stream|redis
filename: eve.json

(continues on next page)

314 Chapter 12. Configuration

https://redmine.openinfosecfoundation.org/issues/2225

Suricata User Guide, Release 8.0.0

(continued from previous page)

Enable for multi-threaded eve.json output; output files are amended with
an identifier, e.g., eve.9.json
#threaded: false
Specify the amount of buffering, in bytes, for
this output type. The default value 0 means "no
buffering".
#buffer-size: 0
#prefix: "@cee: " # prefix to prepend to each log entry
the following are valid when type: syslog above
#identity: "suricata"
#facility: local5
#level: Info ## possible levels: Emergency, Alert, Critical,

Error, Warning, Notice, Info, Debug
#ethernet: no # log ethernet header in events when available
#redis:
server: 127.0.0.1
port: 6379
async: true ## if redis replies are read asynchronously
mode: list ## possible values: list|lpush (default), rpush, channel|publish,␣

→˓xadd|stream
lpush and rpush are using a Redis list. "list" is an alias for␣

→˓lpush
publish is using a Redis channel. "channel" is an alias for␣

→˓publish
xadd is using a Redis stream. "stream" is an alias for xadd
key: suricata ## string denoting the key/channel/stream to use (default to␣

→˓suricata)
stream-maxlen: 100000 ## Automatically trims the stream length to at most

this number of events. Set to 0 to disable␣
→˓trimming.

Only used when mode is set to xadd/stream.
stream-trim-exact: false ## Trim exactly to the maximum stream length above.

Default: use inexact trimming (inexact by a few
tens of items)
Only used when mode is set to xadd/stream.

Redis pipelining set up. This will enable to only do a query every
'batch-size' events. This should lower the latency induced by network
connection at the cost of some memory. There is no flushing implemented
so this setting should be reserved to high traffic Suricata deployments.
pipelining:
enabled: yes ## set enable to yes to enable query pipelining
batch-size: 10 ## number of entries to keep in buffer

Include top level metadata. Default yes.
#metadata: no

include the name of the input pcap file in pcap file processing mode
pcap-file: false

Community Flow ID
Adds a 'community-id' field to EVE records. These are meant to give
records a predictable flow ID that can be used to match records to

(continues on next page)

12.1. Suricata.yaml 315

Suricata User Guide, Release 8.0.0

(continued from previous page)

output of other tools such as Zeek (Bro).
#
Takes a 'seed' that needs to be same across sensors and tools
to make the id less predictable.

enable/disable the community id feature.
community-id: false
Seed value for the ID output. Valid values are 0-65535.
community-id-seed: 0

HTTP X-Forwarded-For support by adding an extra field or overwriting
the source or destination IP address (depending on flow direction)
with the one reported in the X-Forwarded-For HTTP header. This is
helpful when reviewing alerts for traffic that is being reverse
or forward proxied.
xff:
enabled: no
Two operation modes are available: "extra-data" and "overwrite".
mode: extra-data
Two proxy deployments are supported: "reverse" and "forward". In
a "reverse" deployment the IP address used is the last one, in a
"forward" deployment the first IP address is used.
deployment: reverse
Header name where the actual IP address will be reported. If more
than one IP address is present, the last IP address will be the
one taken into consideration.
header: X-Forwarded-For

types:
- alert:

payload: yes # enable dumping payload in Base64
payload-buffer-size: 4kb # max size of payload buffer to output in eve-log
payload-printable: yes # enable dumping payload in printable (lossy)␣

→˓format
payload-length: yes # enable dumping payload length, including the␣

→˓gaps
packet: yes # enable dumping of packet (without stream␣

→˓segments)
metadata: no # enable inclusion of app layer metadata with␣

→˓alert. Default yes
If you want metadata, use:
metadata:
Include the decoded application layer (ie. http, dns)
#app-layer: true
Log the current state of the flow record.
#flow: true
#rule:
Log the metadata field from the rule in a structured
format.
#metadata: true
Log the raw rule text.
#raw: false

(continues on next page)

316 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

(continued from previous page)

#reference: false # include reference information from the rule
http-body: yes # Requires metadata; enable dumping of HTTP body␣

→˓in Base64
http-body-printable: yes # Requires metadata; enable dumping of HTTP body␣

→˓in printable format
websocket-payload: yes # Requires metadata; enable dumping of WebSocket␣

→˓Payload in Base64
websocket-payload-printable: yes # Requires metadata; enable dumping of␣

→˓WebSocket Payload in printable format

Enable the logging of tagged packets for rules using the
"tag" keyword.
tagged-packets: yes
Enable logging the final action taken on a packet by the engine
(e.g: the alert may have action 'allowed' but the verdict be
'drop' due to another alert. That's the engine's verdict)
verdict: yes

app layer frames
- frame:

disabled by default as this is very verbose.
enabled: no
payload-buffer-size: 4kb # max size of frame payload buffer to output in␣

→˓eve-log
- anomaly:

Anomaly log records describe unexpected conditions such
as truncated packets, packets with invalid IP/UDP/TCP
length values, and other events that render the packet
invalid for further processing or describe unexpected
behavior on an established stream. Networks which
experience high occurrences of anomalies may experience
packet processing degradation.
#
Anomalies are reported for the following:
1. Decode: Values and conditions that are detected while
decoding individual packets. This includes invalid or
unexpected values for low-level protocol lengths as well
as stream related events (TCP 3-way handshake issues,
unexpected sequence number, etc).
2. Stream: This includes stream related events (TCP
3-way handshake issues, unexpected sequence number,
etc).
3. Application layer: These denote application layer
specific conditions that are unexpected, invalid or are
unexpected given the application monitoring state.
#
By default, anomaly logging is enabled. When anomaly
logging is enabled, applayer anomaly reporting is
also enabled.
enabled: yes
#
Choose one or more types of anomaly logging and whether to enable
logging of the packet header for packet anomalies.

(continues on next page)

12.1. Suricata.yaml 317

Suricata User Guide, Release 8.0.0

(continued from previous page)

types:
decode: no
stream: no
applayer: yes

#packethdr: no
- http:

extended: yes # enable this for extended logging information
custom allows additional HTTP fields to be included in eve-log.
the example below adds three additional fields when uncommented
#custom: [Accept-Encoding, Accept-Language, Authorization]
set this value to one and only one from {both, request, response}
to dump all HTTP headers for every HTTP request and/or response
dump-all-headers: none

- dns:
This configuration uses the new DNS logging format,
the old configuration is still available:
https://docs.suricata.io/en/latest/output/eve/eve-json-output.html#dns-v1-

→˓format

As of Suricata 5.0, version 2 of the eve dns output
format is the default.
#version: 2

Enable/disable this logger. Default: enabled.
#enabled: yes

Control logging of requests and responses:
- requests: enable logging of DNS queries
- responses: enable logging of DNS answers
By default both requests and responses are logged.
#requests: no
#responses: no

Format of answer logging:
- detailed: array item per answer
- grouped: answers aggregated by type
Default: all
#formats: [detailed, grouped]

DNS record types to log, based on the query type.
Default: all.
#types: [a, aaaa, cname, mx, ns, ptr, txt]

- tls:
extended: yes # enable this for extended logging information
output TLS transaction where the session is resumed using a
session id
#session-resumption: no
custom controls which TLS fields that are included in eve-log
WARNING: enabling custom disables extended logging.
#custom: [subject, issuer, session_resumed, serial, fingerprint, sni,␣

→˓version, not_before, not_after, certificate, chain, ja3, ja3s, ja4, subjectaltname,␣
→˓client, client_certificate, client_chain, client_alpns, server_alpns]

(continues on next page)

318 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

(continued from previous page)

- files:
force-magic: no # force logging magic on all logged files
force logging of checksums, available hash functions are md5,
sha1 and sha256
#force-hash: [md5]

#- drop:
alerts: yes # log alerts that caused drops
flows: all # start or all: 'start' logs only a single drop
per flow direction. All logs each dropped pkt.

Enable logging the final action taken on a packet by the engine
(will show more information in case of a drop caused by 'reject')
verdict: yes

- smtp:
#extended: yes # enable this for extended logging information
this includes: bcc, message-id, subject, x_mailer, user-agent
custom fields logging from the list:
reply-to, bcc, message-id, subject, x-mailer, user-agent, received,
x-originating-ip, in-reply-to, references, importance, priority,
sensitivity, organization, content-md5, date
#custom: [received, x-mailer, x-originating-ip, relays, reply-to, bcc]
output md5 of fields: body, subject
for the body you need to set app-layer.protocols.smtp.mime.body-md5
to yes
#md5: [body, subject]

#- dnp3
- websocket
- ftp
- ftp-data
- rdp
- nfs
- smb
- tftp
- ike
- dcerpc
- krb5
- bittorrent-dht
- ssh
- arp:

enabled: no
- snmp
- rfb
- sip
- quic
- dhcp:

enabled: yes
When extended mode is on, all DHCP messages are logged
with full detail. When extended mode is off (the
default), just enough information to map a MAC address
to an IP address is logged.
extended: no

- mqtt:

(continues on next page)

12.1. Suricata.yaml 319

Suricata User Guide, Release 8.0.0

(continued from previous page)

passwords: yes # enable output of passwords
string-log-limit: 1kb # limit size of logged strings in bytes.

Can be specified in kb, mb, gb. Just a number
is parsed as bytes. Default is 1KB.
Use a value of 0 to disable limiting.
Note that the size is also bounded by
the maximum parsed message size (see
app-layer configuration)

- http2
- pgsql:

enabled: no
passwords: yes # enable output of passwords. Disabled by default

- stats:
totals: yes # stats for all threads merged together
threads: no # per thread stats
deltas: no # include delta values
Don't log stats counters that are zero. Default: true
#null-values: false # False will NOT log stats counters: 0

bi-directional flows
- flow
uni-directional flows
#- netflow

Metadata event type. Triggered whenever a pktvar is saved
and will include the pktvars, flowvars, flowbits and
flowints.
#- metadata

EXPERIMENTAL per packet output giving TCP state tracking details
including internal state, flags, etc.
This output is experimental, meant for debugging and subject to
change in both config and output without any notice.
#- stream:
all: false # log all TCP packets
event-set: false # log packets that have a decoder/stream␣

→˓event
state-update: false # log packets triggering a TCP state update
spurious-retransmission: false # log spurious retransmission packets
#

heartbeat:
The output-flush-interval value governs how often Suricata will instruct the
detection threads to flush their EVE output. Specify the value in seconds [1-60]
and Suricata will initiate EVE log output flushes at that interval. A value
of 0 means no EVE log output flushes are initiated. When the EVE output
buffer-size value is non-zero, some EVE output that was written may remain
buffered. The output-flush-interval governs how much buffered data exists.
#
The default value is: 0 (never instruct detection threads to flush output)
#output-flush-interval: 0

For more advanced configuration options, see Eve JSON Output.

The format is documented in Eve JSON Format.

320 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

TLS parameters and certificates logging (tls.log)

Attention: tls-log is deprecated in Suricata 8.0 and will be removed in Suricata 9.0.

The TLS handshake parameters can be logged in a line based log as well. By default, the logfile is tls.log in the suricata
log directory. See Custom TLS logging for details about the configuration and customization of the log format.

Furthermore there is an output module to store TLS certificate files to disk. This is similar to File-store (File Extraction),
but for TLS certificates.

Example:

output module to store certificates chain to disk
- tls-store:

enabled: yes
#certs-log-dir: certs # directory to store the certificates files

A line based log of HTTP requests (http.log)

Attention: http-log is deprecated in Suricata 8.0 and will be removed in Suricata 9.0.

This log keeps track of all HTTP-traffic events. It contains the HTTP request, hostname, URI and the User-Agent.
This information will be stored in the http.log (default name, in the suricata log directory). This logging can also be
performed through the use of the Eve-log capability.

Example of a HTTP-log line with non-extended logging:

07/01/2014-04:20:14.338309 vg.no [**] / [**] Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_
→˓2)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.114 Safari/537.36 [**]
192.168.1.6:64685 -> 195.88.54.16:80

Example of a HTTP-log line with extended logging:

07/01/2014-04:21:06.994705 vg.no [**] / [**] Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_
→˓2)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.114 Safari/537.36 [**] <no␣
→˓referer> [**]
GET [**] HTTP/1.1 [**] 301 => http://www.vg.no/ [**] 239 bytes [**] 192.168.1.6:64726 ->␣
→˓195.88.54.16:80

- http-log: #The log-name.
enabled: yes #This log is enabled. Set 'no' to disable.
filename: http.log #The name of the file in the default logging directory.
append: yes/no #If this option is set to yes, the last filled http.log-

→˓file will not be
overwritten while restarting Suricata.

extended: yes # If set to yes more information is written about the␣
→˓event.

12.1. Suricata.yaml 321

Suricata User Guide, Release 8.0.0

Packet log (pcap-log)

With the pcap-log option you can save all packets, that are registered by Suricata, in a log file named _log.pcap_.
This way, you can take a look at all packets whenever you want. In the normal mode a pcap file is created in the
default-log-dir. It can also be created elsewhere if a absolute path is set in the yaml-file.

The file that is saved in example the default-log-dir /var/log/suricata, can be be opened with every program which
supports the pcap file format. This can be Wireshark, TCPdump, Suricata, Snort and many others.

The pcap-log option can be enabled and disabled.

There is a size limit for the pcap-log file that can be set. The default limit is 32 MB. If the log-file reaches this limit,
the file will be rotated and a new one will be created. Remember that in the 'normal' mode, the file will be saved in
default-log-dir or in the absolute path (if set).

The pcap files can be compressed before being written to disk by setting the compression option to lz4. Note: On
Windows, this option increases disk I/O instead of reducing it. When using lz4 compression, you can enable checksums
using the lz4-checksum option, and you can set the compression level lz4-level to a value between 0 and 16, where
higher levels result in higher compression.

By default all packets are logged except:

• TCP streams beyond stream.reassembly.depth

• encrypted streams after the key exchange

• If a bpf-filter is set, packets that don't match the filter will not be logged

It is possible to do conditional pcap logging by using the conditional option in the pcap-log section. By default the
variable is set to all so all packets are logged. If the variable is set to alerts then only the flow with alerts will be logged.
If the variable is set to tag then only packets tagged by signatures using the tag keyword will be logged to the pcap file.
Please note that if alerts or tag is used, then in the case of TCP session, Suricata will use available information from
the streaming engine to log data that have triggered the alert.

- pcap-log:
enabled: yes
filename: log.pcap

Limit in MB.
limit: 32

mode: normal # "normal" or multi
conditional: alerts

A BPF filter that will be applied to all packets being
logged. If set, packets must match this filter otherwise they
will not be logged.
#bpf-filter:

In normal mode a pcap file "filename" is created in the default-log-dir or as specified by "dir". normal mode is
generally not as performant as multi mode.

In multi mode, multiple pcap files are created (per thread) which performs better than normal mode.

In multi mode the filename takes a few special variables:
• %n representing the thread number

• %i representing the thread id

• %t representing the timestamp (secs or secs.usecs based on 'ts-format')

322 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Example: filename: pcap.%n.%t

Note: It is possible to use directories but the directories are not created by Suricata. For example filename: pcaps/
%n/log.%s will log into the pre-existing pcaps directory and per thread sub directories.

Note: that the limit and max-files settings are enforced per thread. So the size limit using 8 threads with 1000mb files
and 2000 files is about 16TiB.

Verbose Alerts Log (alert-debug.log)

This is a log type that gives supplementary information about an alert. It is particularly convenient for people who
investigate false positives and who write signatures. However, it lowers the performance because of the amount of
information it has to store.

- alert-debug: #The log-name.
enabled: no #This log is not enabled. Set 'yes' to enable.
filename: alert-debug.log #The name of the file in the default logging directory.
append: yes/no #If this option is set to yes, the last filled fast.log-

→˓file will not be
overwritten while restarting Suricata.

Stats

In stats you can set the options for stats.log. When enabling stats.log you can set the amount of time in seconds after
which you want the output-data to be written to the log file.

- stats:
enabled: yes #By default, the stats-option is enabled
filename: stats.log #The log-name. Combined with the default logging␣

→˓directory
#(default-log-dir) it will result in /var/log/suricata/

→˓stats.log.
#This directory can be overruled with a absolute path. (A
#directory starting with /).

append: yes/no #If this option is set to yes, the last filled fast.log-
→˓file will not be

#overwritten while restarting Suricata.

The interval and several other options depend on the global stats section as described above.

12.1. Suricata.yaml 323

Suricata User Guide, Release 8.0.0

Syslog

Attention: The syslog output is deprecated in Suricata 8.0 and will be removed in Suricata 9.0. Please migrate to
the eve output which has the ability to send to syslog.

With this option it is possible to send all alert and event output to syslog.

- syslog: #This is a output-module to direct log-output to several␣
→˓directions.

enabled: no #The use of this output-module is not enabled.
facility: local5 #In this option you can set a syslog facility.
level: Info #In this option you can set the level of output. The␣

→˓possible levels are:
#Emergency, Alert, Critical, Error, Warning, Notice,␣

→˓Info and Debug.

File-store (File Extraction)

The file-store output enables storing of extracted files to disk and configures where they are stored.

The following shows the configuration options for version 2 of the file-store output.

- file-store:
This configures version 2 of the file-store.
version: 2

enabled: no

Set the directory for the filestore. If the path is not
absolute will be be relative to the default-log-dir.
#dir: filestore

Write out a fileinfo record for each occurrence of a
file. Disabled by default as each occurrence is already logged
as a fileinfo record to the main eve-log.
#write-fileinfo: yes

Force storing of all files. Default: no.
#force-filestore: yes

Override the global stream-depth for sessions in which we want
to perform file extraction. Set to 0 for unlimited; otherwise,
must be greater than the global stream-depth value to be used.
#stream-depth: 0

Uncomment the following variable to define how many files can
remain open for filestore by Suricata. Default value is 0 which
means files get closed after each write
#max-open-files: 1000

Force logging of checksums, available hash functions are md5,
(continues on next page)

324 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

(continued from previous page)

sha1 and sha256. Note that SHA256 is automatically forced by
the use of this output module as it uses the SHA256 as the
file naming scheme.
#force-hash: [sha1, md5]

12.1.10 Detection engine

Inspection configuration

The detection-engine builds internal groups of signatures. Suricata loads signatures, with which the network traffic will
be compared. The fact is, that many rules certainly will not be necessary. For instance, if there appears a packet with
the UDP-protocol, all signatures for the TCP-protocol won't be needed. For that reason, all signatures will be divided in
groups. However, a distribution containing many groups will make use of a lot of memory. Not every type of signature
gets its own group. There is a possibility that different signatures with several properties in common, will be placed
together in a group. The quantity of groups will determine the balance between memory and performance. A small
number of groups will lower the performance yet use little memory. The opposite counts for a higher amount of groups.
The engine allows you to manage the balance between memory and performance. To manage this, (by determining the
amount of groups) there are several general options: high for good performance and more use of memory, low for low
performance and little use of memory. The option medium is the balance between performance and memory usage.
This is the default setting. The option custom-values is for advanced users. This option has values which can be
managed by the user.

detect:
profile: medium
custom-values:
toclient-groups: 3
toserver-groups: 25

sgh-mpm-context: auto
inspection-recursion-limit: 3000
stream-tx-log-limit: 4
guess-applayer-tx: no
grouping:
tcp-priority-ports: 53, 80, 139, 443, 445, 1433, 3306, 3389, 6666, 6667, 8080
udp-priority-ports: 53, 135, 5060

At all of these options, you can add (or change) a value. Most signatures have the adjustment to focus on one direction,
meaning focusing exclusively on the server, or exclusively on the client.

If you take a look at example 4, the Detection-engine grouping tree, you see it has many branches. At the end of each
branch, there is actually a 'sig group head'. Within that sig group head there is a container which contains a list with
signatures that are significant for that specific group/that specific end of the branch. Also within the sig group head the
settings for Multi-Pattern-Matcher (MPM) can be found: the MPM-context.

As will be described again in Pattern matcher settings, there are several MPM-algorithms of which can be chosen from.
Because every sig group head has its own MPM-context, some algorithms use a lot of memory. For that reason there
is the option sgh-mpm-context to set whether the groups share one MPM-context, or to set that every group has its
own MPM-context.

For setting the option sgh-mpm-context, you can choose from auto, full or single. The default setting is 'auto', meaning
Suricata selects full or single based on the algorithm you use. 'Full' means that every group has its own MPM-context,
and 'single' that all groups share one MPM-context. The algorithm "ac" uses a single MPM-context if the Sgh-MPM-
context setting is 'auto'. The rest of the algorithms use full in that case.

12.1. Suricata.yaml 325

Suricata User Guide, Release 8.0.0

The inspection-recursion-limit option has to mitigate that possible bugs in Suricata cause big problems. Often
Suricata has to deal with complicated issues. It could end up in an 'endless loop' due to a bug, meaning it will repeat
its actions over and over again. With the option inspection-recursion-limit you can limit this action.

The stream-tx-log-limit defines the maximum number of times a transaction will get logged for rules without
app-layer keywords. This is meant to avoid logging the same data an arbitrary number of times.

The guess-applayer-tx option controls whether the engine will try to guess and tie a transaction to a given alert
if the matching signature doesn't have app-layer keywords. If enabled, AND ONLY ONE LIVE TRANSACTION
EXISTS, that transaction's data will be added to the alert metadata. Note that this may not be the expected data, from
an analyst's perspective.

The grouping option allows user to define the most seen ports on their network using tcp-priority-ports and
udp-priority-ports settings to benefit from the internal signature groups created by Suricata. The engine shall
then try to club the rules that use the ports defined in groups of their own and put them on top of the list of rules to be
matched against traffic on "priority".

Example 4 Detection-engine grouping tree

src Stands for source IP-address.
dst Stands for destination IP-address.
sp Stands for source port.
dp Stands for destination port.

Example 5 Detail grouping tree

326 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Prefilter Engines

The concept of prefiltering is that there are far too many rules to inspect individually. The approach prefilter takes is
that from each rule one condition is added to prefilter, which is then checked in one step. The most common example
is MPM (also known as fast_pattern). This takes a single pattern per rule and adds it to the MPM. Only for those rules
that have at least one pattern match in the MPM stage, individual inspection is performed.

Next to MPM, other types of keywords support prefiltering. ICMP itype, icode, icmp_seq and icmp_id for example.
TCP window, IP TTL are other examples.

For a full list of keywords that support prefilter, see:

suricata --list-keywords=all

Suricata can automatically select prefilter options, or it can be set manually.

detect:
prefilter:
default: mpm

12.1. Suricata.yaml 327

Suricata User Guide, Release 8.0.0

By default, only MPM/fast_pattern is used.

The prefilter engines for other non-MPM keywords can then be enabled in specific rules by using the 'prefilter' keyword.

E.g.

alert ip any any -> any any (ttl:123; prefilter; sid:1;)

To let Suricata make these decisions set default to 'auto':

detect:
prefilter:
default: auto

Thresholding Settings

Thresholding uses a central hash table for tracking thresholds of the types: by_src, by_dst, by_both.

detect:
thresholds:
hash-size: 16384
memcap: 16mb

detect.thresholds.hash-size controls the number of hash rows in the hash table. detect.thresholds.memcap
controls how much memory can be used for the hash table and the data stored in it.

Pattern matcher settings

The multi-pattern-matcher (MPM) is a part of the detection engine within Suricata that searches for multiple patterns at
once. Often, signatures have one or more patterns. Of each signature, one pattern is used by the multi-pattern-matcher.
That way Suricata can exclude many signatures from being examined, because a signature can only match when all its
patterns match.

These are the proceedings:

1) A packet comes in.

2) The packed will be analyzed by the Multi-pattern-matcher in search of patterns that match.

3) All patterns that match, will be further processed by Suricata (signatures).

Example 8 Multi-pattern-matcher

328 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Suricata offers various implementations of different multi-pattern-matcher algorithm's. These can be found below.

To set the multi-pattern-matcher algorithm:

mpm-algo: ac

After 'mpm-algo', you can enter one of the following algorithms: ac, hs and ac-ks.

On x86_64 hs (Hyperscan) should be used for best performance.

12.1.11 Threading

Suricata is multi-threaded. Suricata uses multiple CPUs/CPU cores so it can process a lot of network packets simulta-
neously. (In a single-core engine, the packets will be processed one at a time.)

There are four thread-modules: Packet acquisition, decode and stream application layer, detection, and outputs.

The packet acquisition module reads packets from the network.

The decode module decodes the packets and the stream application application layer has three tasks:

First: it performs stream-tracking, meaning it is making sure all steps will be taken to␣
→˓make a correct network-connection.
Second: TCP-network traffic comes in as packets. The Stream-Assembly engine reconstructs␣
→˓the original stream.
Finally: the application layer will be inspected. HTTP and DCERPC will be analyzed.

The detection threads will compare signatures. There can be several detection threads so they can operate simulta-
neously.

In Outputs all alerts and events will be processed.

Example 6 Threading

12.1. Suricata.yaml 329

Suricata User Guide, Release 8.0.0

Packet acquisition: Reads packets from the network
Decode: Decodes packets.
Stream app. Layer: Performs stream-tracking and reassembly.
Detect: Compares signatures.
Outputs: Processes all events and alerts.

Most computers have multiple CPU's/ CPU cores. By default the operating system determines which core works on
which thread. When a core is already occupied, another one will be designated to work on the thread. So, which core
works on which thread, can differ from time to time.

There is an option within threading:

set-cpu-affinity: no

With this option you can cause Suricata setting fixed cores for every thread. In that case 1, 2 and 4 are at core 0 (zero).
Each core has its own detect thread. The detect thread running on core 0 has a lower priority than the other threads
running on core 0. If these other cores are to occupied, the detect thread on core 0 has not much packets to process.
The detect threads running on other cores will process more packets. This is only the case after setting the option to
'yes'.

Example 7 Balancing workload

330 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

You can set the detect-thread-ratio:

detect-thread-ratio: 1.5

The detect thread-ratio will determine the amount of detect threads. By default it will be 1.5 x the amount of CPU's/CPU
cores present at your computer. This will result in having more detection threads then CPU's/ CPU cores. Meaning you
are oversubscribing the amount of cores. This may be convenient at times when there have to be waited for a detection
thread. The remaining detection thread can become active.

You can alter the per-thread stack-size if the default provided by your build system is too small. The default value is
provided by your build system; we suggest setting the value to 8MB if the default value is too small.

stack-size: 8MB

In the option 'cpu affinity' you can set which CPU's/cores work on which thread. In this option there are several sets of
threads. The management-, receive-, worker- and verdict-set. These are fixed names and can not be changed. For each
set there are several options: cpu, mode, and prio. In the option 'cpu' you can set the numbers of the CPU's/cores which
will run the threads from that set. You can set this option to 'all', use a range (0-3) or a comma separated list (0,1). The
option 'mode' can be set to 'balanced' or 'exclusive'. When set to 'balanced', the individual threads can be processed by
all cores set in the option 'cpu'. If the option 'mode' is set to 'exclusive', there will be fixed cores for each thread. As
mentioned before, threads can have different priority's. In the option 'prio' you can set a priority for each thread. This
priority can be low, medium, high or you can set the priority to 'default'. If you do not set a priority for a CPU, than the
settings in 'default' will count. By default Suricata creates one 'detect' (worker) thread per available CPU/CPU core.

Note: The 'prio' settings could overwrite each other, make sure to not include the same CPU core in different 'prio'
settings.

12.1. Suricata.yaml 331

Suricata User Guide, Release 8.0.0

threading:
set-cpu-affinity: yes
autopin: no
cpu-affinity:
management-cpu-set:
cpu: [0] # include only these cpus in affinity settings

receive-cpu-set:
cpu: [0] # include only these cpus in affinity settings

worker-cpu-set:
cpu: ["all"]
mode: "exclusive"
Use explicitly 3 threads and don't compute number by using
detect-thread-ratio variable:
threads: 3
prio:
low: [0]
medium: ["1-2"]
high: [3]
default: "medium"

interface-specific-cpu-set:
- interface: "enp4s0f0" # 0000:3b:00.0 # net_bonding0 # ens1f0
cpu: [1,3,5,7,9]
mode: "exclusive"
prio:
high: ["all"]
default: "medium"

verdict-cpu-set:
cpu: [0]
prio:
default: "high"

Relevant cpu-affinity settings for IDS mode

Runmode AutoFp:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
receive-cpu-set - used for receive and decode
worker-cpu-set - used for streamtcp,detect,output(logging),reject

Rumode Workers:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
worker-cpu-set - used for receive,streamtcp,decode,detect,output(logging),respond/reject

332 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Relevant cpu-affinity settings for IPS mode

Runmode AutoFp:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
receive-cpu-set - used for receive and decode
worker-cpu-set - used for streamtcp,detect,output(logging)
verdict-cpu-set - used for verdict and respond/reject

Runmode Workers:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
worker-cpu-set - used for receive,streamtcp,decode,detect,output(logging),respond/reject,
→˓ verdict

Interface-specific CPU affinity settings

Using the new configuration format introduced in Suricata 8.0 it is possible to set CPU affinity settings per interface.
This can be useful when you have multiple interfaces and you want to dedicate specific CPU cores to specific interfaces.
This can be useful, for example, when Suricata runs on multiple NUMA nodes and reads from interfaces on each NUMA
node.

Interface-specific affinity settings can be configured for the worker-cpu-set and the receive-cpu-set (only used
in autofp mode). This feature is available for capture modes which work with interfaces (af-packet, dpdk, etc.). The
value of the interface key can be the kernel interface name (e.g. eth0 for af-packet), the PCI address of the interface
(e.g. 0000:3b:00.0 for DPDK capture mode), or the name of the virtual device interface (e.g. net_bonding0 for DPDK
capture mode). The interface names needs to be unique and be specified in the capture mode configuration.

The interface-specific settings will override the global settings for the worker-cpu-set and receive-cpu-set. The
CPUs do not need to be contained in the parent node settings. If the interface-specific settings are not defined, the
global settings will be used.

threading:
set-cpu-affinity: yes
cpu-affinity:
worker-cpu-set:
interface-specific-cpu-set:
- interface: "eth0" # 0000:3b:00.0 # net_bonding0
cpu: [1,3,5,7,9]
mode: "exclusive"
prio:
high: ["all"]
default: "medium"

12.1. Suricata.yaml 333

Suricata User Guide, Release 8.0.0

Automatic NUMA-aware CPU core pinning

When Suricata is running on a system with multiple NUMA nodes, it is possible to automatically use CPUs from the
same NUMA node as the network capture interface. CPU cores on the same NUMA node as the network capture
interface can have reduced memory access latency and can increase the performance of Suricata. This is enabled by
setting the autopin option to yes in the threading section. This option is available for worker-cpu-set and receive-
cpu-set.

threading:
set-cpu-affinity: yes
autopin: yes
cpu-affinity:
worker-cpu-set:
cpu: ["all"]
mode: "exclusive"
prio:
high: ["all"]

Consider 2 interfaces defined in the capture mode configuration, one on each NUMA node. The autopin option is
enabled to automatically use CPUs from the same NUMA node as the interface. The worker-cpu-set is set to use all
CPUs. When interface on the first NUMA node is used, the worker threads will be pinned to CPUs on the first NUMA
node. When interface on the second NUMA node is used, the worker threads will be pinned to CPUs on the second
NUMA node. If the number of CPU cores on a given NUMA node is exhausted then the worker threads will be pinned
to CPUs on the other NUMA node.

The option threading.autopin can be combined with the interface-specific CPU affinity settings. To use the
autopin option, the system must have the hwloc dependency installed and pass --enable-hwloc to the configure
script.

12.1.12 IP Defrag

Occasionally network packets appear fragmented. On some networks it occurs more often than on others. Fragmented
packets exist of many parts. Before Suricata is able to inspect these kind of packets accurately, the packets have to be
reconstructed. This will be done by a component of Suricata; the defragment-engine. After a fragmented packet is
reconstructed by the defragment-engine, the engine sends on the reassembled packet to rest of Suricata.

At the moment Suricata receives a fragment of a packet, it keeps in memory that other fragments of that packet will
appear soon to complete the packet. However, there is a possibility that one of the fragments does not appear. To
prevent Suricata for keeping waiting for that packet (thereby using memory) there is a timespan after which Suricata
discards the fragments (timeout). This occurs by default after 60 seconds.

In IPS mode, it is possible to tell the engine what to do in case the memcap for the defrag engine is reached: "drop-
packet", "pass-packet", or "ignore" (default behavior).

defrag:
memcap: 32mb
memcap-policy: ignore # in IPS mode, what to do if memcap is reached
hash-size: 65536
trackers: 65535 # number of defragmented flows to follow
max-frags: 65535 # number of fragments do keep (higher than trackers)
prealloc: yes
timeout: 60

334 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

12.1.13 Flow and Stream handling

Flow Settings

Within Suricata, Flows are very important. They play a big part in the way Suricata organizes data internally. A flow
is a bit similar to a connection, except a flow is more general. All packets having the same Tuple (protocol, source IP,
destination IP, source-port, destination-port), belong to the same flow. Packets belonging to a flow are connected to it
internally.

Example 9 Flow

Example 10 Tuple

12.1. Suricata.yaml 335

Suricata User Guide, Release 8.0.0

Keeping track of all these flows, uses memory. The more flows, the more memory it will cost.

To keep control over memory usage, there are several options:

The option memcap for setting the maximum amount of bytes the flow-engine will use, hash-size for setting the size
of the hash-table and prealloc for the following:

For packets not yet belonging to a flow, Suricata creates a new flow. This is a relative expensive action.
The risk coming with it, is that attackers /hackers can a attack the engine system at this part. When they
make sure a computer gets a lot of packets with different tuples, the engine has to make a lot of new flows.
This way, an attacker could flood the system. To mitigate the engine from being overloaded, this option
instructs Suricata to keep a number of flows ready in memory. This way Suricata is less vulnerable to these
kind of attacks.

The flow-engine has a management thread that operates independent from the packet processing. This thread is called
the flow-manager. This thread ensures that wherever possible and within the memcap. There will be 10000 flows
prepared.

In IPS mode, a memcap-policy exception policy can be set, telling Suricata what to do in case memcap is hit: 'drop-
packet', 'pass-packet', 'reject', or 'ignore'.

flow:
memcap: 33554432 #The maximum amount of bytes the flow-engine will make␣

→˓use of.
memcap-policy: bypass #How to handle the flow if memcap is reached (IPS mode)
hash-size: 65536 #Flows will be organized in a hash-table. With this␣

→˓option you can set the
#size of the hash-table.

(continues on next page)

336 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

(continued from previous page)

prealloc: 10000 #The amount of flows Suricata has to keep ready in␣
→˓memory.
rate-tracking: #Enable tracking of flows by the following rate␣

→˓definition; mark them
#as elephant flows if they exceed the defined rate.␣

→˓Disabled by default.
bytes: 1GiB #Number of bytes to track
interval: 10 #Time interval in seconds for which tracking should be␣

→˓done

At the point the memcap will still be reached, despite prealloc, the flow-engine goes into the emergency-mode. In this
mode, the engine will make use of shorter time-outs. It lets flows expire in a more aggressive manner so there will be
more space for new Flows.

emergency-recovery defines the percentage of flows that the engine needs to prune before clearing the emergency
mode. The default emergency-recovery value is 30. This is the percentage of prealloc'd flows after which the flow
-engine will be back to normal (when 30 percent of the 10000 flows are completed).

If during the emergency-mode the aggressive time-outs do not have the desired result, this option is the
final resort. It ends some flows even if they have not reached their time-outs yet.

emergency-recovery: 30 #Percentage of 10000 prealloc'd flows.

Flow Time-Outs

The amount of time Suricata keeps a flow in memory is determined by the Flow time-out.

There are different states in which a flow can be. Suricata distinguishes three flow-states for TCP and two for UDP. For
TCP, these are: New, Established and Closed,for UDP only new and established. For each of these states Suricata can
employ different timeouts.

The state new in a TCP-flow, means the period during the three way handshake. The state established is the state when
the three way handshake is completed. The state closed in the TCP-flow: there a several ways to end a flow. This is by
means of Reset or the Four-way FIN handshake.

New in a UDP-flow: the state in which packets are send from only one direction.

Established in a UDP-flow: packets are send from both directions.

In the example configuration the are settings for each protocol. TCP, UDP, ICMP and default (all other protocols).

flow-timeouts:

default:
new: 30 #Time-out in seconds after the last activity in this␣

→˓flow in a New state.
established: 300 #Time-out in seconds after the last activity in this␣

→˓flow in a Established
#state.

emergency-new: 10 #Time-out in seconds after the last activity in this␣
→˓flow in a New state

#during the emergency mode.
emergency-established: 100 #Time-out in seconds after the last activity in this␣

→˓flow in a Established
#state in the emergency mode.

(continues on next page)

12.1. Suricata.yaml 337

Suricata User Guide, Release 8.0.0

(continued from previous page)

tcp:
new: 60
established: 3600
closed: 120
emergency-new: 10
emergency-established: 300
emergency-closed: 20

udp:
new: 30
established: 300
emergency-new: 10
emergency-established: 100

icmp:
new: 30
established: 300
emergency-new: 10
emergency-established: 100

Stream-engine

The Stream-engine keeps track of the TCP-connections. The engine exists of two parts: The stream tracking- and the
reassembly-engine.

The stream-tracking engine monitors the state of a connection. The reassembly-engine reconstructs the flow as it used
to be, so it will be recognized by Suricata.

The stream-engine has two memcaps that can be set. One for the stream-tracking-engine and one for the reassembly-
engine. For both cases, in IPS mode, an exception policy (memcap-policy) can be set, telling Suricata what to do in
case memcap is hit: 'drop-flow', 'drop-packet', 'pass-flow', 'pass-packet', 'bypass', 'reject', or 'ignore'.

The stream-tracking-engine keeps information of the flow in memory. Information about the state, TCP-sequence-
numbers and the TCP window. For keeping this information, it can make use of the capacity the memcap allows.

TCP packets have a so-called checksum. This is an internal code which makes it possible to see if a packet has arrived
in a good state. The stream-engine will not process packets with a wrong checksum. This option can be set off by
entering 'no' instead of 'yes'.

stream:
memcap: 64mb # Max memory usage (in bytes) for TCP session tracking
memcap-policy: ignore # In IPS mode, call memcap policy if memcap is reached
checksum-validation: yes # Validate packet checksum, reject packets with invalid␣

→˓checksums.

To mitigate Suricata from being overloaded by fast session creation, the option prealloc-sessions instructs Suricata to
keep a number of sessions ready in memory.

A TCP-session starts with the three-way-handshake. After that, data can be sent and received. A session can last a long
time. It can happen that Suricata will be started after a few TCP sessions have already been started. This way, Suricata
misses the original setup of those sessions. This setup always includes a lot of information. If you want Suricata to
check the stream from that time on, you can do so by setting the option 'midstream' to 'true'. The default setting is 'false'.
In IPS mode, it is possible to define a 'midstream-policy', indicating whether Suricata should drop-flow, drop-packet,
pass-flow, pass-packet, reject, or bypass a midstream flow. The default is ignore. Normally Suricata is able to see
all packets of a connection. Some networks make it more complicated though. Some of the network-traffic follows a
different route than the other part, in other words: the traffic goes asynchronous. To make sure Suricata will check the

338 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

one part it does see, instead of getting confused, the option 'async-oneside' is brought to life. By default the option is
set to 'false'.

Suricata inspects content in the normal/IDS mode in chunks. In the inline/IPS mode it does that on the sliding window
way (see example ..) In the case Suricata is set in inline mode, it has to inspect packets immediately before sending it to
the receiver. This way Suricata is able to drop a packet directly if needed.(see example . . .) It is important for Suricata
to note which operating system it is dealing with, because operating systems differ in the way they process anomalies
in streams. See Host-os-policy.

prealloc-sessions: 32768 # 32k sessions prealloc'd
midstream: false # do not allow midstream session pickups
midstream-policy: drop-flow # in IPS mode, drop flows that start midstream
async-oneside: false # do not enable async stream handling
inline: no # stream inline mode
drop-invalid: yes # drop invalid packets
bypass: no

The drop-invalid option can be set to no to avoid blocking packets that are seen invalid by the streaming engine.
This can be useful to cover some weird cases seen in some layer 2 IPS setup.

The bypass option activates 'bypass' for a flow/session when either side of the session reaches its depth.

Warning: bypass can lead to missing important traffic. Use with care.

Example 11 Normal/IDS mode
Suricata inspects traffic in chunks.

Example 12 Inline/IPS Sliding Window
Suricata inspects traffic in a sliding window manner.

12.1. Suricata.yaml 339

Suricata User Guide, Release 8.0.0

Example 13 Normal/IDS (reassembly on ACK'D data)

340 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Example 14 Inline/IPS (reassembly on UNACK'D data)

The reassembly-engine has to keep data segments in memory in order to be able to reconstruct a stream. To avoid
resource starvation a memcap is used to limit the memory used. In IPS mode, an exception policy (memcap-policy) can
be set, telling Suricata what to do in case memcap is hit: 'drop-flow', 'drop-packet', 'pass-flow', 'pass-packet', 'bypass',
'reject', or 'ignore'.

Reassembling a stream is an expensive operation. With the option depth you can control how far into a stream re-
assembly is done. By default this is 1MB. This setting can be overridden per stream by the protocol parsers that do file
extraction.

Inspection of reassembled data is done in chunks. The size of these chunks is set with toserver-chunk-size and
toclient-chunk-size. To avoid making the borders predictable, the sizes can be varied by adding in a random
factor.

reassembly:
memcap: 256mb # Memory reserved for stream data reconstruction (in bytes)
memcap-policy: ignore # What to do when memcap for reassembly is hit
depth: 1mb # The depth of the reassembling.
toserver-chunk-size: 2560 # inspect raw stream in chunks of at least this size
toclient-chunk-size: 2560 # inspect raw stream in chunks of at least
randomize-chunk-size: yes
#randomize-chunk-range: 10

'Raw' reassembly is done for inspection by simple content, pcre keywords use and other payload inspection not done
on specific protocol buffers like http_uri. This type of reassembly can be turned off:

reassembly:
raw: no

Incoming segments are stored in a list in the stream. To avoid constant memory allocations a per-thread pool is used.

reassembly:
segment-prealloc: 2048 # pre-alloc 2k segments per thread

Resending different data on the same sequence number is a way to confuse network inspection.

12.1. Suricata.yaml 341

Suricata User Guide, Release 8.0.0

reassembly:
check-overlap-different-data: true

Example 15 Stream reassembly

342 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

TCP Urgent Handling

TCP Urgent pointer support is a complicated topic, where it is essentially impossible for a network device to know with
certainty what the behavior of the receiving host is.

For this reason, many middleboxes strip the URG flag and reset the urgent pointer (see for example RFC 6093, 3.4).

Several options are provided to control how to deal with the urgent pointer.

stream:
reassembly:
urgent:
policy: oob # drop, inline, oob (1 byte, see RFC 6093, 3.1), gap
oob-limit-policy: drop

stream.reassembly.urgent.policy:
• drop: drop URG packets before they affect the stream engine

• inline: ignore the urgent pointer and process all data inline

• oob (out of band): treat the last byte as out of band

• gap: skip the last byte, but do no adjust sequence offsets, leading to
gaps in the data

If the urgent policy is set to oob, there is an additional setting. Since OOB data does advance the TCP sequence number,
the stream engine tracks the number of bytes to make sure no GAPs in the non-OOB data are seen by the app-layer
parsers and detection engine. This is currently limited to 64k per direction. If the number of OOB bytes exceeds that
64k, an additional policy is triggered: stream.reassembly.urgent.oob-limit-policy.

12.1. Suricata.yaml 343

Suricata User Guide, Release 8.0.0

stream.reassembly.urgent.oob-limit-policy: - drop: drop URG packets before they affect the stream engine - inline:
ignore the urgent pointer and process all data inline - gap: skip the last byte, but do no adjust sequence offsets, leading
to gaps in the data

Observables

Each packet with the URG flag set, will increment the tcp.urg counter.

When dropping the URG packets, the packets will have the drop reason ips.drop_reason.stream_urgent, which is also
a counter in the stats logging.

The stream event stream-event:reassembly_urgent_oob_limit_reached allows matching on the packet that reaches the
OOB limit. Stream rule 2210066 matches on this.

If stats.stream-events are enabled the counter stream.reassembly_urgent_oob_limit_reached will be incremented if the
OOB limit is reached.

12.1.14 Host Tracking

The Host table is used for tracking per IP address. This is used for tracking per IP thresholding, per IP tagging, storing
iprep data and storing hostbit.

Settings

The configuration allows specifying the following settings: hash-size, prealloc and memcap.

host:
hash-size: 4096
prealloc: 1000
memcap: 32mb

• hash-size: size of the hash table in number of rows

• prealloc: number of Host objects preallocated for efficiency

• memcap: max memory use for hosts, including the hash table size

Hosts are evicted from the hash table by the Flow Manager thread when all data in the host is expired (tag, threshold,
etc). Hosts with iprep will not expire.

12.1.15 Application Layer Parsers

The app-layer section holds application layer specific configurations.

In IPS mode, a global exception policy accessed via the error-policy setting can be defined to indicate what the
engine should do in case it encounters an app-layer error. Possible values are "drop-flow", "pass-flow", "bypass",
"drop-packet", "pass-packet", "reject" or "ignore" (which maintains the default behavior).

Each supported protocol has a dedicated subsection under protocols.

344 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Asn1_max_frames

Asn1 (Abstract Syntax One) is a standard notation to structure and describe data.

Within Asn1-max-frames there are several frames. To protect itself, Suricata will inspect a maximum of 256. You can
set this amount differently if wanted.

Application layer protocols such as X.400 electronic mail, X.500 and LDAP directory services, H.323 (VoIP), BACnet
and SNMP, use ASN.1 to describe the protocol data units (PDUs) they exchange. It is also extensively used in the
Access and Non-Access Strata of UMTS.

Limit for the maximum number of asn1 frames to decode (default 256):

asn1-max-frames: 256

FTP

The FTP application layer parser is enabled by default and uses dynamic protocol detection.

By default, FTP control channel commands and responses are limited to 4096 bytes, but this value can be changed.
When a command request or response exceeds the line length limit, the stored data will be truncated, however the parser
will continue to watch for the end of line and acquire the next command. Commands that are truncated will be noted
in the eve log file with the fields command_truncated or reply_truncated. Please note that this affects the control
messages only, not FTP data (file transfers).

ftp:
enabled: yes
#memcap: 64mb

Maximum line length for control messages before they will be truncated.
#max-line-length: 4kb

Configure HTTP (libhtp)

The library Libhtp is being used by Suricata to parse HTTP-sessions.

While processing HTTP-traffic, Suricata has to deal with different kind of servers which each process anomalies in
HTTP-traffic differently. The most common web-server is Apache. This is an open source web-server program.

Besides Apache, IIS (Internet Information Services/Server) a web-server program of Microsoft is also well-known.

Like with host-os-policy, it is important for Suricata to know which IP-address/network-address is used by which server.
In Libhtp this assigning of web-servers to IP-and network addresses is called personality.

Currently Available Personalities:

• Minimal

• Generic

• IDS (default)

• IIS_4_0

• IIS_5_0

• IIS_5_1

• IIS_6_0

12.1. Suricata.yaml 345

http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

Suricata User Guide, Release 8.0.0

• IIS_7_0

• IIS_7_5

• Apache

• Apache_2_2

You can assign names to each block of settings. Which in this case is -apache and -iis7. Under these names you can
set IP-addresses, network-addresses the personality and a set of features.

The version-specific personalities know exactly how web servers behave, and emulate that. The IDS personality would
try to implement a best-effort approach that would work reasonably well in the cases where you do not know the
specifics.

The default configuration also applies to every IP-address for which no specific setting is available.

HTTP request bodies are often big, so they take a lot of time to process which has a significant impact on the perfor-
mance. With the option 'request-body-limit' you can set the limit (in bytes) of the client-body that will be inspected.
Setting it to 0 will inspect all of the body.

The same goes for HTTP response bodies.

libhtp:

default-config:
personality: IDS
request-body-limit: 3072
response-body-limit: 3072

server-config:
- apache:

address: [192.168.1.0/24, 127.0.0.0/8, "::1"]
personality: Apache_2_2
request-body-limit: 0
response-body-limit: 0

- iis7:
address:
- 192.168.0.0/24
- 192.168.10.0/24

personality: IIS_7_0
request-body-limit: 4096
response-body-limit: 8192

Suricata makes available the whole set of libhtp customisations for its users.

You can now use these parameters in the conf to customise suricata's use of libhtp.

Configures whether backslash characters are treated as path segment
separators. They are not on Unix systems, but are on Windows systems.
If this setting is enabled, a path such as "/one\two/three" will be
converted to "/one/two/three". Accepted values - yes, no.
#path-convert-backslash-separators: yes

Configures whether input data will be converted to lowercase.
#path-convert-lowercase: yes

(continues on next page)

346 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

(continued from previous page)

Configures how the server reacts to encoded NUL bytes.
#path-nul-encoded-terminates: no

Configures how the server reacts to raw NUL bytes.
#path-nul-raw-terminates: no

Configures whether consecutive path segment separators will be
compressed. When enabled, a path such as "/one//two" will be normalized
to "/one/two". The backslash_separators and decode_separators
parameters are used before compression takes place. For example, if
backslash_separators and decode_separators are both enabled, the path
"/one\\/two\/%5cthree/%2f//four" will be converted to
"/one/two/three/four". Accepted values - yes, no.
#path-separators-compress: yes

Configures whether encoded path segment separators will be decoded.
Apache does not do this, but IIS does. If enabled, a path such as
"/one%2ftwo" will be normalized to "/one/two". If the
backslash_separators option is also enabled, encoded backslash
characters will be converted too (and subsequently normalized to
forward slashes). Accepted values - yes, no.
#path-separators-decode: yes

Configures whether %u-encoded sequences in path will be decoded. Such
sequences will be treated as invalid URL encoding if decoding is not
desireable. Accepted values - yes, no.
#path-u-encoding-decode: yes

Configures how server reacts to invalid encoding in path. Accepted
values - preserve_percent, remove_percent, decode_invalid, status_400
#path-url-encoding-invalid-handling: preserve_percent

Controls whether the data should be treated as UTF-8 and converted
to a single-byte stream using best-fit mapping
#path-utf8-convert-bestfit:yes

Sets the replacement character that will be used to in the lossy
best-fit mapping from Unicode characters into single-byte streams.
The question mark is the default replacement character.
#path-bestfit-replacement-char: ?

Configures whether plus characters are converted to spaces
when decoding URL-encoded strings.
#query-plusspace-decode: yes

response-body-decompress-layer-limit:
Limit to how many layers of compression will be
decompressed. Defaults to 2.

uri-include-all: Include all parts of the URI. By default the
'scheme', username/password, hostname and port
are excluded.

(continues on next page)

12.1. Suricata.yaml 347

Suricata User Guide, Release 8.0.0

(continued from previous page)

meta-field-limit: Hard size limit for request and response size
limits.

inspection limits
request-body-minimal-inspect-size: 32kb
request-body-inspect-window: 4kb
response-body-minimal-inspect-size: 40kb
response-body-inspect-window: 16kb

auto will use http-body-inline mode in IPS mode, yes or no set it statically
http-body-inline: auto

Decompress SWF files.
2 types: 'deflate', 'lzma', 'both' will decompress deflate and lzma
compress-depth:
Specifies the maximum amount of data to decompress,
set 0 for unlimited.
decompress-depth:
Specifies the maximum amount of decompressed data to obtain,
set 0 for unlimited.

swf-decompression:
enabled: yes
type: both
compress-depth: 0
decompress-depth: 0

Take a random value for inspection sizes around the specified value.
This lower the risk of some evasion technics but could lead
detection change between runs. It is set to 'yes' by default.
#randomize-inspection-sizes: yes
If randomize-inspection-sizes is active, the value of various
inspection size will be chosen in the [1 - range%, 1 + range%]
range
Default value of randomize-inspection-range is 10.
#randomize-inspection-range: 10

Can enable LZMA decompression
#lzma-enabled: false
Memory limit usage for LZMA decompression dictionary
Data is decompressed until dictionary reaches this size
#lzma-memlimit: 1 Mb
Maximum decompressed size with a compression ratio
above 2048 (only reachable by LZMA)
#compression-bomb-limit: 1 Mb
Maximum time spent decompressing a single transaction in usec
#decompression-time-limit: 100000
Maximum number of live transactions per flow
#max-tx: 512
Maximum used number of HTTP1 headers in one request or response
#headers-limit: 1024

Other parameters are customizable from Suricata.

348 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

double-decode-path: Double decode path section of the URI
double-decode-query: Double decode query section of the URI

decompression-time-limit

decompression-time-limit was implemented to avoid DOS by resource exhaustion on inputs such as decompression
bombs (found by fuzzing). The lower the limit, the better the protection against DOS is, but this may also lead to false
positives. In case the time limit is reached, the app-layer event http.compression_bomb is set (this event can also
set from other conditions). This can happen on slow configurations (hardware, ASAN, etc...)

Configure SMB

The SMB parser will parse version 1, 2 and 3 of the SMB protocol over TCP.

To enable the parser add the following to the app-layer section of the YAML.

smb:
enabled: yes
detection-ports:
dp: 139, 445

The parser uses pattern based protocol detection and will fallback to probing parsers if the pattern based detec-
tion fails. As usual, the pattern based detection is port independent. The probing parsers will only run on the
detection-ports.

SMB is commonly used to transfer the DCERPC protocol. This traffic is also handled by this parser.

Resource limits

Several options are available for limiting record sizes and data chunk tracking.

smb:
enabled: yes
max-read-size: 8mb
max-write-size: 1mb

max-read-queue-size: 16mb
max-read-queue-cnt: 16

max-write-queue-size: 16mb
max-write-queue-cnt: 16

The max-read-size option can be set to control the max size of accepted READ records. Events will be raised if a
READ request asks for too much data and/or if READ responses are too big. A value of 0 disables the checks.

The max-write-size option can be set to control the max size of accepted WRITE request records. Events will be raised
if a WRITE request sends too much data. A value of 0 disables the checks.

Additionally if the max-read-size or max-write-size values in the "negotiate protocol response" exceeds this limit an
event will also be raised.

12.1. Suricata.yaml 349

Suricata User Guide, Release 8.0.0

For file tracking, extraction and file data inspection the parser queues up out of order data chunks for both READs and
WRITEs. To avoid using too much memory the parser allows for limiting both the size in bytes and the number of
queued chunks.

smb:
enabled: yes

max-read-queue-size: 16mb
max-read-queue-cnt: 16

max-write-queue-size: 16mb
max-write-queue-cnt: 16

max-read-queue-size controls how many bytes can be used per SMB flow for out of order READs. max-read-queue-cnt
controls how many READ chunks can be queued per SMB flow. Processing of these chunks will be blocked when any
of the limits are exceeded, and an event will be raised.

max-write-queue-size and max-write-queue-cnt are as the READ variants, but then for WRITEs.

Cache limits

The SMB parser uses several per flow caches to track data between different records and transactions. These caches
have a size ceiling. When the size limit is reached, new additions will automatically evict the oldest entries.

smb:
max-guid-cache-size: 1024
max-rec-offset-cache-size: 128
max-tree-cache-size: 512
max-dcerpc-frag-cache-size: 128
max-session-cache-size: 512

The max-guid-cache-size setting controls the size of the hash that maps the GUID to filenames. These are added through
CREATE commands and removed by CLOSE commands.

max-rec-offset-cache-size controls the size of the hash that maps the READ offset from READ commands to the READ
responses.

The max-tree-cache-size option contols the size of the SMB session to SMB tree hash.

max-dcerpc-frag-cache-size controls the size of the hash that tracks partial DCERPC over SMB records. These are
buffered in this hash to only parse the DCERPC record when it is fully reassembled.

The max-session-cache-size setting controls the size of a generic hash table that maps SMB session to filenames, GUIDs
and share names.

Configure HTTP2

HTTP2 has 2 parameters that can be customized. The point of these 2 parameters is to find a balance between the
completeness of analysis and the resource consumption.

http2.max-table-size refers to SETTINGS_HEADER_TABLE_SIZE from rfc 7540 section 6.5.2. Its default value is
4096 bytes, but it can be set to any uint32 by a flow.

http2.max-streams refers to SETTINGS_MAX_CONCURRENT_STREAMS from rfc 7540 section 6.5.2. Its default
value is unlimited.

350 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

SSL/TLS

SSL/TLS parsers track encrypted SSLv2, SSLv3, TLSv1, TLSv1.1 and TLSv1.2 sessions.

Protocol detection is done using patterns and a probing parser running on only TCP/443 by default. The pattern based
protocol detection is port independent.

tls:
enabled: yes
detection-ports:
dp: 443

What to do when the encrypted communications start:
- track-only: keep tracking TLS session, check for protocol anomalies,
inspect tls_* keywords. Disables inspection of unmodified
'content' signatures.
- bypass: stop processing this flow as much as possible. No further
TLS parsing and inspection. Offload flow bypass to kernel
or hardware if possible.
- full: keep tracking and inspection as normal. Unmodified content
keyword signatures are inspected as well.
#
For the best performance, select 'bypass'.
#
#encryption-handling: track-only

Encrypted traffic

There is no decryption of encrypted traffic, so once the handshake is complete continued tracking of the session is of
limited use. The encryption-handling option in app-layer.protocols.tls and app-layer.protocols.ssh
controls the behavior after the handshake.

If the encryption-handling property of the TLS/SSH configuration nodes are set to track-only (or are not set),
Suricata will continue to track the respective SSL/TLS or SSH session. Inspection will be limited, as raw content
inspection will still be disabled. There is no point in doing pattern matching on traffic known to be encrypted. Inspection
for (encrypted) Heartbleed and other protocol anomalies still happens.

When encryption-handling is set to bypass, all processing of this session is stopped. No further parsing and
inspection happens. This will also lead to the flow being bypassed, either inside Suricata or by the capture method if it
supports it and is configured for it.

Finally, if encryption-handling is set to full, Suricata will process the flow as normal, without inspection limita-
tions or bypass.

The option has replaced the no-reassemble option. If no-reassemble is present, and encryption-handling
is not, false is interpreted as encryption-handling: track-only and true is interpreted as
encryption-handling: bypass.

12.1. Suricata.yaml 351

Suricata User Guide, Release 8.0.0

Modbus

According to MODBUS Messaging on TCP/IP Implementation Guide V1.0b, it is recommended to keep the TCP
connection opened with a remote device and not to open and close it for each MODBUS/TCP transaction. In that case,
it is important to set the stream-depth of the modbus as unlimited.

modbus:
Stream reassembly size for modbus, default is 0
stream-depth: 0

MQTT

The maximum size of a MQTT message is 256MB, potentially containing a lot of payload data (such as properties,
topics, or published payloads) that would end up parsed and logged. To acknowledge the fact that most MQTT messages,
however, will be quite small and to reduce the potential for denial of service issues, it is possible to limit the maximum
length of a message that Suricata should parse. Any message larger than the limit will just be logged with reduced
metadata, and rules will only be evaluated against a subset of fields. The default is 1 MB.

mqtt:
max-msg-length: 1mb

SMTP

SMTP parsers can extract files from attachments. It is also possible to extract raw conversations as files with the key
raw-extraction. Note that in this case the whole conversation will be stored as a file, including SMTP headers and
body content. The filename will be set to "rawmsg". Usual file-related signatures will match on the raw content of
the email. This configuration parameter has a false default value. It is incompatible with decode-mime. If both are
enabled, raw-extraction will be automatically disabled.

smtp:
extract messages in raw format from SMTP
raw-extraction: true

Maximum transactions

SMTP, MQTT, FTP, PostgreSQL, SMB, DCERPC, HTTP1, ENIP and NFS have each a max-tx parameter that can
be customized. max-tx refers to the maximum number of live transactions for each flow. An app-layer event proto-
col.too_many_transactions is triggered when this value is reached. The point of this parameter is to find a balance
between the completeness of analysis and the resource consumption.

For HTTP2, this parameter is named max-streams as an HTTP2 stream will get translated into one Suricata transaction.
This configuration parameter is used whatever the value of SETTINGS_MAX_CONCURRENT_STREAMS negotiated
between a client and a server in a specific flow is.

352 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

12.1.16 Engine Logging

The engine logging system logs information about the application such as errors and other diagnostic information during
startup, runtime and shutdown of the Suricata engine. This does not include Suricata generated alerts and events.

The engine logging system has the following log levels:

• error

• warning

• notice

• info

• perf

• config

• debug

Note that debug level logging will only be emitted if Suricata was compiled with the --enable-debug configure
option.

The first option within the logging configuration is the default-log-level. This option determines the sever-
ity/importance level of information that will be displayed. Messages of lower levels than the one set here, will not
be shown. The default setting is Notice. This means that error, warning and notice will be shown and messages
for the other levels won't be.

Default Configuration Example

Logging configuration. This is not about logging IDS alerts/events, but
output about what Suricata is doing, like startup messages, errors, etc.
logging:
The default log level, can be overridden in an output section.
Note that debug level logging will only be emitted if Suricata was
compiled with the --enable-debug configure option.
#
This value is overridden by the SC_LOG_LEVEL env var.
default-log-level: notice

The default output format. Optional parameter, should default to
something reasonable if not provided. Can be overridden in an
output section. You can leave this out to get the default.
#
This console log format value can be overridden by the SC_LOG_FORMAT env var.
#default-log-format: "%D: %S: %M"
#
For the pre-7.0 log format use:
#default-log-format: "[%i] %t [%S] - (%f:%l) <%d> (%n) -- "

A regex to filter output. Can be overridden in an output section.
Defaults to empty (no filter).
#
This value is overridden by the SC_LOG_OP_FILTER env var.
default-output-filter:

(continues on next page)

12.1. Suricata.yaml 353

Suricata User Guide, Release 8.0.0

(continued from previous page)

Define your logging outputs. If none are defined, or they are all
disabled you will get the default - console output.
outputs:
- console:

enabled: yes
type: json

- file:
enabled: yes
level: info
filename: suricata.log
format: "[%i - %m] %z %d: %S: %M"
type: json

- syslog:
enabled: no
facility: local5
format: "[%i] <%d> -- "
type: json

Default Log Level

Example:

logging:
default-log-level: info

This option sets the default log level. The default log level is notice. This value will be used in the individual logging
configuration (console, file, syslog) if not otherwise set.

Note: The -v command line option can be used to quickly increase the log level at runtime. See the -v command line
option.

The default-log-level set in the configuration value can be overridden by the SC_LOG_LEVEL environment vari-
able.

Default Log Format

A logging line exists of two parts. First it displays meta information (Log-level, Suricata module), and finally the actual
log message. Example:

i: suricata: This is Suricata version 7.0.2 RELEASE running in USER mode

(Here the part until the second : is the meta info, "This is Suricata version 7.0.2 RELEASE running in USER mode"
is the actual message.)

It is possible to determine which information will be displayed in this line and (the manner how it will be displayed) in
which format it will be displayed. This option is the so called format string:

default-log-format: "[%i] %t - (%f:%l) <%d> (%n) -- "

The % followed by a character has a special meaning. There are thirteen specified signs:

354 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

z: ISO-like formatted timestamp: YYYY-MM-DD HH:MM:SS
t: Original Suricata log timestamp: DD/MM/YYYY -- HH:MM::SS
p: Process ID. Suricata's whole processing consists of multiple threads.
i: Thread ID. ID of individual threads.
m: Thread module name. (Outputs, Detect etc.)
d: Log-level of specific log-event. (Error, info, debug etc.)
D: Compact log format (E for Error, i for info etc.)
S: Subsystem name.
T: Thread name.
M: Log message body.
f: Name of source code filename where log-event is generated.
l: Line-number within the source filename, where the log-event is generated.
n: Function-name in the source code.

The last three options, f, l and n, are mainly convenient for developers.

The log-format can be overridden in the command line by the environment variable: SC_LOG_FORMAT.

Output Filter

Within logging you can set an output-filter. With this output-filter you can set which part of the event-logs should be
displayed. You can supply a regular expression (Regex). A line will be shown if the regex matches.

default-output-filter: # In this option the regular expression can be entered.

This value is overridden by the environment var: SC_LOG_OP_FILTER.

Logging Outputs

There are different ways of displaying output. The output can appear directly on your screen, it can be placed in a file
or via syslog. The last mentioned is an advanced tool for log-management. The tool can be used to direct log-output
to different locations (files, other computers etc.)

outputs:
- console: # Output to screen (stdout/stderr).

enabled: yes # This option is enabled.
#level: notice # Use a different level than the default.

- file: # Output stored in a file.
enabled: no # This option is not enabled.
filename: /var/log/suricata.log # Filename and location on disc.
level: info # Use a different level than the default.

- syslog: # Output using syslog.
enabled: no # The use of this program is not enabled.
facility: local5 # Syslog facility to use.
format: "[%i] <%d> -- " # Output format specific to syslog.
#level: notice # Use a different level than the default.

12.1. Suricata.yaml 355

Suricata User Guide, Release 8.0.0

12.1.17 Packet Acquisition

Data Plane Development Kit (DPDK)

Data Plane Development Kit is a framework for fast packet processing in data plane applications running on a wide
variety of CPU architectures. DPDK's Environment Abstraction Layer (EAL) provides a generic interface to low-level
resources. It is a unique way how DPDK libraries access NICs. EAL creates an API for an application to access NIC
resources from the userspace level. In DPDK, packets are not retrieved via interrupt handling. Instead, the application
polls the NIC for newly received packets.

DPDK allows the user space application to directly access memory where the NIC stores the packets. As a result,
neither DPDK nor the application copies the packets for the inspection. The application directly processes packets via
passed packet descriptors.

Fig. 1: High-level overview of DPDK application

To use DPDK capture module, Suricata must be compiled with DPDK option enabled. Support for DPDK can be
enabled in configure step of the build process such as:

./configure --enable-dpdk

Suricata makes use of DPDK for packet acquisition in workers runmode. The whole DPDK configuration resides in
the dpdk: node. This node encapsulates 2 main subnodes, and those are eal-params and interfaces.

356 Chapter 12. Configuration

https://www.dpdk.org/
https://doc.dpdk.org/guides/prog_guide/env_abstraction_layer.html
https://doc.dpdk.org/guides/prog_guide/poll_mode_drv.html

Suricata User Guide, Release 8.0.0

dpdk:
eal-params:
proc-type: primary
allow: ["0000:3b:00.0", "0000:3b:00.1"]

interfaces:
- interface: 0000:3b:00.0
threads: auto
promisc: true
multicast: true
checksum-checks: true
checksum-checks-offload: true
vlan-strip-offload: true
linkup-timeout: 10
mtu: 1500
mempool-size: auto
mempool-cache-size: auto
rx-descriptors: auto
tx-descriptors: auto
copy-mode: none
copy-iface: none # or PCIe address of the second interface

The DPDK arguments, which are typically provided through the command line, are contained in the node dpdk.
eal-params. EAL is configured and initialized using these parameters. There are two ways to specify arguments:
lengthy and short. Dashes are omitted when describing the arguments. This setup node can be used to set up the memory
configuration, accessible NICs, and other EAL-related parameters, among other things. The node dpdk.eal-params
also supports multiple arguments of the same type. This can be useful for EAL arguments such as --vdev, --allow,
or --block. Values for these EAL arguments are specified as a comma-separated list. An example of such usage can
be found in the example above where the allow argument only makes 0000:3b:00.0 and 0000:3b:00.1 accessible
to Suricata. arguments with list node. such as --vdev, --allow, --block eal options. The definition of lcore affinity as an
EAL parameter is a standard practice. However, lcore parameters like -l, -c, and --lcores are specified within the
suricata-yaml-threading section to prevent configuration overlap.

The node dpdk.interfaces wraps a list of interface configurations. Items on the list follow the structure that can
be found in other capture interfaces. The individual items contain the usual configuration options such as threads /
copy-mode / checksum-checks settings. Other capture interfaces, such as AF_PACKET, rely on the user to ensure
that NICs are appropriately configured. Configuration through the kernel does not apply to applications running under
DPDK. The application is solely responsible for the initialization of the NICs it is using. So, before the start of Suricata,
the NICs that Suricata uses, must undergo the process of initialization. As a result, there are extra configuration options
(how NICs can be configured) in the items (interfaces) of the dpdk.interfaces list. At the start of the configuration
process, all NIC offloads are disabled to prevent any packet modification. According to the configuration, checksum
validation offload can be enabled to drop invalid packets. Other offloads can not currently be enabled. Additionally, the
list items in dpdk.interfaces contain DPDK specific settings such as mempool-size or rx-descriptors. These
settings adjust individual parameters of EAL. One of the entries in dpdk.interfaces is the default interface. When
loading interface configuration and some entry is missing, the corresponding value of the default interface is used.

The worker threads must be assigned to specific cores. The configuration module threading must be
used to set thread affinity. Worker threads can be pinned to cores in the array configured in threading.
cpu-affinity["worker-cpu-set"]. Performance-oriented setups have everything (the NIC, memory, and CPU
cores interacting with the NIC) based on one NUMA node. It is therefore required to know the layout of the server ar-
chitecture to get the best results. The CPU core ids and NUMA locations can be determined for example from the output
of /proc/cpuinfo where physical id described the NUMA number. The NUMA node to which the NIC is con-
nected to can be determined from the file /sys/class/net/<KERNEL NAME OF THE NIC>/device/numa_node.

12.1. Suricata.yaml 357

https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html

Suricata User Guide, Release 8.0.0

Check ids and NUMA location of individual CPU cores
cat /proc/cpuinfo | grep 'physical id\|processor'

Check NUMA node of the NIC
cat /sys/class/net/<KERNEL NAME OF THE NIC>/device/numa_node e.g.
cat /sys/class/net/eth1/device/numa_node

Suricata operates in workers runmode. Packet distribution relies on Receive Side Scaling (RSS), which distributes
packets across the NIC queues. Individual Suricata workers then poll packets from the NIC queues. Internally, DPDK
runmode uses a symmetric hash (0x6d5a) that redirects bi-flows to specific workers. Each worker operates on 1 RX
(and 1 TX) queue. The number of RX queues is always equal to the number of threads/workers. The number of
TX queues is the same as the number of RX queues or can be set to 0 if Suricata runs in IDS mode by configuring
tx-descriptors to 0 or auto in the interface configuration node.

Before Suricata can be run, it is required to allocate a sufficient number of hugepages. For efficiency, hugepages are
continuous chunks of memory (pages) that are larger (2 MB+) than what is typically used in the operating systems (4
KB). A lower count of pages allows faster lookup of page entries. The hugepages need to be allocated on the NUMA
node where the NIC and affiniated CPU cores reside. For example, if the hugepages are allocated only on NUMA node
0 and the NIC is connected to NUMA node 1, then the application will fail to start. As a result, it is advised to identify
the NUMA node to which the NIC is attached before allocating hugepages and setting CPU core affinity to that node.
In case Suricata deployment uses multiple NICs, hugepages must be allocated on each of the NUMA nodes used by
the Suricata deployment.

To check number of allocated hugepages:
sudo dpdk-hugepages.py -s
alternative (older) way
grep Huge /proc/meminfo

Allocate 2 GB in hugepages on all available NUMA nodes:
(number of hugepages depend on the default size of hugepages 2 MB / 1 GB)
sudo dpdk-hugepages.py --setup 2G
alternative (older) way allocates 1024 2 MB hugepages but only on NUMA 0
echo 1024 | sudo tee \
/sys/devices/system/node/node0/hugepages/hugepages-2048kB/nr_hugepages

DPDK memory pools hold packets received from NICs. These memory pools are allocated in hugepages. Each Suricata
worker has independently allocated memory pools per interface. The total size of all mempools of the interface is set
with the mempool-size. The recommend size of the memory pool can be auto-calculated by setting mempool-size:
auto. If mempool-size is set manually (to e.g. mempool-size: 65536), the value is divided by the number of
worker cores of the interface (on 4 worker threads, each worker is assigned with a mempool containing 16383 packet
objects). Memory (in bytes) for interface's memory pools is calculated as: mempool-size * mtu. The sum of memory
pool requirements divided by the size of one hugepage results in the number of required hugepages. It causes no
problem to allocate more memory than required, but it is vital for Suricata to not run out of hugepages.

The mempool cache is local to the individual CPU cores and holds packets that were recently processed. The recom-
mended size of the cache can be auto-calculated by setting mempool-cache-size: auto.

To be able to run DPDK on Intel cards, it is required to change the default Intel driver to either vfio-pci or igb_uio
driver. The process is described in DPDK manual page regarding Linux drivers. The Intel NICs have the amount of
RX/TX descriptors capped at 4096. This should be possible to change by manually compiling the DPDK while changing
the value of respective macros for the desired drivers (e.g. IXGBE_MAX_RING_DESC/I40E_MAX_RING_DESC).
DPDK is natively supported by Mellanox and thus their NICs should work "out of the box".

Current DPDK support involves Suricata running on:

• a physical machine with a physical NICs such as:

358 Chapter 12. Configuration

https://www.ran-lifshitz.com/2014/08/28/symmetric-rss-receive-side-scaling/
https://doc.dpdk.org/guides/linux_gsg/linux_drivers.html

Suricata User Guide, Release 8.0.0

– mlx5 (ConnectX-4/ConnectX-5/ConnectX-6)

– ixgbe

– i40e

– ice

• a virtual machine with virtual interfaces such as:
– e1000

– VMXNET3

– virtio-net

Other NICs using the same driver as mentioned above should work as well. The DPDK capture interface has not been
tested neither with the virtual interfaces nor in the virtual environments like VMs, Docker or similar.

The minimal supported DPDK is version 19.11 which should be available in most repositories of major distributions.
Alternatively, it is also possible to use meson and ninja to build and install DPDK from source files. It is required to
have correctly configured tool pkg-config as it is used to load libraries and CFLAGS during the Suricata configuration
and compilation. This can be tested by querying DPDK version as:

pkg-config --modversion libdpdk

Pf-ring

The Pf_ring is a library that aims to improve packet capture performance over libcap. It performs packet acquisition.
There are three options within Pf_ring: interface, cluster-id and cluster-type.

pfring:
interface: eth0 # In this option you can set the network-interface

on which you want the packets of the network to be read.

Pf_ring will load balance packets based on flow. All packet acquisition threads that will participate in the load balancing
need to have the same cluster-id. It is important to make sure this ID is unique for this cluster of threads, so that no
other engine / program is making use of clusters with the same id.

cluster-id: 99

Pf_ring can load balance traffic using pf_ring-clusters. All traffic for pf_ring can be load balanced according to the
configured cluster type value; in a round robin manner or a per flow manner that are part of the same cluster. All traffic
for pf_ring will be load balanced across acquisition threads of the same cluster id.

The "inner" flow means that the traffic will be load balanced based on address tuple after the outer vlan has been
removed.

Cluster Type Value
cluster_flow src ip, src_port, dst ip, dst port, proto, vlan
cluster_inner_flow src ip, src port, dst ip, dst port, proto, vlan
cluster_inner_flow_2_tuple src ip, dst ip
cluster_inner_flow_4_tuple src ip, src port, dst ip, dst port
cluster_inner_flow_5_tuple src ip, src port, dst ip, dst port, proto
cluster_round_robin not recommended

12.1. Suricata.yaml 359

Suricata User Guide, Release 8.0.0

The cluster_round_robin manner is a way of distributing packets one at a time to each thread (like distributing playing
cards to fellow players). The cluster_flow manner is a way of distributing all packets of the same flow to the same
thread. The flows itself will be distributed to the threads in a round-robin manner.

If your deployment has VLANs, the cluster types with "inner" will use the innermost address tuple for distribution.

The default cluster type is cluster_flow; the cluster_round_robin is not recommended with Suricata.

cluster-type: cluster_inner_flow_5_tuple

NFQ

Using NFQUEUE in iptables rules, will send packets to Suricata. If the mode is set to 'accept', the packet that has
been send to Suricata by a rule using NFQ, will by default not be inspected by the rest of the iptables rules after being
processed by Suricata. There are a few more options to NFQ to change this if desired.

If the mode is set to 'repeat', the packets will be marked by Suricata and be re-injected at the first rule of iptables. To
mitigate the packet from being going round in circles, the rule using NFQ will be skipped because of the mark.

If the mode is set to 'route', you can make sure the packet will be send to another tool after being processed by Suricata.
It is possible to assign this tool at the mandatory option 'route_queue'. Every engine/tool is linked to a queue-number.
This number you can add to the NFQ rule and to the route_queue option.

Add the numbers of the options repeat_mark and route_queue to the NFQ-rule:

iptables -I FORWARD -m mark ! --mark $MARK/$MASK -j NFQUEUE

nfq:
mode: accept #By default the packet will be accepted or dropped by␣

→˓Suricata
repeat-mark: 1 #If the mode is set to 'repeat', the packets will be␣

→˓marked after being
#processed by Suricata.

repeat-mask: 1
route-queue: 2 #Here you can assign the queue-number of the tool that␣

→˓Suricata has to
#send the packets to after processing them.

Example 1 NFQ1

mode: accept

360 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Example 2 NFQ

mode: repeat

Example 3 NFQ

mode: route

12.1. Suricata.yaml 361

Suricata User Guide, Release 8.0.0

Ipfw

Suricata does not only support Linux, it supports the FreeBSD operating system (this is an open source Unix operating
system) and Mac OS X as well. The in-line mode on FreeBSD uses ipfw (IP-firewall).

Certain rules in ipfw send network-traffic to Suricata. Rules have numbers. In this option you can set the rule to
which the network-traffic will be placed back. Make sure this rule comes after the one that sends the traffic to Suricata,
otherwise it will go around in circles.

The following tells the engine to re-inject packets back into the ipfw firewall at rule number 5500:

ipfw:
ipfw-reinjection-rule-number: 5500

Example 16 Ipfw-reinjection.

362 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

12.1.18 Rules

Rule Files

Suricata by default is setup for rules to be managed by Suricata-Update with the following rule file configuration:

default-rule-path: /var/lib/suricata/rules
rule-files:

- suricata.rules

A default installation of Suricata-Update will write out the rules to /var/lib/suricata/rules/suricata.rules.

You may want to edit this section if you are not using Suricata-Update or want to add rule files that are not managed
by Suricata-Update, for example:

default-rule-path: /var/lib/suricata/rules
rule-files:

- suricata.rules
- /etc/suricata/rules/custom.rules

File names can be specific with an absolute path, or just the base name. If just the base name is provided it will be
looked for in the default-rule-path.

If a rule file cannot be found, Suricata will log a warning message and continue to load, unless --init-errors-fatal
has been specified on the command line, in which case Suricata will exit with an error code.

For more information on rule management see Rule Management.

12.1. Suricata.yaml 363

Suricata User Guide, Release 8.0.0

Threshold-file

Within this option, you can state the directory in which the threshold-file will be stored. The default directory is:
/etc/suricata/threshold.config

Classifications

The Classification-file is a file which makes the purpose of rules clear.

Some rules are just for providing information. Some of them are to warn you for serious risks like when you are being
hacked etc.

In this classification-file, there is a part submitted to the rule to make it possible for the system-administrator to distin-
guish events.

A rule in this file exists of three parts: the short name, a description and the priority of the rule (in which 1 has the
highest priority and 4 the lowest).

You can notice these descriptions returning in the rule and events / alerts.

Example:

configuration classification: misc-activity,Misc activity,3

Rule:

alert tcp $HOME_NET 21 -> $EXTERNAL_NET any (msg:"ET POLICY FTP Login Successful (non-
→˓anonymous)";
flow:from_server,established;flowbits:isset,ET.ftp.user.login; flowbits:isnotset,ftp.
→˓user.logged_in;
flowbits:set,ftp.user.logged_in; content:"230 ";pcre:!"/^230(\s+USER)?\s+(anonymous|ftp)/
→˓smi";
classtype:misc-activity; reference:urldoc.emergingthreats.net/2003410,;
reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/POLICY/POLICY_FTP_Login;␣
→˓sid:2003410; rev:7;)

Event/Alert:

10/26/10-10:13:42.904785 [**] [1:2003410:7] ET POLICY FTP Login Successful (non-
→˓anonymous) [**]
[Classification: Misc activity[Priority: 3] {TCP} 192.168.0.109:21 -> x.x.x.x:34117

You can set the direction of the classification configuration.

classification-file: /etc/suricata/classification.config

364 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Rule-vars

There are variables which can be used in rules.

Within rules, there is a possibility to set for which IP-address the rule should be checked and for which IP-address it
should not.

This way, only relevant rules will be used. To prevent you from having to set this rule by rule, there is an option in
which you can set the relevant IP-address for several rules. This option contains the address group vars that will be
passed in a rule. So, after HOME_NET you can enter your home IP-address.

vars:
address-groups:
HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]" #By using [], it is␣

→˓possible to set
#complicated variables.

EXTERNAL_NET: any
HTTP_SERVERS: "$HOME_NET" #The $-sign tells that␣

→˓what follows is
#a variable.

SMTP_SERVERS: "$HOME_NET"
SQL_SERVERS: "$HOME_NET"
DNS_SERVERS: "$HOME_NET"
TELNET_SERVERS: "$HOME_NET"
AIM_SERVERS: any

It is a convention to use upper-case characters.

There are two kinds of variables: Address groups and Port-groups. They both have the same function: change the rule
so it will be relevant to your needs.

In a rule there is a part assigned to the address and one to the port. Both have their variable.

All options have to be set. If it is not necessary to set a specific address, you should enter 'any'.

port-groups:
HTTP_PORTS: "80"
SHELLCODE_PORTS: "!80"
ORACLE_PORTS: 1521
SSH_PORTS: 22
SIP_PORTS: "[5060, 5061]"

Host-os-policy

Operating systems differ in the way they process fragmented packets and streams. Suricata performs differently with
anomalies for different operating systems. It is important to set of which operating system your IP-address makes use
of, so Suricata knows how to process fragmented packets and streams. For example in stream-reassembly there can be
packets with overlapping payloads.

Example 17 Overlapping payloads

12.1. Suricata.yaml 365

Suricata User Guide, Release 8.0.0

In the configuration-file, the operating-systems are listed. You can add your IP-address behind the name of the operating
system you make use of.

host-os-policy:
windows: [0.0.0.0/0]
bsd: []
bsd-right: []
old-linux: []
linux: [10.0.0.0/8, 192.168.1.100, "8762:2352:6241:7245:E000:0000:0000:0000"]
old-solaris: []
solaris: ["::1"]
hpux10: []
hpux11: []
irix: []
macos: []
vista: []
windows2k3: []

12.1.19 Engine analysis and profiling

Suricata offers several ways of analyzing performance of rules and the engine itself.

366 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Engine-analysis

The option engine-analysis provides information for signature writers about how Suricata organizes signatures inter-
nally.

Like mentioned before, signatures have zero or more patterns on which they can match. Only one of these patterns will
be used by the multi pattern matcher (MPM). Suricata determines which patterns will be used unless the fast-pattern
rule option is used.

The option engine-analysis creates a new log file in the default log dir. In this file all information about signatures and
patterns can be found so signature writers are able to see which pattern is used and change it if desired.

To create this log file, you have to run Suricata with ./src/suricata -c suricata.yaml --engine-analysis.

engine-analysis:
rules-fast-pattern: yes

Example:

[10703] 26/11/2010 -- 11:41:15 - (detect.c:560) <Info> (SigLoadSignatures)
-- Engine-Analysis for fast_pattern printed to file - /var/log/suricata/rules_fast_
→˓pattern.txt

alert tcp any any -> any any (content:"Volume Serial Number"; sid:1292;)

== Sid: 1292 ==
Fast pattern matcher: content
Fast pattern set: no
Fast pattern only set: no
Fast pattern chop set: no
Content negated: no
Original content: Volume Serial Number
Final content: Volume Serial Number

alert tcp any any -> any any (content:"abc"; content:"defghi"; sid:1;)

== Sid: 1 ==
Fast pattern matcher: content
Fast pattern set: no
Fast pattern only set: no
Fast pattern chop set: no
Content negated: no
Original content: defghi
Final content: defghi

alert tcp any any -> any any (content:"abc"; fast_pattern:only; content:"defghi"; sid:1;)

== Sid: 1 ==
Fast pattern matcher: content
Fast pattern set: yes
Fast pattern only set: yes

(continues on next page)

12.1. Suricata.yaml 367

Suricata User Guide, Release 8.0.0

(continued from previous page)

Fast pattern chop set: no
Content negated: no
Original content: abc
Final content: abc

alert tcp any any -> any any (content:"abc"; fast_pattern; content:"defghi"; sid:1;)

== Sid: 1 ==
Fast pattern matcher: content
Fast pattern set: yes
Fast pattern only set: no
Fast pattern chop set: no
Content negated: no
Original content: abc
Final content: abc

alert tcp any any -> any any (content:"abc"; fast_pattern:1,2; content:"defghi"; sid:1;)

== Sid: 1 ==
Fast pattern matcher: content
Fast pattern set: yes
Fast pattern only set: no
Fast pattern chop set: yes
Fast pattern offset, length: 1, 2
Content negated: no
Original content: abc
Final content: bc

Rule and Packet Profiling settings

Rule profiling is a part of Suricata to determine how expensive rules are. Some rules are very expensive while inspecting
traffic. Rule profiling is convenient for people trying to track performance problems and resolving them. Also for people
writing signatures.

Compiling Suricata with rule-profiling will have an impact on performance, even if the option is disabled in the con-
figuration file.

To observe the rule-performance, there are several options.

profiling:
rules:
enabled: yes

This engine is not used by default. It can only be used if Suricata is compiled with:

-- enable-profiling

At the end of each session, Suricata will display the profiling statistics. The list will be displayed sorted.

368 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

This order can be changed as pleased. The choice is between ticks, avgticks, checks, maxticks and matches. The setting
of your choice will be displayed from high to low.

The amount of time it takes to check the signatures, will be administrated by Suricata. This will be counted in ticks.
One tick is one CPU computation. 3 GHz will be 3 billion ticks.

Beside the amount of checks, ticks and matches it will also display the average and the maximum of a rule per session
at the end of the line.

The option Limit determines the amount of signatures of which the statistics will be shown, based on the sorting.

sort: avgticks
limit: 100

Example of how the rule statistics can look like;

Rule Ticks % Checks Matches Max Tick ␣
→˓Avg
Ticks

7560 107766621 0.02 138 37 105155334 ␣
→˓780917.54
11963 1605394413 0.29 2623 1 144418923 ␣
→˓612045.14
7040 1431034011 0.26 2500 0 106018209 ␣
→˓572413.60
5726 1437574662 0.26 2623 1 115632900 ␣
→˓548065.06
7037 1355312799 0.24 2562 0 116048286 ␣
→˓529005.78
11964 1276449255 0.23 2623 1 96412347 ␣
→˓486637.15
7042 1272562974 0.23 2623 1 96405993 ␣
→˓485155.54
5719 1233969192 0.22 2562 0 106439661 ␣
→˓481642.93
5720 1204053246 0.21 2562 0 125155431 ␣
→˓469966.14

Packet Profiling

packets:

Profiling can be disabled here, but it will still have a
performance impact if compiled in.

enabled: yes #this option is enabled by default
filename: packet_stats.log #name of the file in which packet␣

→˓profiling information will be
#stored.

append: yes #If set to yes, new packet profiling␣
→˓information will be added to the

#information that was saved last in the␣
(continues on next page)

12.1. Suricata.yaml 369

Suricata User Guide, Release 8.0.0

(continued from previous page)

→˓file.

per packet csv output
csv:

Output can be disabled here, but it will still have a
performance impact if compiled in.

enabled: no #the sending of packet output to a csv-
→˓file is by default disabled.

filename: packet_stats.csv #name of the file in which csv packet␣
→˓profiling information will be

#stored

Packet profiling is enabled by default in suricata.yaml but it will only do its job if you compiled Suricata with --enable
profiling.

The filename in which packet profiling information will be stored, is packet-stats.log. Information in this file can be
added to the last information that was saved there, or if the append option is set to no, the existing file will be overwritten.

Per packet, you can send the output to a csv-file. This file contains one line for each packet with all profiling information
of that packet. This option can be used only if Suricata is build with --enable-profiling and if the packet profiling option
is enabled in yaml.

It is best to use runmode 'single' if you would like to profile the speed of the code. When using a single thread, there is
no situation in which two threads have to wait for each other. When using two threads, the time threads might have to
wait for each other will be taken in account when/during profiling packets. For more information see Packet Profiling.

12.1.20 Decoder

Teredo

The Teredo decoder can be disabled. It is enabled by default.

decoder:
Teredo decoder is known to not be completely accurate
it will sometimes detect non-teredo as teredo.
teredo:
enabled: true
ports to look for Teredo. Max 4 ports. If no ports are given, or
the value is set to 'any', Teredo detection runs on _all_ UDP packets.
ports: $TEREDO_PORTS # syntax: '[3544, 1234]'

Using this default configuration, Teredo detection will run on UDP port 1. If the ports parameter is missing, or set to
any, all ports will be inspected for possible presence of Teredo.

370 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Recursion Level

Flow matching via recursion level can be disabled. It is enabled by default.

decoder:
Depending on packet pickup, incoming and outgoing tunnelled packets
can be scanned before the kernel has stripped and encapsulated headers,
respectively, leading to incoming and outgoing flows not being associated.
recursion-level:
use-for-tracking: true

Using this default setting, flows will be associated only if the compared packet headers are encapsulated in the same
number of headers.

12.1.21 Advanced Options

stacktrace

Display diagnostic stacktraces when a signal unexpectedly terminates Suricata, e.g., such as SIGSEGV or SIGABRT.
Requires the libunwind library to be available. The default value is to display the diagnostic message if a signal
unexpectedly terminates Suricata -- e.g., SIGABRT or SIGSEGV occurs while Suricata is running.

logging:
Requires libunwind to be available when Suricata is configured and built.
If a signal unexpectedly terminates Suricata, displays a brief diagnostic
message with the offending stacktrace if enabled.
#stacktrace-on-signal: on

12.1.22 Configuration hardening

The security section of suricata.yaml is meant to provide in-depth security configuration options.

Besides landlock, (see Using Landlock LSM), one setting is available. limit-noproc is a boolean to prevent process
creation by Suricata. If you do not need Suricata to create other processes or threads (you may need it for LUA scripts
for instance or plugins), enable this to call setrlimit with RLIMIT_NPROC argument (see man setrlimit). This prevents
potential exploits against Suricata to fork a new process, even if it does not prevent the call of exec.

Warning! This has no effect on Linux when running as root. If you want a hardened configuration, you probably want
to set run-as configuration parameter so as to drop root privileges.

Beyond suricata.yaml, other ways to harden Suricata are - compilation : enabling ASLR and other exploit mitigation
techniques. - environment : running Suricata on a device that has no direct access to Internet.

12.1. Suricata.yaml 371

Suricata User Guide, Release 8.0.0

Lua

Suricata 8.0 sandboxes Lua rules by default. The restrictions on the sandbox for Lua rules can be modified in the
security.lua section of the configuration file. This section also applies to Lua transforms. Additionally, Lua rules
can be completely disabled in the same way as for as the Suricata 7.0 default:

security:
lua:
Allow Lua rules. Enabled by default.
#allow-rules: true

Upper bound of allocations by a Lua rule before it will fail
#max-bytes: 500000

Upper bound of lua instructions by a Lua rule before it will fail
#max-instructions: 500000

Allow dangerous lua operations like external packages and file io
#allow-restricted-functions: false

12.2 Global-Thresholds

Thresholds can be configured in the rules themselves, see Thresholding Keywords. They are often set by rule writers
based on their intelligence for creating a rule combined with a judgement on how often a rule will alert.

Thresholds are tracked in a hash table that is sized according to configuration, see: Thresholding Settings.

12.2.1 Threshold Config

Next to rule thresholding more thresholding can be configured on the sensor using the threshold.config.

threshold/event_filter

Syntax:

threshold gen_id <gid>, sig_id <sid>, type <threshold|limit|both>, \
track <by_src|by_dst|by_rule|by_both|by_flow>, count <N>, seconds <T>

rate_filter

Rate filters allow changing of a rule action when a rule matches.

Syntax:

rate_filter: rate_filter gen_id <gid>, sig_id <sid>, track <tracker>, \
count <c>, seconds <s>, new_action <action>, timeout <timeout>

Example:

rate_filter gen_id 1, sig_id 1000, track by_rule, count 100, seconds 60, \
new_action alert, timeout 30

372 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

gen_id

Generator id. Normally 1, but if a rule uses the gid keyword to set another value it has to be matched in the gen_id.

sig_id

Rule/signature id as set by the rule sid keyword.

track

Where to track the rule matches. When using by_src/by_dst the tracking is done per IP-address. The Host table is used
for storage. When using by_rule it's done globally for the rule. Option by_both used to track per IP pair of source and
destination. Packets going to opposite directions between same addresses tracked as the same pair. The by_flow option
tracks the rule matches in the flow.

count

Number of rule hits before the rate_filter is activated.

seconds

Time period within which the count needs to be reached to activate the rate_filter

new_action

New action that is applied to matching traffic when the rate_filter is in place.

Values:

<alert|drop|pass|reject>

Note: 'sdrop' and 'log' are supported by the parser but not implemented otherwise.

timeout

Time in seconds during which the rate_filter will remain active.

Example

Let's say we want to limit incoming connections to our SSH server. The rule 888 below simply alerts on SYN packets
to the SSH port of our SSH server. If an IP-address triggers this more than 10 or more with a minute, the drop
rate_filter is set with a timeout of 5 minutes.

Rule:

alert tcp any any -> $MY_SSH_SERVER 22 (msg:"Connection to SSH server"; \
flow:to_server; flags:S,12; sid:888;)

12.2. Global-Thresholds 373

Suricata User Guide, Release 8.0.0

Rate filter:

rate_filter gen_id 1, sig_id 888, track by_src, count 10, seconds 60, \
new_action drop, timeout 300

suppress

Suppressions can be used to suppress alerts for a rule or a host/network. Actions performed when a rule matches, such
as setting a flowbit, are still performed.

Syntax:

suppress gen_id <gid>, sig_id <sid>
suppress gen_id <gid>, sig_id <sid>, track <by_src|by_dst|by_either>, ip
→˓<ip|subnet|addressvar>

Examples:

suppress gen_id 1, sig_id 2002087, track by_src, ip 209.132.180.67

This will make sure the signature 2002087 will never match for src host 209.132.180.67.

Other possibilities/examples:

suppress gen_id 1, sig_id 2003614, track by_src, ip 217.110.97.128/25
suppress gen_id 1, sig_id 2003614, track by_src, ip [192.168.0.0/16,10.0.0.0/8,172.16.0.
→˓0/12]
suppress gen_id 1, sig_id 2003614, track by_src, ip $HOME_NET
suppress gen_id 1, sig_id 2003614, track by_either, ip 217.110.97.128/25

In the last example above, the by_either tracking means that if either the source ip or destination ip matches
217.110.97.128/25 the rule with sid 2003614 is suppressed.

12.2.2 Global thresholds vs rule thresholds

Note: this section applies to 1.4+ In 1.3 and before mixing rule and global thresholds is not supported.
When a rule has a threshold/detection_filter set a rule can still be affected by the global threshold file.

The rule below will only fire if 10 or more emails are being delivered/sent from a host within 60 seconds.

alert tcp any any -> any 25 (msg:"ET POLICY Inbound Frequent Emails - Possible Spambot␣
→˓Inbound"; \

flow:established; content:"mail from|3a|"; nocase; ␣
→˓ \

threshold: type threshold, track by_src, count 10, seconds 60; ␣
→˓ \

reference:url,doc.emergingthreats.net/2002087; classtype:misc-activity; sid:2002087;
→˓ rev:10;)

Next, we'll see how global settings affect this rule.

374 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Suppress

Suppressions can be combined with rules with thresholds/detection_filters with no exceptions.

suppress gen_id 1, sig_id 2002087, track by_src, ip 209.132.180.67
suppress gen_id 0, sig_id 0, track by_src, ip 209.132.180.67
suppress gen_id 1, sig_id 0, track by_src, ip 209.132.180.67

Each of the rules above will make sure 2002087 doesn't alert when the source of the emails is 209.132.180.67. It will
alert for all other hosts.

suppress gen_id 1, sig_id 2002087

This suppression will simply convert the rule to "noalert", meaning it will never alert in any case. If the rule sets a
flowbit, that will still happen.

Threshold/event_filter

When applied to a specific signature, thresholds and event_filters (threshold from now on) will override the signature
setting. This can be useful for when the default in a signature doesn't suit your environment.

threshold gen_id 1, sig_id 2002087, type both, track by_src, count 3, seconds 5
threshold gen_id 1, sig_id 2002087, type threshold, track by_src, count 10, seconds 60
threshold gen_id 1, sig_id 2002087, type limit, track by_src, count 1, seconds 15

Each of these will replace the threshold setting for 2002087 by the new threshold setting.

Note: overriding all gids or sids (by using gen_id 0 or sig_id 0) is not supported. Bug https://redmine.
openinfosecfoundation.org/issues/425.

Rate_filter

see https://redmine.openinfosecfoundation.org/issues/425.

12.3 Exception Policies

Suricata has a set of configuration variables to indicate what should the engine do when certain exception conditions,
such as hitting a memcap, are reached.

They are called Exception Policies and are configurable via suricata.yaml. If enabled, the engine will call them when
it reaches exception states. Stats for any applied exception policies can be found in counters related to the specific
configuration setting (read more). Some configuration is available directly via the stats settings.

For developers or for researching purposes, there are also simulation options exposed in debug mode and passed via
command-line. These exist to force or simulate failures or errors and understand Suricata behavior under such condi-
tions. See Command-line Options for Simulating Exceptions for those.

12.3. Exception Policies 375

https://redmine.openinfosecfoundation.org/issues/425
https://redmine.openinfosecfoundation.org/issues/425
https://redmine.openinfosecfoundation.org/issues/425

Suricata User Guide, Release 8.0.0

12.3.1 Master Switch

It is possible to set all configuration policies via what we call "master switch". This offers a quick way to define what
the engine should do in case of traffic exceptions, while still allowing for the flexibility of indicating a different behavior
for specific exception policies your setup/environment may have the need to.

Define a common behavior for all exception policies.
In IPS mode, the default is drop-flow. For cases when that's not possible, the
engine will fall to drop-packet. To fallback to old behavior (setting each of
them individually, or ignoring all), set this to ignore.
All values available for exception policies can be used, and there is one
extra option: auto - which means drop-flow or drop-packet (as explained above)
in IPS mode, and ignore in IDS mode. Exception policy values are: drop-packet,
drop-flow, reject, bypass, pass-packet, pass-flow, ignore (disable).
exception-policy: auto

This value will be overwritten by specific exception policies whose settings are also defined in the yaml file.

Auto

In IPS mode, the default behavior for most of the exception policies is to fail close. This means dropping the flow,
or the packet, when the flow action is not supported. The default policy for the midstream exception will be ignore if
midstream flows are accepted.

It is possible to disable this default, by setting the exception policies' "master switch" yaml config option to ignore.

In IDS mode, setting auto mode actually means disabling the master-switch, or ignoring the exception policies.

Note: If no exception policy is enabled, Suricata will not log exception policy stats.

12.3.2 Specific settings

Exception policies are implemented for:

Table 1: Exception Policy configuration variables
Config setting Policy variable Affects Expected behavior
stream.memcap memcap-policy Flow or packet If a stream memcap limit is reached, apply the

memcap policy to the packet and/or flow.
stream.midstream midstream-policy Flow If a session is picked up midstream, apply the mid-

stream policy to the flow.
stream.reassembly.memcapmemcap-policy Flow or packet If stream reassembly reaches memcap limit, apply

memcap policy to the packet and/or flow.
flow.memcap memcap-policy Packet Apply policy when the memcap limit for flows is

reached and no flow could be freed up. Policy can
only be applied to the packet.

defrag.memcap memcap-policy Packet Apply policy when the memcap limit for defrag is
reached and no tracker could be picked up. Policy
can only be applied to the packet.

app-layer error-policy Flow or packet Apply policy if a parser reaches an error state. Pol-
icy can be applied to packet and/or flow.

376 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

To change any of these, go to the specific section in the suricata.yaml file (for more configuration details, check the
suricata.yaml's documentation).

The possible values for the exception policies, and the resulting behaviors, are:

• drop-flow: disable decoding and parsing for the whole flow (packets, payload, application layer protocol), drop
the packet and all future packets in the flow.

• drop-packet: drop the packet.

• reject: same as drop-flow, but reject the current packet as well (see reject action in Rule's Action).

• bypass: bypass the flow. No further decoding or parsing is done. Bypass may be offloaded.

• pass-flow: disable payload and packet detection; stream reassembly, app-layer parsing and logging still happen.

• pass-packet: disable detection, still does stream updates and app-layer parsing (depending on which policy
triggered it).

• ignore: do not apply exception policies (default behavior).

The drop, pass and reject are similar to the rule actions described in rule actions.

12.3.3 Exception Policies and Midstream Pick-up Sessions

Suricata behavior can be difficult to track in case of midstream session pick-ups. Consider this matrix illustrating the
different interactions for midstream pick-ups enabled or not and the various exception policy values:

Table 2: Exception Policy Behaviors - IDS Mode
Excep-
tion
Policy

Midstream pick-up sessions ENABLED
(stream.midstream=true)

Midstream pick-up sessions DISABLED
(stream.midstream=false)

Ignore Session and app-layer traffic tracked and
parsed, log app-layer traffic, do detection.

Session not tracked. No app-layer parsing or log-
ging. No stream reassembly. No detection.

Drop-
flow

Not valid.* Not valid.*

Drop-
packet

Not valid.* Not valid.*

Reject Not valid.* Session not tracked, flow REJECTED.
Pass-
flow

Session and app-layer traffic tracked and
parsed, log app-layer traffic, no detection.

Session not tracked. No app-layer parsing or log-
ging. No stream reassembly. No detection.

Pass-
packet

Not valid.* Not valid.*

Bypass Not valid.* Session not tracked. No app-layer parsing or log-
ging. No stream reassembly. No detection.

Auto Midstream policy applied: "ignore". Same be-
havior.

Midstream policy applied: "ignore". Same behav-
ior.

The main difference between IDS and IPS scenarios is that in IPS mode flows can be allowed or blocked (as in with
the PASS and DROP rule actions). Packet actions are not valid, as midstream pick-up is a configuration that affects the
whole flow.

12.3. Exception Policies 377

Suricata User Guide, Release 8.0.0

Table 3: Exception Policy Behaviors - IPS Mode
Exception
Policy

Midstream pick-up sessions ENABLED
(stream.midstream=true)

Midstream pick-up sessions DISABLED
(stream.midstream=false)

Ignore Session and app-layer traffic tracked and
parsed, log app-layer traffic, do detection.

Session not tracked. No app-layer parsing or
logging. No stream reassembly. No detection.

Drop-flow Not valid.* Session not tracked. No app-layer parsing or
logging. No stream reassembly. No detection.
Flow DROPPED.

Drop-packet Not valid.* Not valid.*
Reject Not valid.* Session not tracked, flow DROPPED and RE-

JECTED.
Pass-flow Track session, parse and log app-layer traffic,

no detection.
Session not tracked. No app-layer parsing or
logging. No stream reassembly. No detection.

Pass-packet Not valid.* Not valid.*
Bypass Not valid.* Session not tracked. No app-layer parsing or

logging. No stream reassembly. No detection.
Packets ALLOWED.

Auto Midstream policy applied: "ignore". Same be-
havior.

Midstream policy applied: "drop-flow". Same
behavior.

Notes:

• Not valid means that Suricata will error out and won't start.

• REJECT will make Suricata send a Reset-packet unreach error to the sender of the matching packet.

12.3.4 Log Output

Flow Event

When an Exception Policy is triggered, this will be indicated in the flow log event for the associated flow, also indicating
which target triggered that, and what policy was applied. If no exception policy is triggered, that field won't be present
in the logs.

Note that this is true even if the policy is applied only to certain packets from a flow.

In the log sample below, the flow triggered the midstream policy, leading to Suricata applying the behavior that had
been configured for such scenario: to pass the flow (pass_flow). It also did trigger the app_layer_error exception
policy, but that is set up to ignore:

"flow": {
"pkts_toserver": 4,
"pkts_toclient": 5,
"bytes_toserver": 495,
"bytes_toclient": 351,
"start": "2016-07-13T22:42:07.199672+0000",
"end": "2016-07-13T22:42:07.573174+0000",
"age": 0,
"state": "new",
"reason": "shutdown",
"alerted": false,
"action": "pass",
"exception_policy": [

(continues on next page)

378 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

(continued from previous page)

{
"target": "stream_midstream",
"policy": "pass_flow"

},
{
"target": "app_layer_error",
"policy": "ignore"

}
]

}

Available Stats

There are stats counters for each supported exception policy scenario that will be logged when exception policies are
enabled:

Table 4: Exception Policy Stats Counters
Setting Counters
stream.memcap exception_policy.tcp.ssn_memcap
stream.reassembly.memcap exception_policy.tcp.reassembly.memcap
stream.midstream exception_policy.tcp.midstream
defrag.memcap exception_policy.defrag.memcap
flow.memcap exception_policy.flow.memcap
app-layer.error

• exception_policy.app_layer.error
• app_layer.error.exception_policy

If a given exception policy does not apply for a setting, no related counter is logged.

Stats for application layer errors are available in summarized form or per application layer protocol. As the latter is
extremely verbose, by default Suricata logs only the summary. If any further investigation is needed, it is recommended
to enable per-app-proto exception policy error counters temporarily (for more, read stats configuration).

Command-line Options for Simulating Exceptions

It is also possible to force specific exception scenarios, to check engine behavior under failure or error conditions.

The available command-line options are:

• simulate-applayer-error-at-offset-ts: force an applayer error in the to server direction at the given
offset.

• simulate-applayer-error-at-offset-tc: force an applayer error in the to client direction at the given
offset.

• simulate-packet-loss: simulate that the packet with the given number (pcap_cnt) from the session was
lost.

• simulate-packet-tcp-reassembly-memcap: simulate that the TCP stream reassembly reached memcap for
the specified packet.

• simulate-packet-tcp-ssn-memcap: simulate that the TCP session hit the memcap for the specified packet.

12.3. Exception Policies 379

Suricata User Guide, Release 8.0.0

• simulate-packet-flow-memcap: force the engine to assume that flow memcap is hit at the given packet.

• simulate-packet-defrag-memcap: force Suricata to assume memcap is hit when defragmenting specified
packet.

• simulate-alert-queue-realloc-failure: prevent the engine from dynamically growing the temporary
alert queue, during alerts processing.

Glossary

• decoding: traffic parsing on the packet level;

• [app-layer] parsing: traffic is parsed on the application layer level for events, anomalies and logging;

• detection: evaluate traffic against loaded rules to generate alerts and/ or block or allow traffic.

Common abbreviations

• applayer/ app-layer: application layer protocol

• memcap: (maximum) memory capacity available

• defrag: defragmentation

12.4 Snort.conf to Suricata.yaml

This guide is meant for those who are familiar with Snort and the snort.conf configuration format. This guide will
provide a 1:1 mapping between Snort and Suricata configuration wherever possible.

12.4.1 Variables

snort.conf

ipvar HOME_NET any
ipvar EXTERNAL_NET any
...

portvar HTTP_PORTS [80,81,311,591,593,901,1220,1414,1741,1830,2301,2381,2809,3128,3702,
→˓4343,4848,5250,7001,7145,7510,7777,7779,8000,8008,8014,8028,8080,8088,8090,8118,8123,
→˓8180,8181,8243,8280,8800,8888,8899,9000,9080,9090,9091,9443,9999,11371,55555]
portvar SHELLCODE_PORTS !80
...

suricata.yaml

vars:
address-groups:

HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"
EXTERNAL_NET: "!$HOME_NET"

port-groups:
(continues on next page)

380 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

(continued from previous page)

HTTP_PORTS: "80"
SHELLCODE_PORTS: "!80"

Note that Suricata can automatically detect HTTP traffic regardless of the port it uses. So the HTTP_PORTS variable
is not nearly as important as it is with Snort, if you use a Suricata enabled ruleset.

12.4.2 Decoder alerts

snort.conf

Stop generic decode events:
config disable_decode_alerts

Stop Alerts on experimental TCP options
config disable_tcpopt_experimental_alerts

Stop Alerts on obsolete TCP options
config disable_tcpopt_obsolete_alerts

Stop Alerts on T/TCP alerts
config disable_tcpopt_ttcp_alerts

Stop Alerts on all other TCPOption type events:
config disable_tcpopt_alerts

Stop Alerts on invalid ip options
config disable_ipopt_alerts

suricata.yaml

Suricata has no specific decoder options. All decoder related alerts are controlled by rules. See #Rules below.

12.4.3 Checksum handling

snort.conf

config checksum_mode: all

suricata.yaml

Suricata's checksum handling works on-demand. The stream engine checks TCP and IP checksum by default:

stream:
checksum-validation: yes # reject wrong csums

Alerting on bad checksums can be done with normal rules. See #Rules, decoder-events.rules specifically.

12.4. Snort.conf to Suricata.yaml 381

Suricata User Guide, Release 8.0.0

12.4.4 Various configs

Active response

snort.conf

Configure active response for non inline operation. For more information, see REAMDE.
→˓active
config response: eth0 attempts 2

suricata.yaml

Active responses are handled automatically w/o config if rules with the "reject" action are used.

Dropping privileges

snort.conf

Configure specific UID and GID to run snort as after dropping privs. For more␣
→˓information see snort -h command line options
#
config set_gid:
config set_uid:

Suricata

To set the user and group use the --user <username> and --group <groupname> command-line options.

Snaplen

snort.conf

Configure default snaplen. Snort defaults to MTU of in use interface. For more␣
→˓information see README
#
config snaplen:
#

Suricata always works at full snap length to provide full traffic visibility.

Bpf

snort.conf

Configure default bpf_file to use for filtering what traffic reaches snort. For more␣
→˓information see snort -h command line options (-F)
#
config bpf_file:
#

suricata.yaml

BPF filters can be set per packet acquisition method, with the "bpf-filter: <file>" yaml option and in a file using the -F
command line option.

382 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

For example:

pcap:
- interface: eth0
#buffer-size: 16777216
#bpf-filter: "tcp and port 25"
#checksum-checks: auto
#threads: 16
#promisc: no
#snaplen: 1518

12.4.5 Log directory

snort.conf

Configure default log directory for snort to log to. For more information see snort -
→˓h command line options (-l)
#
config logdir:

suricata.yaml

default-log-dir: /var/log/suricata/

This value is overridden by the -l command-line option.

12.4.6 Packet acquisition

snort.conf

Configure DAQ related options for inline operation. For more information, see README.
→˓daq
#
config daq: <type>
config daq_dir: <dir>
config daq_mode: <mode>
config daq_var: <var>
#
<type> ::= pcap | afpacket | dump | nfq | ipq | ipfw
<mode> ::= read-file | passive | inline
<var> ::= arbitrary <name>=<value passed to DAQ
<dir> ::= path as to where to look for DAQ module so's

suricata.yaml

Suricata has all packet acquisition support built-in. It's configuration format is very verbose.

pcap:
- interface: eth0
#buffer-size: 16777216
#bpf-filter: "tcp and port 25"
#checksum-checks: auto

(continues on next page)

12.4. Snort.conf to Suricata.yaml 383

Suricata User Guide, Release 8.0.0

(continued from previous page)

#threads: 16
#promisc: no
#snaplen: 1518

pfring:
afpacket:
nfq:
ipfw:

Passive vs inline vs reading files is determined by how Suricata is invoked on the command line.

12.4.7 Rules

snort.conf:

In snort.conf a RULE_PATH variable is set, as well as variables for shared object (SO) rules and preprocessor rules.

var RULE_PATH ../rules
var SO_RULE_PATH ../so_rules
var PREPROC_RULE_PATH ../preproc_rules

include $RULE_PATH/local.rules
include $RULE_PATH/emerging-activex.rules
...

suricata.yaml:

In the suricata.yaml the default rule path is set followed by a list of rule files. Suricata does not have a concept of shared
object rules or preprocessor rules. Instead of preprocessor rules, Suricata has several rule files for events set by the
decoders, stream engine, http parser etc.

default-rule-path: /etc/suricata/rules
rule-files:
- local.rules
- emerging-activex.rules

The equivalent of preprocessor rules are loaded like normal rule files:

rule-files:
- decoder-events.rules
- stream-events.rules
- http-events.rules
- smtp-events.rules

384 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

12.5 Multi Tenancy

12.5.1 Introduction

Multi tenancy support allows different tenants to use different rule sets with different rule variables.

Tenants are identified by their selector; a selector can be a VLAN, interface/device, or from a pcap file ("direct").

12.5.2 YAML

Add a new section in the main ("master") Suricata configuration file -- suricata.yaml -- named multi-detect.

Settings:

• enabled: yes/no -> is multi-tenancy support enabled

• selector: direct (for unix socket pcap processing, see below), VLAN or device

• loaders: number of loader threads, for parallel tenant loading at startup

• tenants: list of tenants

• config-path: path from where the tenant yamls are loaded

– id: tenant id (numeric values only)

– yaml: separate yaml file with the tenant specific settings

• mappings:

– VLAN id or device: The outermost VLAN is used to match.

– tenant id: tenant to associate with the VLAN id or device

multi-detect:
enabled: yes
#selector: direct # direct or vlan or device
selector: vlan
loaders: 3

tenants:
- id: 1
yaml: tenant-1.yaml

- id: 2
yaml: tenant-2.yaml

- id: 3
yaml: tenant-3.yaml

mappings:
- vlan-id: 1000
tenant-id: 1

- vlan-id: 2000
tenant-id: 2

- vlan-id: 1112
tenant-id: 3

The tenant-1.yaml, tenant-2.yaml, tenant-3.yaml each contain a partial configuration:

12.5. Multi Tenancy 385

Suricata User Guide, Release 8.0.0

Set the default rule path here to search for the files.
if not set, it will look at the current working dir
default-rule-path: /etc/suricata/rules
rule-files:
- rules1

You can specify a threshold config file by setting "threshold-file"
to the path of the threshold config file:
threshold-file: /etc/suricata/threshold.config

classification-file: /etc/suricata/classification.config
reference-config-file: /etc/suricata/reference.config

Holds variables that would be used by the engine.
vars:

Holds the address group vars that would be passed in a Signature.
These would be retrieved during the Signature address parsing stage.
address-groups:

HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"

EXTERNAL_NET: "!$HOME_NET"

...

port-groups:

HTTP_PORTS: "80"

SHELLCODE_PORTS: "!80"

...

vlan-id

Assign tenants to VLAN ids. Suricata matches the outermost VLAN id with this value. Multiple VLANs can have the
same tenant id. VLAN id values must be between 1 and 4094.

Example of VLAN mapping:

mappings:
- vlan-id: 1000
tenant-id: 1

- vlan-id: 2000
tenant-id: 2

- vlan-id: 1112
tenant-id: 3

The mappings can also be modified over the unix socket, see below.

Note: can only be used if vlan.use-for-tracking is enabled.

386 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

device

Assign tenants to devices. A single tenant can be assigned to a device. Multiple devices can have the same tenant id.

Example of device mapping:

mappings:
- device: ens5f0
tenant-id: 1

- device: ens5f1
tenant-id: 3

The mappings are static and cannot be modified over the unix socket.

Note: Not currently supported for IPS.

Note: support depends on a capture method using the 'livedev' API. Currently these are: pcap, AF_PACKET, PF_RING
and Netmap.

12.5.3 Per tenant settings

The following settings are per tenant:

• default-rule-path

• rule-files

• classification-file

• reference-config-file

• threshold-file

• address-vars

• port-vars

12.5.4 Unix Socket

Registration

register-tenant <id> <yaml>

Examples:

register-tenant 1 tenant-1.yaml
register-tenant 2 tenant-2.yaml
register-tenant 3 tenant-3.yaml
register-tenant 5 tenant-5.yaml
register-tenant 7 tenant-7.yaml

unregister-tenant <id>

unregister-tenant 2
unregister-tenant 1

12.5. Multi Tenancy 387

Suricata User Guide, Release 8.0.0

Unix socket runmode (pcap processing)

The Unix Socket pcap-file command is used to associate the tenant with the pcap:

pcap-file traffic1.pcap /logs1/ 1
pcap-file traffic2.pcap /logs2/ 2
pcap-file traffic3.pcap /logs3/ 3
pcap-file traffic4.pcap /logs5/ 5
pcap-file traffic5.pcap /logs7/ 7

This runs the traffic1.pcap against tenant 1 and it logs into /logs1/, traffic2.pcap against tenant 2 and logs to /logs2/ and
so on.

Live traffic mode

Multi-tenancy supports both VLAN and devices with live traffic.

In the master configuration yaml file, specify device or vlan for the selector setting.

Registration

Tenants can be mapped to vlan ids.

register-tenant-handler <tenant id> vlan <vlan id>

register-tenant-handler 1 vlan 1000

unregister-tenant-handler <tenant id> vlan <vlan id>

unregister-tenant-handler 4 vlan 1111
unregister-tenant-handler 1 vlan 1000

The registration of tenant and tenant handlers can be done on a running engine.

Reloads

Reloading all tenants:

reload-tenants

reload-tenants

Reloading a single tenant:

reload-tenant <tenant id> [yaml path]

reload-tenant 1 tenant-1.yaml
reload-tenant 5

The [yaml path] is optional. If it isn't provided, the original path of the tenant will be used during the reload.

388 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

12.5.5 Eve JSON output

When multi-tenant support is configured and the detect engine is active then all EVE-types that report based on flows
will also report the corresponding tenant_id for events matching a tenant configuration.

12.6 Dropping Privileges After Startup

Currently, libcap-ng is needed for dropping privileges on Suricata after startup. For libcap, see status of feature
request number #276 -- Libcap support for dropping privileges.

Most distributions have libcap-ng in their repositories.

To download the current version of libcap-ng from upstream, see also http://people.redhat.com/sgrubb/libcap-ng/
ChangeLog

wget http://people.redhat.com/sgrubb/libcap-ng/libcap-ng-0.7.8.tar.gz
tar -xzvf libcap-ng-0.7.8.tar.gz
cd libcap-ng-0.7.8
./configure
make
make install

Download, configure, compile and install Suricata for your particular setup. See Installation. Depending on your
environment, you may need to add the --with-libpcap_ng-libraries and --with-libpcap_ng-includes options during the
configure step. e.g:

./configure --with-libcap_ng-libraries=/usr/local/lib \
--with-libcap_ng-includes=/usr/local/include

Now, when you run Suricata, tell it what user and/or group you want it to run as after startup with the --user and --group
options. e.g. (this assumes a 'suri' user and group):

suricata -D -i eth0 --user=suri --group=suri

You will also want to make sure your user/group permissions are set so Suricata can still write to its log files which are
usually located in /var/log/suricata.

mkdir -p /var/log/suricata
chown -R root:suri /var/log/suricata
chmod -R 775 /var/log/suricata

12.7 Using Landlock LSM

Landlock is a Linux Security Module that has been introduced in Linux 5.13. It allows an application to sandbox itself
by selecting access right to directories using a deny by default approach.

Given its nature, Suricata knows where it is going to read files and where it is going to write them. So it is possible to
implement an efficient Landlock sandboxing policy.

Landlock is not active by default and needs to be activated in the YAML configuration. Configuration should come
with sane default (defined at build time) and the command line options are used to dynamically add some permissions.

Please note that Landlock is in blocking mode by default so careful testing is needed in production.

12.6. Dropping Privileges After Startup 389

http://people.redhat.com/sgrubb/libcap-ng/ChangeLog
http://people.redhat.com/sgrubb/libcap-ng/ChangeLog

Suricata User Guide, Release 8.0.0

To enable Landlock, edit the YAML and set enabled to yes:

landlock:
enabled: yes
directories:
write:
- /var/log/suricata/
- /var/run/

read:
- /usr/
- /etc/
- /etc/suricata/

Following your running configuration you may have to add some directories. There are two lists you can use, write
to add directories where write is needed and read for directories where read access is needed.

Landlock is not active in some distributions and you may need to activate it at boot by adding lsm=landock to the Linux
command line. For example, on a Debian distribution with at least a linux 5.13, you can edit /etc/default/grub
and update the GRUB_CMDLINE_LINUX_DEFAULT option:

GRUB_CMDLINE_LINUX_DEFAULT="quiet lsm=landlock"

Then run sudo update-grub and reboot.

You can check at boot if it is running by doing:

sudo dmesg | grep landlock || journalctl -kg landlock

If you are interested in reading more about Landlock, you can use https://docs.kernel.org/userspace-api/landlock.html
as entry point.

12.8 systemd notification

12.8.1 Introduction

Suricata supports systemd notification with the aim of notifying the service manager of successful initialisation. The
purpose is to enable the ability to start upon/await successful start-up for services/test frameworks that depend on a
fully initialised Suricata .

During the initialisation phase Suricata synchronises the initialisation thread with all active threads to ensure they are in
a running state. Once synchronisation has been completed a READY=1 status notification is sent to the service manager
using across the Systemd UNIX socket.

The path of the UNIX socket is taken from the NOTIFY_SOCKET env var.

390 Chapter 12. Configuration

https://docs.kernel.org/userspace-api/landlock.html

Suricata User Guide, Release 8.0.0

12.8.2 Example

A test framework requires Suricata to be capturing before the tests can be carried out. Writing a test.service and
ensuring the correct execution order with After=suricata.service forces the unit to be started after suricata.
service. This does not enforce Suricata has fully initialised. By configuring suricata.service as Type=notify
instructs the service manager to wait for the notification before starting test.service.

12.8.3 Requirements

This feature is only supported for distributions under the following conditions:

1. Any distribution that runs under systemd
2. Unit file configuration: Type=notify

For notification to the service manager the unit file must be configured as shown in requirement [2]. Upon all require-
ments being met the service manager will start and await READY=1 status from Suricata. Otherwise the service manager
will treat the service unit as Type=simple and consider it started immediately after the main process ExecStart= has
been forked.

12.8.4 Additional Information

To confirm the system is running under systemd:

ps --no-headers -o comm 1

See https://www.freedesktop.org/software/systemd/man/systemd.service.html for help writing systemd unit files.

See https://www.freedesktop.org/software/systemd/man/devel/sd_notify.html#Notes for a discussion of the UNIX
socket based notification.

12.9 Includes

A Suricata configuration file (typically /etc/suricata/suricata.yaml) may include other files allowing a config-
uration file to be broken into multiple files. The special field name include is used to include one or more files.

The contents of the include file are inlined at the level of the include statement. Include fields may also be included
at any level within a mapping.

12.9.1 Including a Single File

include: filename.yaml

12.9. Includes 391

https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/devel/sd_notify.html#Notes

Suricata User Guide, Release 8.0.0

12.9.2 Including Multiple Files

include:
- filename1.yaml
- filename2.yaml

12.9.3 Include Inside a Mapping

vars:
address-groups:
include: address-groups.yaml

where address-groups.yaml contains:

%YAML 1.1

HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"

is the equivalent of:

vars:
address-groups:
HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"

Note: Suricata versions less than 7 required multiple include statements to be specified to include more than one file.
While Suricata 7.0 still supports this it will issue a deprecation warning. Suricata 8.0 will not allow multiple include
statements at the same level as this is not allowed by YAML.

392 Chapter 12. Configuration

CHAPTER

THIRTEEN

REPUTATION

13.1 IP Reputation

13.1.1 IP Reputation Config

IP reputation has a few configuration directives, all disabled by default.

IP Reputation
#reputation-categories-file: /etc/suricata/iprep/categories.txt
#default-reputation-path: /etc/suricata/iprep
#reputation-files:
- reputation.list

reputation-categories-file

The categories file mapping numbered category values to short names.

reputation-categories-file: /etc/suricata/iprep/categories.txt

default-reputation-path

Path where reputation files from the "reputation-files" directive are loaded from by default.

default-reputation-path: /etc/suricata/iprep

reputation-files

YAML list of file names to load. In case of a absolute path the file is loaded directly, otherwise the path from "default-
reputation-path" is pre-pended to form the final path.

reputation-files:
- badhosts.list
- knowngood.list
- sharedhosting.list

393

Suricata User Guide, Release 8.0.0

Hosts

IP reputation information is stored in the host table, so the settings of the host table affect it.

Depending on the number of hosts reputation information is available for, the memcap and hash size may have to be
increased.

Reloads

Sending Suricata a USR2 signal will reload the IP reputation data, along with the normal rules reload.

During the reload the host table will be updated to contain the new data. The iprep information is versioned. When the
reload is complete, Suricata will automatically clean up the old iprep information.

Only the reputation files will be reloaded, the categories file won't be. If categories change, Suricata should be restarted.

File format

The format of the reputation files is described in the IP Reputation Format page.

13.1.2 IP Reputation Format

Description of IP Reputation file formats. For the configuration see IP Reputation Config and IP Reputation Keyword
for the rule format.

Categories file

The categories file provides a mapping between a category number, short name, and long description. It's a simple
CSV file:

<id>,<short name>,<description>

Example:

1,BadHosts,Known bad hosts
2,Google,Known google host

The maximum value for the category id is hard coded at 60 currently.

Reputation file

The reputation file lists a reputation score for hosts in the categories. It's a simple CSV file:

<ip>,<category>,<reputation score>

The IP is an IPv4 address in the quad-dotted notation or an IPv6 address. Both IP types support networks in CIDR
notation. The category is the number as defined in the categories file. The reputation score is the confidence that this
IP is in the specified category, represented by a number between 1 and 127 (0 means no data).

Example:

1.2.3.4,1,101
1.1.1.0/24,6,88

394 Chapter 13. Reputation

Suricata User Guide, Release 8.0.0

If an IP address has a score in multiple categories it should be listed in the file multiple times.

Example:

1.1.1.1,1,10
1.1.1.1,2,10

This lists 1.1.1.1 in categories 1 and 2, each with a score of 10.

The purpose of the IP reputation component is the ranking of IP Addresses within the Suricata Engine. It will collect,
store, update and distribute reputation intelligence on IP Addresses. The hub and spoke architecture will allows the
central database (The Hub) to collect, store and compile updated IP reputation details that are then distributed to user-
side sensor databases (Spokes) for inclusion in user security systems. The reputation data update frequency and security
action taken, is defined in the user security configuration.

The intent of IP Reputation is to allow sharing of intelligence regarding a vast number of IP addresses. This can be
positive or negative intelligence classified into a number of categories. The technical implementation requires three
major efforts; engine integration, the hub that redistributes reputation, and the communication protocol between hubs
and sensors. The hub will have a number of responsibilities. This will be a separate module running on a separate
system as any sensor. Most often it would run on a central database that all sensors already have communication with.
It will be able to subscribe to one or more external feeds. The local admin should be able to define the feeds to be
subscribed to, provide authentication credentials if required, and give a weight to that feed. The weight can be an
overall number or a by category weight. This will allow the admin to minimize the influence a feed has on their overall
reputation if they distrust a particular category or feed, or trust another implicitly. Feeds can be configured to accept
feedback or not and will report so on connect. The admin can override and choose not to give any feedback, but the
sensor should report these to the Hub upstream on connect. The hub will take all of these feeds and aggregate them
into an average single score for each IP or IP Block, and then redistribute this data to all local sensors as configured. It
should receive connections from sensors. The sensor will have to provide authentication and will provide feedback. The
hub should redistribute that feedback from sensors to all other sensors as well as up to any feeds that accept feedback.
The hub should also have an API to allow outside statistical analysis to be done to the database and fed back into the
stream. For instance a local site may choose to change the reputation on all Russian IP blocks, etc.

For more information about IP Reputation see IP Reputation Config, IP Reputation Keyword and IP Reputation Format.

13.1. IP Reputation 395

Suricata User Guide, Release 8.0.0

396 Chapter 13. Reputation

CHAPTER

FOURTEEN

INIT SCRIPTS

For Ubuntu with Upstart, the following can be used in /etc/init/suricata.conf:

suricata
description "Intrusion Detection System Daemon"
start on runlevel [2345]
stop on runlevel [!2345]
expect fork
exec suricata -D --pidfile /var/run/suricata.pid -c /etc/suricata/suricata.yaml -i eth1

397

Suricata User Guide, Release 8.0.0

398 Chapter 14. Init Scripts

CHAPTER

FIFTEEN

SETTING UP IPS/INLINE FOR LINUX

15.1 Setting up IPS with Netfilter

In this guide, we'll discuss how to work with Suricata in layer3 inline mode using iptables.

First, start by compiling Suricata with NFQ support. For instructions see Ubuntu Installation. For more information
about NFQ and iptables, see NFQ.

To check if you have NFQ enabled in your Suricata build, enter the following command:

suricata --build-info

and make sure that NFQ is listed in the output.

To run Suricata with the NFQ mode, you have to make use of the -q option. This option tells Suricata which queue
numbers it should use.

sudo suricata -c /etc/suricata/suricata.yaml -q 0

15.1.1 Iptables configuration

First of all, it is important to know which traffic you would like to send to Suricata. There are two choices:

1. Traffic that passes your computer

2. Traffic that is generated by your computer.

399

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Ubuntu_Installation

Suricata User Guide, Release 8.0.0

If Suricata is running on a gateway and is meant to protect the computers behind that gateway you are dealing with the
first scenario: forward_ing .

If Suricata has to protect the computer it is running on, you are dealing with the second scenario: host (see drawing 2).

These two ways of using Suricata can also be combined.

The easiest rule in case of the gateway-scenario to send traffic to Suricata is:

sudo iptables -I FORWARD -j NFQUEUE

In this case, all forwarded traffic goes to Suricata.

In case of the host situation, these are the two most simple iptables rules;

sudo iptables -I INPUT -j NFQUEUE
sudo iptables -I OUTPUT -j NFQUEUE

It is possible to set a queue number. If you do not, the queue number will be 0 by default.

Imagine you want Suricata to check for example just TCP traffic, or all incoming traffic on port 80, or all traffic on
destination-port 80, you can do so like this:

sudo iptables -I INPUT -p tcp -j NFQUEUE
sudo iptables -I OUTPUT -p tcp -j NFQUEUE

In this case, Suricata checks just TCP traffic.

sudo iptables -I INPUT -p tcp --sport 80 -j NFQUEUE
sudo iptables -I OUTPUT -p tcp --dport 80 -j NFQUEUE

In this example, Suricata checks all packets for outgoing connections to port 80.

400 Chapter 15. Setting up IPS/inline for Linux

Suricata User Guide, Release 8.0.0

To see if you have set your iptables rules correct make sure Suricata is running and enter:

sudo iptables -vnL

In the example you can see if packets are being logged.

This description of the use of iptables is the way to use it with IPv4. To use it with IPv6 all previous mentioned
commands have to start with ip6tables. It is also possible to let Suricata check both kinds of traffic.

There is also a way to use iptables with multiple networks (and interface cards). Example:

sudo iptables -I FORWARD -i eth0 -o eth1 -j NFQUEUE
sudo iptables -I FORWARD -i eth1 -o eth0 -j NFQUEUE

The options -i (input) -o (output) can be combined with all previous mentioned options.

If you would stop Suricata and use internet, the traffic will not come through. To make internet work correctly, first
delete all iptables rules.

To erase all iptables rules, enter:

15.1. Setting up IPS with Netfilter 401

Suricata User Guide, Release 8.0.0

sudo iptables -F

15.1.2 NFtables configuration

The NFtables configuration is straight forward and allows mixing firewall rules with IPS. The concept is to create a
dedicated chain for the IPS that will be evaluated after the firewalling rule. If your main table is named filter it can be
created like so:

nft> add chain filter IPS { type filter hook forward priority 10;}

To send all forwarded packets to Suricata one can use

nft> add rule filter IPS queue

To only do it for packets exchanged between eth0 and eth1

nft> add rule filter IPS iif eth0 oif eth1 queue
nft> add rule filter IPS iif eth1 oif eth0 queue

15.1.3 NFQUEUE advanced options

The NFQUEUE mechanism supports some interesting options. The nftables configuration will be shown there but
the features are also available in iptables.

The full syntax of the queuing mechanism is as follows:

nft add rule filter IPS queue num 3-5 options fanout,bypass

This rule sends matching packets to 3 load-balanced queues starting at 3 and ending at 5. To get the packets in Suricata
with this setup, you need to specify multiple queues on command line:

suricata -q 3 -q 4 -q 5

fanout and bypass are the two available options:

• fanout: When used together with load balancing, this will use the CPU ID instead of connection hash as an index
to map packets to the queues. The idea is that you can improve performance if there’s one queue per CPU. This
requires total with a number of queues superior to 1 to be specified.

• bypass: By default, if no userspace program is listening on an Netfilter queue, then all packets that are to be
queued are dropped. When this option is used, the queue rule behaves like ACCEPT if there is no program
listening, and the packet will move on to the next table.

The bypass option can be used to avoid downtime of link when Suricata is not running but this also means that the
blocking feature will not be present.

402 Chapter 15. Setting up IPS/inline for Linux

Suricata User Guide, Release 8.0.0

15.2 Setting up IPS at Layer 2

15.2.1 AF_PACKET IPS mode

AF_PACKET capture method is supporting a IPS/Tap mode. In this mode, you just need the interfaces to be up.
Suricata will take care of copying the packets from one interface to the other. No iptables or nftables configuration
is necessary.

You need to dedicate two network interfaces for this mode. The configuration is made via configuration variable
available in the description of an AF_PACKET interface.

For example, the following configuration will create a Suricata acting as IPS between interface eth0 and eth1:

af-packet:
- interface: eth0
threads: 1
defrag: no
cluster-type: cluster_flow
cluster-id: 98
copy-mode: ips
copy-iface: eth1
buffer-size: 64535

- interface: eth1
threads: 1
cluster-id: 97
defrag: no
cluster-type: cluster_flow
copy-mode: ips
copy-iface: eth0
buffer-size: 64535

This is a basic af-packet configuration using two interfaces. Interface eth0 will copy all received packets to eth1
because of the copy-* configuration variable

copy-mode: ips
copy-iface: eth1

The configuration on eth1 is symmetric

copy-mode: ips
copy-iface: eth0

There are some important points to consider when setting up this mode:

• MTU on both interfaces have to be equal: the copy from one interface to the other is direct and packets bigger
then the MTU will be dropped by kernel.

• Set different values of cluster-id on both interfaces to avoid conflict.

• Any network card offloading creating bigger then physical layer datagram (like GRO, LRO, TSO) will result in
dropped packets as the transmit path can not handle them.

• Set stream.inline to auto or yes so Suricata switches to blocking mode.

The copy-mode variable can take the following values:

• ips: the drop keyword is honored and matching packets are dropped.

15.2. Setting up IPS at Layer 2 403

Suricata User Guide, Release 8.0.0

• tap: no drop occurs, Suricata acts as a bridge

Some specific care must be taken to scale the capture method on multiple threads. As we can't use defrag that will
generate too big frames, the in kernel load balancing will not be correct: the IP-only fragment will not reach the same
thread as the full featured packet of the same flow because the port information will not be present.

A solution is to use eBPF load balancing to get an IP pair load balancing without fragmentation. The AF_PACKET
IPS Configuration using multiple threads and eBPF load balancing looks like the following:

af-packet:
- interface: eth0
threads: 16
defrag: no
cluster-type: cluster_ebpf
ebpf-lb-file: /usr/libexec/suricata/ebpf/lb.bpf
cluster-id: 98
copy-mode: ips
copy-iface: eth1
buffer-size: 64535

- interface: eth1
threads: 16
cluster-id: 97
defrag: no
cluster-type: cluster_ebpf
ebpf-lb-file: /usr/libexec/suricata/ebpf/lb.bpf
copy-mode: ips
copy-iface: eth0
buffer-size: 64535

The eBPF file /usr/libexec/suricata/ebpf/lb.bpf may not be present on disk. See eBPF and XDP for more
information.

15.2.2 DPDK IPS mode

In the same way as you would configure AF_PACKET IPS mode, you can configure the DPDK capture module. Prior
to starting with IPS (inline) setup, it is recommended to go over Data Plane Development Kit (DPDK) manual page to
understand the setup essentials.

DPDK IPS mode, similarly to AF-Packet, uses two interfaces. Packets received on the first network interface
(0000:3b:00.1) are transmitted by the second network interface (0000:3b:00.0) and similarly, packets received on
the second interface (0000:3b:00.0) are transmitted by the first interface (0000:3b:00.1). Packets are not altered
in any way in this mode.

The following configuration snippet configures Suricata DPDK IPS mode between two NICs:

dpdk:
eal-params:
proc-type: primary

interfaces:
- interface: 0000:3b:00.1
threads: 4
promisc: true
multicast: true
checksum-checks: true

(continues on next page)

404 Chapter 15. Setting up IPS/inline for Linux

Suricata User Guide, Release 8.0.0

(continued from previous page)

checksum-checks-offload: true
mempool-size: 262143
mempool-cache-size: 511
rx-descriptors: 4096
tx-descriptors: 4096
copy-mode: ips
copy-iface: 0000:3b:00.0
mtu: 3000

- interface: 0000:3b:00.0
threads: 4
promisc: true
multicast: true
checksum-checks: true
checksum-checks-offload: true
mempool-size: 262143
mempool-cache-size: 511
rx-descriptors: 4096
tx-descriptors: 4096
copy-mode: ips
copy-iface: 0000:3b:00.1
mtu: 3000

The previous DPDK configuration snippet outlines several things to consider:

• copy-mode - see Section AF_PACKET IPS mode for more details.

• copy-iface - see Section AF_PACKET IPS mode for more details.

• threads - all interface entries must have their thread count configured and paired/connected interfaces must be
configured with the same amount of threads.

• mtu - MTU must be the same on both paired interfaces.

DPDK capture module also requires having CPU affinity set in the configuration file. For the best performance, ev-
ery Suricata worker should be pinned to a separate CPU core that is not shared with any other Suricata thread (e.g.
management threads). The following snippet shows a possible Threading configuration set-up for DPDK IPS mode.

threading:
set-cpu-affinity: yes
cpu-affinity:
management-cpu-set:
cpu: [0]

worker-cpu-set:
cpu: [2,4,6,8,10,12,14,16]

15.2. Setting up IPS at Layer 2 405

Suricata User Guide, Release 8.0.0

15.2.3 Netmap IPS mode

Using Netmap to support IPS requires setting up pairs of interfaces; packets are received on one interface within the
pair, inspected by Suricata, and transmitted on the other paired interface. You can use native or host stack mode; host
stack mode is used when the interface name contains the ^ character, e.g, enp6s0f0^. host stack mode does not require
multiple physical network interfaces.

Netmap Host Stack Mode

Netmap's host stack mode allows packets that flow through Suricata to be used with other host OS applications, e.g., a
firewall or similar. Additionally, host stack mode allows traffic to be received and transmitted on one network interface
card.

With host stack mode, Netmap establishes a pair of host stack mode rings (one each for RX and TX). Packets pass
through the host operating system network protocol stack. Ingress network packets flow from the network interface
card to the network protocol stack and then into the host stack mode rings. Outbound packets flow from the host stack
mode rings to the network protocol stack and finally, to the network interface card. Suricata receives packets from
the host stack mode rings and, in IPS mode, places packets to be transmitted into the host stack mode rings. Packets
transmitted by Suricata into the host stack mode rings are available for other host OS applications.

Paired network interfaces are specified in the netmap configuration section. For example, the following configuration
will create a Suricata acting as IPS between interface enp6s0f0 and enp6s0f1

netmap:
- interface: enp6s0f0
threads: auto
copy-mode: ips
copy-iface: enp6s0f1

- interface: enp6s0f1
threads: auto
copy-mode: ips
copy-iface: enp6s0f0

You can specify the threads value; the default value of auto will create a thread for each queue supported by the
NIC; restrict the thread count by specifying a value, e.g., threads: 1

This is a basic netmap configuration using two interfaces. Suricata will copy packets between interfaces enp6s0f0
and en60sf1 because of the copy-* configuration variable in interface's enp6s0f0 configuration

copy-mode: ips
copy-iface: enp6s0f1

The configuration on enp6s0f1 is symmetric

copy-mode: ips
copy-iface: enp6s0f0

The host stack mode feature of Netmap can be used. host stack mode doesn't require a second network interface.

This example demonstrates host stack mode with a single physical network interface enp6s0f01

- interface: enp60s0f0
copy-mode: ips
copy-iface: enp6s0f0^

406 Chapter 15. Setting up IPS/inline for Linux

Suricata User Guide, Release 8.0.0

The configuration on enp6s0f0^ is symmetric

- interface: enp60s0f0^
copy-mode: ips
copy-iface: enp6s0f0

Suricata will use zero-copy mode when the runmode is workers.

There are some important points to consider when setting up this mode:

• Any network card offloading creating bigger then physical layer datagram (like GRO, LRO, TSO) will result in
dropped packets as the transmit path can not handle them.

• Set stream.inline to auto or yes so Suricata switches to blocking mode. The default value is auto.

The copy-mode variable can take the following values:

• ips: the drop keyword is honored and matching packets are dropped.

• tap: no drop occurs, Suricata acts as a bridge

15.2. Setting up IPS at Layer 2 407

Suricata User Guide, Release 8.0.0

408 Chapter 15. Setting up IPS/inline for Linux

CHAPTER

SIXTEEN

SETTING UP IPS/INLINE FOR WINDOWS

This guide explains how to work with Suricata in layer 4 inline mode using WinDivert on Windows.

First start by compiling Suricata with WinDivert support. For instructions, see Windows Installation. This documenta-
tion has not yet been updated with WinDivert information, so make sure to add the following flags before configuring
Suricata with configure:

--enable-windivert=yes --with-windivert-include=<include-dir> --with-windivert-libraries=
→˓<libraries-dir>

WinDivert.dll and WinDivert.sys must be in the same directory as the Suricata executable. WinDivert automatically
installs the driver when it is run. For more information about WinDivert, see https://www.reqrypt.org/windivert-doc.
html.

To check if you have WinDivert enabled in your Suricata, enter the following command in an elevated command prompt
or terminal:

suricata -c suricata.yaml --windivert [filter string]

For information on the WinDivert filter language, see https://www.reqrypt.org/windivert-doc.html#filter_language

If Suricata is running on a gateway and is meant to protect the network behind that gateway, you need to run WinDivert
at the NETWORK_FORWARD layer. This can be achieved using the following command:

suricata -c suricata.yaml --windivert-forward [filter string]

The filter is automatically stopped and normal traffic resumes when Suricata is stopped.

A quick start is to examine all traffic, in which case you can use the following command:

suricata -c suricata.yaml --windivert[-forward] true

A few additional examples:

Only TCP traffic:

suricata -c suricata.yaml --windivert tcp

Only TCP traffic on port 80:

suricata -c suricata.yaml --windivert "tcp.DstPort == 80"

TCP and ICMP traffic:

suricata -c suricata.yaml --windivert "tcp or icmp"

409

https://redmine.openinfosecfoundation.org/attachments/download/1175/SuricataWinInstallationGuide_v1.4.3.pdf
https://www.reqrypt.org/windivert-doc.html
https://www.reqrypt.org/windivert-doc.html
https://www.reqrypt.org/windivert-doc.html#filter_language

Suricata User Guide, Release 8.0.0

410 Chapter 16. Setting up IPS/inline for Windows

CHAPTER

SEVENTEEN

OUTPUT

17.1 EVE

17.1.1 Eve JSON Output

The EVE output facility outputs alerts, anomalies, metadata, file info and protocol specific records through JSON.

The most common way to use this is through 'EVE', which is a firehose approach where all these logs go into a single
file.

outputs:
Extensible Event Format (nicknamed EVE) event log in JSON format
- eve-log:

enabled: yes
filetype: regular #regular|syslog|unix_dgram|unix_stream|redis
filename: eve.json
Enable for multi-threaded eve.json output; output files are amended with
an identifier, e.g., eve.9.json
#threaded: false
Specify the amount of buffering, in bytes, for
this output type. The default value 0 means "no
buffering".
#buffer-size: 0
#prefix: "@cee: " # prefix to prepend to each log entry
the following are valid when type: syslog above
#identity: "suricata"
#facility: local5
#level: Info ## possible levels: Emergency, Alert, Critical,

Error, Warning, Notice, Info, Debug
#ethernet: no # log ethernet header in events when available
#redis:
server: 127.0.0.1
port: 6379
async: true ## if redis replies are read asynchronously
mode: list ## possible values: list|lpush (default), rpush, channel|publish,␣

→˓xadd|stream
lpush and rpush are using a Redis list. "list" is an alias for␣

→˓lpush
publish is using a Redis channel. "channel" is an alias for␣

→˓publish
xadd is using a Redis stream. "stream" is an alias for xadd

(continues on next page)

411

Suricata User Guide, Release 8.0.0

(continued from previous page)

key: suricata ## string denoting the key/channel/stream to use (default to␣
→˓suricata)

stream-maxlen: 100000 ## Automatically trims the stream length to at most
this number of events. Set to 0 to disable␣

→˓trimming.
Only used when mode is set to xadd/stream.

stream-trim-exact: false ## Trim exactly to the maximum stream length above.
Default: use inexact trimming (inexact by a few
tens of items)
Only used when mode is set to xadd/stream.

Redis pipelining set up. This will enable to only do a query every
'batch-size' events. This should lower the latency induced by network
connection at the cost of some memory. There is no flushing implemented
so this setting should be reserved to high traffic Suricata deployments.
pipelining:
enabled: yes ## set enable to yes to enable query pipelining
batch-size: 10 ## number of entries to keep in buffer

Include top level metadata. Default yes.
#metadata: no

include the name of the input pcap file in pcap file processing mode
pcap-file: false

Community Flow ID
Adds a 'community-id' field to EVE records. These are meant to give
records a predictable flow ID that can be used to match records to
output of other tools such as Zeek (Bro).
#
Takes a 'seed' that needs to be same across sensors and tools
to make the id less predictable.

enable/disable the community id feature.
community-id: false
Seed value for the ID output. Valid values are 0-65535.
community-id-seed: 0

HTTP X-Forwarded-For support by adding an extra field or overwriting
the source or destination IP address (depending on flow direction)
with the one reported in the X-Forwarded-For HTTP header. This is
helpful when reviewing alerts for traffic that is being reverse
or forward proxied.
xff:
enabled: no
Two operation modes are available: "extra-data" and "overwrite".
mode: extra-data
Two proxy deployments are supported: "reverse" and "forward". In
a "reverse" deployment the IP address used is the last one, in a
"forward" deployment the first IP address is used.
deployment: reverse
Header name where the actual IP address will be reported. If more
than one IP address is present, the last IP address will be the

(continues on next page)

412 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

one taken into consideration.
header: X-Forwarded-For

types:
- alert:

payload: yes # enable dumping payload in Base64
payload-buffer-size: 4kb # max size of payload buffer to output in eve-log
payload-printable: yes # enable dumping payload in printable (lossy)␣

→˓format
payload-length: yes # enable dumping payload length, including the␣

→˓gaps
packet: yes # enable dumping of packet (without stream␣

→˓segments)
metadata: no # enable inclusion of app layer metadata with␣

→˓alert. Default yes
If you want metadata, use:
metadata:
Include the decoded application layer (ie. http, dns)
#app-layer: true
Log the current state of the flow record.
#flow: true
#rule:
Log the metadata field from the rule in a structured
format.
#metadata: true
Log the raw rule text.
#raw: false
#reference: false # include reference information from the rule

http-body: yes # Requires metadata; enable dumping of HTTP body␣
→˓in Base64

http-body-printable: yes # Requires metadata; enable dumping of HTTP body␣
→˓in printable format

websocket-payload: yes # Requires metadata; enable dumping of WebSocket␣
→˓Payload in Base64

websocket-payload-printable: yes # Requires metadata; enable dumping of␣
→˓WebSocket Payload in printable format

Enable the logging of tagged packets for rules using the
"tag" keyword.
tagged-packets: yes
Enable logging the final action taken on a packet by the engine
(e.g: the alert may have action 'allowed' but the verdict be
'drop' due to another alert. That's the engine's verdict)
verdict: yes

app layer frames
- frame:

disabled by default as this is very verbose.
enabled: no
payload-buffer-size: 4kb # max size of frame payload buffer to output in␣

→˓eve-log
- anomaly:

Anomaly log records describe unexpected conditions such

(continues on next page)

17.1. EVE 413

Suricata User Guide, Release 8.0.0

(continued from previous page)

as truncated packets, packets with invalid IP/UDP/TCP
length values, and other events that render the packet
invalid for further processing or describe unexpected
behavior on an established stream. Networks which
experience high occurrences of anomalies may experience
packet processing degradation.
#
Anomalies are reported for the following:
1. Decode: Values and conditions that are detected while
decoding individual packets. This includes invalid or
unexpected values for low-level protocol lengths as well
as stream related events (TCP 3-way handshake issues,
unexpected sequence number, etc).
2. Stream: This includes stream related events (TCP
3-way handshake issues, unexpected sequence number,
etc).
3. Application layer: These denote application layer
specific conditions that are unexpected, invalid or are
unexpected given the application monitoring state.
#
By default, anomaly logging is enabled. When anomaly
logging is enabled, applayer anomaly reporting is
also enabled.
enabled: yes
#
Choose one or more types of anomaly logging and whether to enable
logging of the packet header for packet anomalies.
types:
decode: no
stream: no
applayer: yes

#packethdr: no
- http:

extended: yes # enable this for extended logging information
custom allows additional HTTP fields to be included in eve-log.
the example below adds three additional fields when uncommented
#custom: [Accept-Encoding, Accept-Language, Authorization]
set this value to one and only one from {both, request, response}
to dump all HTTP headers for every HTTP request and/or response
dump-all-headers: none

- dns:
This configuration uses the new DNS logging format,
the old configuration is still available:
https://docs.suricata.io/en/latest/output/eve/eve-json-output.html#dns-v1-

→˓format

As of Suricata 5.0, version 2 of the eve dns output
format is the default.
#version: 2

Enable/disable this logger. Default: enabled.
#enabled: yes

(continues on next page)

414 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

Control logging of requests and responses:
- requests: enable logging of DNS queries
- responses: enable logging of DNS answers
By default both requests and responses are logged.
#requests: no
#responses: no

Format of answer logging:
- detailed: array item per answer
- grouped: answers aggregated by type
Default: all
#formats: [detailed, grouped]

DNS record types to log, based on the query type.
Default: all.
#types: [a, aaaa, cname, mx, ns, ptr, txt]

- tls:
extended: yes # enable this for extended logging information
output TLS transaction where the session is resumed using a
session id
#session-resumption: no
custom controls which TLS fields that are included in eve-log
WARNING: enabling custom disables extended logging.
#custom: [subject, issuer, session_resumed, serial, fingerprint, sni,␣

→˓version, not_before, not_after, certificate, chain, ja3, ja3s, ja4, subjectaltname,␣
→˓client, client_certificate, client_chain, client_alpns, server_alpns]

- files:
force-magic: no # force logging magic on all logged files
force logging of checksums, available hash functions are md5,
sha1 and sha256
#force-hash: [md5]

#- drop:
alerts: yes # log alerts that caused drops
flows: all # start or all: 'start' logs only a single drop
per flow direction. All logs each dropped pkt.

Enable logging the final action taken on a packet by the engine
(will show more information in case of a drop caused by 'reject')
verdict: yes

- smtp:
#extended: yes # enable this for extended logging information
this includes: bcc, message-id, subject, x_mailer, user-agent
custom fields logging from the list:
reply-to, bcc, message-id, subject, x-mailer, user-agent, received,
x-originating-ip, in-reply-to, references, importance, priority,
sensitivity, organization, content-md5, date
#custom: [received, x-mailer, x-originating-ip, relays, reply-to, bcc]
output md5 of fields: body, subject
for the body you need to set app-layer.protocols.smtp.mime.body-md5
to yes
#md5: [body, subject]

(continues on next page)

17.1. EVE 415

Suricata User Guide, Release 8.0.0

(continued from previous page)

#- dnp3
- websocket
- ftp
- ftp-data
- rdp
- nfs
- smb
- tftp
- ike
- dcerpc
- krb5
- bittorrent-dht
- ssh
- arp:

enabled: no
- snmp
- rfb
- sip
- quic
- dhcp:

enabled: yes
When extended mode is on, all DHCP messages are logged
with full detail. When extended mode is off (the
default), just enough information to map a MAC address
to an IP address is logged.
extended: no

- mqtt:
passwords: yes # enable output of passwords
string-log-limit: 1kb # limit size of logged strings in bytes.

Can be specified in kb, mb, gb. Just a number
is parsed as bytes. Default is 1KB.
Use a value of 0 to disable limiting.
Note that the size is also bounded by
the maximum parsed message size (see
app-layer configuration)

- http2
- pgsql:

enabled: no
passwords: yes # enable output of passwords. Disabled by default

- stats:
totals: yes # stats for all threads merged together
threads: no # per thread stats
deltas: no # include delta values
Don't log stats counters that are zero. Default: true
#null-values: false # False will NOT log stats counters: 0

bi-directional flows
- flow
uni-directional flows
#- netflow

Metadata event type. Triggered whenever a pktvar is saved
and will include the pktvars, flowvars, flowbits and

(continues on next page)

416 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

flowints.
#- metadata

EXPERIMENTAL per packet output giving TCP state tracking details
including internal state, flags, etc.
This output is experimental, meant for debugging and subject to
change in both config and output without any notice.
#- stream:
all: false # log all TCP packets
event-set: false # log packets that have a decoder/stream␣

→˓event
state-update: false # log packets triggering a TCP state update
spurious-retransmission: false # log spurious retransmission packets
#

heartbeat:
The output-flush-interval value governs how often Suricata will instruct the
detection threads to flush their EVE output. Specify the value in seconds [1-60]
and Suricata will initiate EVE log output flushes at that interval. A value
of 0 means no EVE log output flushes are initiated. When the EVE output
buffer-size value is non-zero, some EVE output that was written may remain
buffered. The output-flush-interval governs how much buffered data exists.
#
The default value is: 0 (never instruct detection threads to flush output)
#output-flush-interval: 0

Each alert, http log, etc will go into this one file: 'eve.json'. This file can then be processed by 3rd party tools like
Logstash (ELK) or jq.

If ethernet is set to yes, then ethernet headers will be added to events if available. If the pkt_src value is stream
(flow timeout), then the ethernet value will be populated with mac addresses from the flow's first packet with
ethernet header.

If suricata-version is set to yes, then Suricata version, with its git revision if available, will be added to events as
suricata_version.

Output Buffering

Output flushing is controlled by values in the configuration section heartbeat. By default, Suricata's output is syn-
chronous with little possibility that written data will not be persisted. However, if output.buffer-size has a non-
zero value, then some data may be written for the output, but not actually flushed. buffer-size bytes may be held in
memory and written a short time later opening the possibility -- but limited -- for output data loss.

Hence, a heartbeat mechanism is introduced to limit the amount of time buffered data may exist before being flushed.
Control is provided to instruct Suricata's detection threads to flush their EVE output. With default values, there is
no change in output buffering and flushing behavior. output-flush-interval controls how often Suricata's detect
threads will flush output in a heartbeat fashion. A value of 0 means "never"; non-zero values must be in [1-60]
seconds.

Flushing should be considered when outputs.buffer-size is greater than 0 to limit the amount and age of buffered,
but not persisted, output data. Flushing is never needed when buffer-size is 0.

heartbeat:
#output-flush-interval: 0

17.1. EVE 417

Suricata User Guide, Release 8.0.0

Output types

EVE can output to multiple methods. regular is a normal file. Other options are syslog, unix_dgram, unix_stream
and redis.

Output types:

filetype: regular #regular|syslog|unix_dgram|unix_stream|redis
filename: eve.json
Enable for multi-threaded eve.json output; output files are amended
with an identifier, e.g., eve.9.json. Default: off
#threaded: off
Specify the amount of buffering, in bytes, for
this output type. The default value 0 means "no
buffering".
#buffer-size: 0
#prefix: "@cee: " # prefix to prepend to each log entry
the following are valid when type: syslog above
#identity: "suricata"
#facility: local5
#level: Info ## possible levels: Emergency, Alert, Critical,

Error, Warning, Notice, Info, Debug
#ethernet: no # log ethernet header in events when available
#suricata-version: no # include suricata version. Default no.
#redis:
server: 127.0.0.1
port: 6379
async: true ## if redis replies are read asynchronously
mode: list ## possible values: list|lpush (default), rpush, channel|publish,␣
→˓xadd|stream
lpush and rpush are using a Redis list. "list" is an alias for lpush
publish is using a Redis channel. "channel" is an alias for publish
xadd is using a Redis stream. "stream" is an alias for xadd
key: suricata ## string denoting the key/channel/stream to use (default to suricata)
stream-maxlen: 100000 ## Automatically trims the stream length to at most

this number of events. Set to 0 to disable trimming.
Only used when mode is set to xadd/stream.

stream-trim-exact: false ## Trim exactly to the maximum stream length above.
Default: use inexact trimming (inexact by a few
tens of items)
Only used when mode is set to xadd/stream.

Redis pipelining set up. This will enable to only do a query every
'batch-size' events. This should lower the latency induced by network
connection at the cost of some memory. There is no flushing implemented
so this setting as to be reserved to high traffic suricata.
pipelining:
enabled: yes ## set enable to yes to enable query pipelining
batch-size: 10 ## number of entry to keep in buffer

418 Chapter 17. Output

Suricata User Guide, Release 8.0.0

Alerts

Alerts are event records for rule matches. They can be amended with metadata, such as the application layer record
(HTTP, DNS, etc) an alert was generated for, and elements of the rule.

The alert is amended with application layer metadata for signatures using application layer keywords. It is also the case
for protocols over UDP as each single packet is expected to contain a PDU.

For other signatures, the option guess-applayer-tx can be used to force the detect engine to tie a transaction to an
alert. This transaction is not guaranteed to be the relevant one, depending on your use case and how you define relevant
here. WARNING: If there are multiple live transactions, none will get picked up. This is to reduce the chances of
logging unrelated data, and may lead to alerts being logged without metadata, in some cases. The alert event will have
tx_guessed: true to recognize such alerts.

Metadata:

- alert:
#payload: yes # enable dumping payload in Base64
#payload-buffer-size: 4kb # max size of payload buffer to output in eve-log
#payload-printable: yes # enable dumping payload in printable (lossy) format
#payload-length: yes # enable dumping payload length, including the gaps
#packet: yes # enable dumping of packet (without stream segments)
#http-body: yes # Requires metadata; enable dumping of http body in Base64
#http-body-printable: yes # Requires metadata; enable dumping of http body in␣

→˓printable format

metadata:

Include the decoded application layer (ie. http, dns)
#app-layer: true

Log the current state of the flow record.
#flow: true

#rule:
Log the metadata field from the rule in a structured
format.
#metadata: true

Log the raw rule text.
#raw: false

Include the rule reference information
#reference: false

17.1. EVE 419

Suricata User Guide, Release 8.0.0

Anomaly

Anomalies are event records created when packets with unexpected or anomalous values are handled. These events
include conditions such as incorrect protocol values, incorrect protocol length values, and other conditions which render
the packet suspect. Other conditions may occur during the normal progression of a stream; these are termed stream
events are include control sequences with incorrect values or that occur out of expected sequence.

Anomalies are reported by and configured by type:

• Decode

• Stream

• Application layer

Metadata:

- anomaly:
Anomaly log records describe unexpected conditions such as truncated packets,
packets with invalid IP/UDP/TCP length values, and other events that render
the packet invalid for further processing or describe unexpected behavior on
an established stream. Networks which experience high occurrences of
anomalies may experience packet processing degradation.
#
Anomalies are reported for the following:
1. Decode: Values and conditions that are detected while decoding individual
packets. This includes invalid or unexpected values for low-level protocol
lengths as well.
2. Stream: This includes stream related events (TCP 3-way handshake issues,
unexpected sequence number, etc).
3. Application layer: These denote application layer specific conditions that
are unexpected, invalid or are unexpected given the application monitoring
state.
#
By default, anomaly logging is disabled. When anomaly logging is enabled,
application-layer anomaly reporting is enabled.
#
Choose one or both types of anomaly logging and whether to enable
logging of the packet header for packet anomalies.
types:
#decode: no
#stream: no
#applayer: yes

#packethdr: no

HTTP

HTTP transaction logging.

Config:

- http:
extended: yes # enable this for extended logging information
custom allows additional http fields to be included in eve-log
the example below adds three additional fields when uncommented

(continues on next page)

420 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

#custom: [Accept-Encoding, Accept-Language, Authorization]
set this value to one among {both, request, response} to dump all
http headers for every http request and/or response
dump-all-headers: [both, request, response]

List of custom fields:

Yaml Option HTTP Header
accept accept
accept_charset accept-charset
accept_encoding accept-encoding
accept_language accept-language
accept_datetime accept-datetime
authorization authorization
cache_control cache-control
cookie cookie
from from
max_forwards max-forwards
origin origin
pragma pragma
proxy_authorization proxy-authorization
range range
te te
via via
x_requested_with x-requested-with
dnt dnt
x_forwarded_proto x-forwarded-proto
x_authenticated_user x-authenticated-user
x_flash_version x-flash-version
accept_range accept-range
age age
allow allow
connection connection
content_encoding content-encoding
content_language content-language
content_length content-length
content_location content-location
content_md5 content-md5
content_range content-range
content_type content-type
date date
etag etags
expires expires
last_modified last-modified
link link
location location
proxy_authenticate proxy-authenticate
referer referer
refresh refresh
retry_after retry-after

continues on next page

17.1. EVE 421

Suricata User Guide, Release 8.0.0

Table 1 – continued from previous page
Yaml Option HTTP Header
server server
set_cookie set-cookie
trailer trailer
transfer_encoding transfer-encoding
upgrade upgrade
vary vary
warning warning
www_authenticate www-authenticate
true_client_ip true-client-ip
org_src_ip org-src-ip
x_bluecoat_via x-bluecoat-via

In the custom option values from both columns can be used. The HTTP Header column is case insensitive.

DNS

Note: As of Suricata 7.0 the v1 EVE DNS format has been removed.

Version 2 EVE DNS will be removed in Suricata 9.

DNS records are logged as one entry for the request, and one entry for the response.

YAML:

- dns:
#version: 3

Enable/disable this logger. Default: enabled.
#enabled: yes

Control logging of requests and responses:
- requests: enable logging of DNS queries
- responses: enable logging of DNS answers
By default both requests and responses are logged.
#requests: no
#responses: no

Format of answer logging:
- detailed: array item per answer
- grouped: answers aggregated by type
Default: all
#formats: [detailed, grouped]

Types to log, based on the query type.
Default: all.
#types: [a, aaaa, cname, mx, ns, ptr, txt]

422 Chapter 17. Output

Suricata User Guide, Release 8.0.0

TLS

TLS records are logged one record per session.

YAML:

- tls:
extended: yes # enable this for extended logging information
custom allows to control which tls fields that are included
in eve-log
#custom: [subject, issuer, serial, fingerprint, sni, version, not_before, not_after,␣

→˓certificate, chain, ja3, ja3s, ja4]

The default is to log certificate subject and issuer. If extended is enabled, then the log gets more verbose.

By using custom it is possible to select which TLS fields to log. Note that this will disable ``extended`` logging.

ARP

ARP records are logged as one entry for the request, and one entry for the response.

YAML:

- arp:
enabled: no

The logger is disabled by default since ARP can generate a large number of events.

MQTT

EVE-JSON output for MQTT consists of one object per MQTT transaction, with some common and various type-
specific fields. Two aspects can be configured:

YAML:

- mqtt:
passwords: yes # enable output of passwords
string-log-limit: 1kb # limit size of logged strings in bytes.

Can be specified in kb, mb, gb. Just a number
is parsed as bytes. Default is 1KB.
Use a value of 0 to disable limiting.
Note that the size is also bounded by
the maximum parsed message size (see
app-layer configuration)

The default is to output passwords in cleartext and not to limit the size of message payloads. Depending on the kind of
context the parser is used in (public output, frequent binary transmissions, ...) this can be configured for regular mqtt
events.

17.1. EVE 423

Suricata User Guide, Release 8.0.0

Drops

Drops are event types logged when the engine drops a packet.

Config:

- drop:
alerts: yes # log alerts that caused drops
flows: all # start or all: 'start' logs only a single drop

per flow direction. All logs each dropped pkt.
Enable logging the final action taken on a packet by the engine
(will show more information in case of a drop caused by 'reject')
verdict: yes

Stats

Zero-valued Counters

While the human-friendly stats.log output will only log out non-zeroed counters, by default EVE Stats logs output all
enabled counters, which may lead to fairly verbose logs.

To reduce log file size, one may set null-values to false. Do note that this may impact on the visibility of information
for which a stats counter as zero is relevant.

Config:

- stats:
Don't log stats counters that are zero. Default: true
#null-values: false # False will NOT log stats counters: 0

Date modifiers in filename

It is possible to use date modifiers in the eve-log filename.

outputs:
- eve-log:

filename: eve-%s.json

The example above adds epoch time to the filename. All the date modifiers from the C library should be supported.
See the man page for strftime for all supported modifiers.

Threaded file output

By default, all output is written to the named filename in the outputs section. The threaded option enables each output
thread to write to individual files. In this case, the filename will include a unique identifier.

With threaded enabled, the output will be split among many files -- and the aggregate of each file's contents must be
treated together.

outputs:
- eve-log:

filename: eve.json
threaded: on

424 Chapter 17. Output

Suricata User Guide, Release 8.0.0

This example will cause each Suricata thread to write to its own "eve.json" file. Filenames are constructed by adding
a unique identifier to the filename. For example, eve.7.json.

Rotate log file

Eve-log can be configured to rotate based on time.

outputs:
- eve-log:

filename: eve-%Y-%m-%d-%H:%M.json
rotate-interval: minute

The example above creates a new log file each minute, where the filename contains a timestamp. Other supported
rotate-interval values are hour and day.

In addition to this, it is also possible to specify the rotate-interval as a relative value. One example is to rotate the
log file each X seconds.

outputs:
- eve-log:

filename: eve-%Y-%m-%d-%H:%M:%S.json
rotate-interval: 30s

The example above rotates eve-log each 30 seconds. This could be replaced with 30m to rotate every 30 minutes, 30h
to rotate every 30 hours, 30d to rotate every 30 days, or 30w to rotate every 30 weeks.

Multiple Logger Instances

It is possible to have multiple 'EVE' instances, for example the following is valid:

outputs:
- eve-log:

enabled: yes
type: file
filename: eve-ips.json
types:
- alert
- drop

- eve-log:
enabled: yes
type: file
filename: eve-nsm.json
types:
- http
- dns
- tls

So here the alerts and drops go into 'eve-ips.json', while http, dns and tls go into 'eve-nsm.json'.

With the exception of drop, you can specify multiples of the same logger type, however, drop can only be used once.

Note: The use of independent json loggers such as alert-json-log, dns-json-log, etc. has been deprecated and will be
removed by June 2020. Please use multiple eve-log instances as documented above instead. Please see the deprecation

17.1. EVE 425

https://suricata.io/our-story/deprecation-policy/
https://suricata.io/our-story/deprecation-policy/

Suricata User Guide, Release 8.0.0

policy for more information.

File permissions

Log file permissions can be set individually for each logger. filemode can be used to control the permissions of a log
file, e.g.:

outputs:
- eve-log:

enabled: yes
filename: eve.json
filemode: 600

The example above sets the file permissions on eve.json to 600, which means that it is only readable and writable by
the owner of the file.

JSON flags

Several flags can be specified to control the JSON output in EVE:

outputs:
- eve-log:

json:
Sort object keys in the same order as they were inserted
preserve-order: yes

Make the output more compact
compact: yes

Escape all unicode characters outside the ASCII range
ensure-ascii: yes

Escape the '/' characters in string with '\/'
escape-slash: yes

All these flags are enabled by default, and can be modified per EVE instance.

Community Flow ID

Often Suricata is used in combination with other tools like Bro/Zeek. Enabling the community-id option in the eve-log
section adds a new community_id field to each output.

Example:

{
"timestamp": "2003-12-16T13:21:44.891921+0000",
"flow_id": 1332028388187153,
"pcap_cnt": 1,
"event_type": "alert",
...
"community_id": "1:LQU9qZlK+B5F3KDmev6m5PMibrg=",

(continues on next page)

426 Chapter 17. Output

https://suricata.io/our-story/deprecation-policy/
https://suricata.io/our-story/deprecation-policy/

Suricata User Guide, Release 8.0.0

(continued from previous page)

"alert": {
"action": "allowed",
"gid": 1,
"signature_id": 1,

},
}
{
"timestamp": "2003-12-16T13:21:45.037333+0000",
"flow_id": 1332028388187153,
"event_type": "flow",
"flow": {
"pkts_toserver": 5,
"pkts_toclient": 4,
"bytes_toserver": 338,
"bytes_toclient": 272,
"start": "2003-12-16T13:21:44.891921+0000",
"end": "2003-12-16T13:21:45.346457+0000",
"age": 1,
"state": "closed",
"reason": "shutdown",
"alerted": true

},
"community_id": "1:LQU9qZlK+B5F3KDmev6m5PMibrg=",

}

Options

The output can be enabled per instance of the EVE logger.

The community-id option is boolean. If set to true it is enabled. The community-id-seed option specifies a
unsigned 16 bit value that is used a seed to the hash that is calculated for the community-id output. This must be set
to the same value on all tools that output this record.

YAML:

- eve-log:
Community Flow ID
Adds a 'community_id' field to EVE records. These are meant to give
a records a predictable flow id that can be used to match records to
output of other tools such as Bro.
#
Takes a 'seed' that needs to be same across sensors and tools
to make the id less predictable.

enable/disable the community id feature.
community-id: false
Seed value for the ID output. Valid values are 0-65535.
community-id-seed: 0

17.1. EVE 427

Suricata User Guide, Release 8.0.0

Multi Tenancy

Suricata can be configured to support multiple tenants with different detection engine configurations. When these
tenants are configured and the detection engine is running then all EVE logging will also report the tenant_id field
for traffic matching a specific tenant.

17.1.2 Eve JSON Format

Example:

{
"timestamp": "2017-04-07T22:24:37.251547+0100",
"flow_id": 586497171462735,
"pcap_cnt": 53381,
"event_type": "alert",
"src_ip": "192.168.2.14",
"src_port": 50096,
"dest_ip": "209.53.113.5",
"dest_port": 80,
"proto": "TCP",
"metadata": {
"flowbits": [
"http.dottedquadhost"

]
},
"tx_id": 4,
"alert": {
"action": "allowed",
"gid": 1,
"signature_id": 2018358,
"rev": 10,
"signature": "ET HUNTING GENERIC SUSPICIOUS POST to Dotted Quad with Fake Browser 1",
"category": "Potentially Bad Traffic",
"severity": 2

},
"app_proto": "http"

}

Common Section

All the JSON log types share a common structure:

{"timestamp":"2009-11-24T21:27:09.534255","flow_id":ID_NUMBER, "event_type":"TYPE", ...
→˓tuple... ,"TYPE":{ ... type specific content ... }}

428 Chapter 17. Output

Suricata User Guide, Release 8.0.0

Field: flow_id

Correlates the network protocol, flow logs EVE data and any evidence that Suricata has logged to an alert event and
that alert's metadata, as well as to fileinfo/file transaction and anomaly logs, if available. The same correlation and
logs are produced regardless if there is an alert, for any session/flow.

The ability to correlate EVE logs belonging to a specific session/flow was introduced in 2014 (see commit
f1185d051c21).

Further below, you can see several examples of events logged by Suricata: an alert for an HTTP rule, fileinfo, http,
anomaly, and flow events, all easily correlated using the flow_id EVE field:

$ jq 'select(.flow_id==1676750115612680)' eve.json

Event type: alert:

{
"timestamp": "2023-09-18T06:13:41.532140+0000",
"flow_id": 1676750115612680,
"pcap_cnt": 130,
"event_type": "alert",
"src_ip": "142.11.240.191",
"src_port": 35361,
"dest_ip": "192.168.100.237",
"dest_port": 49175,
"proto": "TCP",
"pkt_src": "wire/pcap",
"ether": {
"src_mac": "52:54:00:36:3e:ff",
"dest_mac": "12:a9:86:6c:77:de"

},
"tx_id": 1,
"alert": {
"action": "allowed",
"gid": 1,
"signature_id": 2045001,
"rev": 1,
"signature": "ET ATTACK_RESPONSE Win32/LeftHook Stealer Browser Extension Config␣

→˓Inbound",
"category": "A Network Trojan was detected",
"severity": 1,
"metadata": {
"affected_product": [
"Windows_XP_Vista_7_8_10_Server_32_64_Bit"

],
"attack_target": [
"Client_Endpoint"

],
"created_at": [
"2023_04_17"

],
"deployment": [
"Perimeter"

],
(continues on next page)

17.1. EVE 429

https://github.com/OISF/suricata/commit/f1185d051c210ca0daacdddbe865a51af24f4ea3
https://github.com/OISF/suricata/commit/f1185d051c210ca0daacdddbe865a51af24f4ea3

Suricata User Guide, Release 8.0.0

(continued from previous page)

"former_category": [
"ATTACK_RESPONSE"

],
"signature_severity": [
"Major"

],
"updated_at": [
"2023_04_18"

]
}

},
"http": {
"hostname": "142.11.240.191",
"http_port": 35361,
"url": "/",
"http_content_type": "text/xml",
"http_method": "POST",
"protocol": "HTTP/1.1",
"status": 200,
"length": 5362

},
"files": [
{
"filename": "/",
"gaps": false,
"state": "CLOSED",
"stored": false,
"size": 5362,
"tx_id": 1

}
],
"app_proto": "http",
"direction": "to_client",
"flow": {
"pkts_toserver": 13,
"pkts_toclient": 12,
"bytes_toserver": 1616,
"bytes_toclient": 8044,
"start": "2023-09-18T06:13:33.324862+0000",
"src_ip": "192.168.100.237",
"dest_ip": "142.11.240.191",
"src_port": 49175,
"dest_port": 35361

}
}

Event type: fileinfo:

{
"timestamp": "2023-09-18T06:13:33.903924+0000",
"flow_id": 1676750115612680,
"pcap_cnt": 70,

(continues on next page)

430 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

"event_type": "fileinfo",
"src_ip": "192.168.100.237",
"src_port": 49175,
"dest_ip": "142.11.240.191",
"dest_port": 35361,
"proto": "TCP",
"pkt_src": "wire/pcap",
"ether": {
"src_mac": "12:a9:86:6c:77:de",
"dest_mac": "52:54:00:36:3e:ff"

},
"http": {
"hostname": "142.11.240.191",
"http_port": 35361,
"url": "/",
"http_content_type": "text/xml",
"http_method": "POST",
"protocol": "HTTP/1.1",
"status": 200,
"length": 212

},
"app_proto": "http",
"fileinfo": {
"filename": "/",
"gaps": false,
"state": "CLOSED",
"stored": false,
"size": 137,
"tx_id": 0

}
}

Event type: HTTP:

{
"timestamp": "2023-09-18T06:13:33.903924+0000",
"flow_id": 1676750115612680,
"pcap_cnt": 70,
"event_type": "http",
"src_ip": "192.168.100.237",
"src_port": 49175,
"dest_ip": "142.11.240.191",
"dest_port": 35361,
"proto": "TCP",
"pkt_src": "wire/pcap",
"ether": {
"src_mac": "12:a9:86:6c:77:de",
"dest_mac": "52:54:00:36:3e:ff"

},
"tx_id": 0,
"http": {
"hostname": "142.11.240.191",

(continues on next page)

17.1. EVE 431

Suricata User Guide, Release 8.0.0

(continued from previous page)

"http_port": 35361,
"url": "/",
"http_content_type": "text/xml",
"http_method": "POST",
"protocol": "HTTP/1.1",
"status": 200,
"length": 212,
"request_headers": [
{
"name": "Content-Type",
"value": "text/xml; charset=utf-8"

},
{
"name": "SOAPAction",
"value": "\"http://tempuri.org/Endpoint/CheckConnect\""

},
{
"name": "Host",
"value": "142.11.240.191:35361"

},
{
"name": "Content-Length",
"value": "137"

},
{
"name": "Expect",
"value": "100-continue"

},
{
"name": "Accept-Encoding",
"value": "gzip, deflate"

},
{
"name": "Connection",
"value": "Keep-Alive"

}
],
"response_headers": [
{
"name": "Content-Length",
"value": "212"

},
{
"name": "Content-Type",
"value": "text/xml; charset=utf-8"

},
{
"name": "Server",
"value": "Microsoft-HTTPAPI/2.0"

},
{
"name": "Date",

(continues on next page)

432 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

"value": "Mon, 18 Sep 2023 06:13:33 GMT"
}

]
}

}

Event type: anomaly:

{
"timestamp": "2023-09-18T06:13:58.882971+0000",
"flow_id": 1676750115612680,
"pcap_cnt": 2878,
"event_type": "anomaly",
"src_ip": "192.168.100.237",
"src_port": 49175,
"dest_ip": "142.11.240.191",
"dest_port": 35361,
"proto": "TCP",
"pkt_src": "wire/pcap",
"ether": {
"src_mac": "12:a9:86:6c:77:de",
"dest_mac": "52:54:00:36:3e:ff"

},
"tx_id": 3,
"anomaly": {
"app_proto": "http",
"type": "applayer",
"event": "UNABLE_TO_MATCH_RESPONSE_TO_REQUEST",
"layer": "proto_parser"

}
}

Event type: flow:

{
"timestamp": "2023-09-18T06:13:21.216460+0000",
"flow_id": 1676750115612680,
"event_type": "flow",
"src_ip": "192.168.100.237",
"src_port": 49175,
"dest_ip": "142.11.240.191",
"dest_port": 35361,
"proto": "TCP",
"app_proto": "http",
"flow": {
"pkts_toserver": 3869,
"pkts_toclient": 1523,
"bytes_toserver": 3536402,
"bytes_toclient": 94102,
"start": "2023-09-18T06:13:33.324862+0000",
"end": "2023-09-18T06:14:13.752399+0000",
"age": 40,

(continues on next page)

17.1. EVE 433

Suricata User Guide, Release 8.0.0

(continued from previous page)

"state": "closed",
"reason": "shutdown",
"alerted": true,
"exception_policy": [
{
"target": "stream_midstream",
"policy": "ignore"

}
]

},
"ether": {
"dest_macs": [
"52:54:00:36:3e:ff"

],
"src_macs": [
"12:a9:86:6c:77:de"

]
},
"tcp": {
"tcp_flags": "1e",
"tcp_flags_ts": "1e",
"tcp_flags_tc": "1a",
"syn": true,
"rst": true,
"psh": true,
"ack": true,
"state": "closed",
"ts_max_regions": 1,
"tc_max_regions": 1

}
}

Note: It is possible to have even more detailed alert records, by enabling for instance logging http-body, or alert
metadata (alert output).

Examples come from pcap found at https://app.any.run/tasks/ce7ca983-9e4b-4251-a7c3-fefa3da02ebe/.

Event types

The common part has a field "event_type" to indicate the log type.

"event_type":"TYPE"

When an application layer protocol event is detected, the common section will have an app_proto field.

"app_proto": "http"

434 Chapter 17. Output

https://app.any.run/tasks/ce7ca983-9e4b-4251-a7c3-fefa3da02ebe/

Suricata User Guide, Release 8.0.0

PCAP fields

If Suricata is processing a pcap file, additional fields are added:

"pcap_cnt": 123

pcap_cnt contains the packet number in the pcap. This can be used to look up a packet in Wireshark for example.

"pcap_filename":"/path/to/file.pcap"

pcap_filename contains the file name and location of the pcap that generated the event.

Note: the pcap fields are only available on "real" packets, and are omitted from internal "pseudo" packets such as flow
timeout packets.

Event type: Alert

This field contains data about a signature that matched, such as signature_id (sid in the rule) and the signature
(msg in the rule).

It can also contain information about Source and Target of the attack in the alert.source and alert.target field
if target keyword is used in the signature.

This event will also have the pcap_cnt field, when running in pcap mode, to indicate which packet triggered the
signature.

"alert": {
"action": "allowed",
"gid": 1,
"signature_id": 2024056,
"rev": 4,
"signature": "ET MALWARE Win32/CryptFile2 / Revenge Ransomware Checkin M3",
"category": "Malware Command and Control Activity Detected",
"severity": 1,
"metadata": {
"affected_product": [
"Windows_XP_Vista_7_8_10_Server_32_64_Bit"

],
"attack_target": [
"Client_Endpoint"

],
"created_at": [
"2017_03_15"

],
"deployment": [
"Perimeter"

],
"former_category": [
"MALWARE"

],
"malware_family": [
"CryptFile2"

(continues on next page)

17.1. EVE 435

Suricata User Guide, Release 8.0.0

(continued from previous page)

],
"performance_impact": [
"Moderate"

],
"signature_severity": [
"Major"

],
"updated_at": [
"2020_08_04"

]
}

},

Action field

Possible values: "allowed" and "blocked".

Example:

"action":"allowed"

Action is set to "allowed" unless a rule used the "drop" action and Suricata is in IPS mode, or when the rule used the
"reject" action. It is important to note that this does not necessarily indicate the final verdict for a given packet or flow,
since one packet may match on several rules.

Verdict

An object containning info on the final action that will be applied to a given packet, based on all the signatures triggered
by it and other possible events (e.g., a flow drop). For that reason, it is possible for an alert with an action allowed to
have a verdict drop, in IPS mode, for instance, if that packet was dropped due to a different alert.

• Action: alert, pass, drop (this latter only occurs in IPS mode)

• Reject-target: to_server, to_client, both (only occurs for 'reject' rules)

• Reject: an array of strings with possible reject types: tcp-reset, icmp-prohib (only occurs for 'reject' rules)

Example:

"verdict": {
"action": "drop",
"reject-target": "to_client",
"reject": "[icmp-prohib]"

}

436 Chapter 17. Output

Suricata User Guide, Release 8.0.0

Pcap Field

If pcap log capture is active in multi mode, a capture_file key will be added to the event with value being the full path
of the pcap file where the corresponding packets have been extracted.

Event type: Anomaly

Events with type "anomaly" report unexpected conditions such as truncated packets, packets with invalid values, events
that render the packet invalid for further processing or unexpected behaviors.

Networks which experience high occurrences of anomalies may experience packet processing degradation when
anomaly logging is enabled.

Fields

• "type": Either "decode", "stream" or "applayer". In rare cases, type will be "unknown". When this occurs, an
additional field named "code" will be present. Events with type "applayer" are detected by the application layer
parsers.

• "event" The name of the anomalous event. Events of type "decode" are prefixed with "decoder"; events of type
"stream" are prefixed with "stream".

• "code" If "type" is "unknown", than "code" contains the unrecognized event code. Otherwise, this field is not
present.

The following field is included when "type" has the value "applayer":

• "layer" Indicates the handling layer that detected the event. This will be "proto_parser" (protocol parser),
"proto_detect" (protocol detection) or "parser."

When packethdr is enabled, the first 32 bytes of the packet are included as a byte64-encoded blob in the main part of
record. This applies to events of "type" "packet" or "stream" only.

Examples

"anomaly": {
"type": "decode",
"event": "decoder.icmpv4.unknown_type"

}

"anomaly": {
"type": "decode",
"event": "decoder.udp.pkt_too_small"

}

"anomaly": {
"type": "decode",
"event": "decoder.ipv4.wrong_ip_version"

}

"anomaly": {
"type": "stream",
"event": "stream.pkt_invalid_timestamp"

(continues on next page)

17.1. EVE 437

Suricata User Guide, Release 8.0.0

(continued from previous page)

}

{
"timestamp": "1969-12-31T16:04:21.000000-0800",
"pcap_cnt": 9262,
"event_type": "anomaly",
"src_ip": "208.21.2.184",
"src_port": 0,
"dest_ip": "10.1.1.99",
"dest_port": 0,
"proto": "UDP",
"packet": "////////AQEBAQEBCABFAAA8xZ5AAP8R1+DQFQK4CgE=",
"packet_info": {
"linktype": 1

},
"anomaly": {
"type": "decode",
"event": "decoder.udp.pkt_too_small"

}
}

{
"timestamp": "2016-01-11T05:10:54.612110-0800",
"flow_id": 412547343494194,
"pcap_cnt": 1391293,
"event_type": "anomaly",
"src_ip": "192.168.122.149",
"src_port": 49324,
"dest_ip": "69.195.71.174",
"dest_port": 443,
"proto": "TCP",
"app_proto": "tls",
"anomaly": {
"type": "applayer",
"event": "APPLAYER_DETECT_PROTOCOL_ONLY_ONE_DIRECTION",
"layer": "proto_detect"

}
}

{
"timestamp": "2016-01-11T05:10:52.828802-0800",
"flow_id": 201217772575257,
"pcap_cnt": 1391281,
"event_type": "anomaly",
"src_ip": "192.168.122.149",
"src_port": 49323,
"dest_ip": "69.195.71.174",
"dest_port": 443,
"proto": "TCP",
"tx_id": 0,
"app_proto": "tls",
"anomaly": {

(continues on next page)

438 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

"type": "applayer",
"event": "INVALID_RECORD_TYPE",
"layer": "proto_parser"

}
}

Event type: HTTP

Fields

• "hostname": The hostname this HTTP event is attributed to

• "url": URL at the hostname that was accessed

• "http_user_agent": The user-agent of the software that was used

• "http_content_type": The type of data returned (ex: application/x-gzip)

• "cookie"

In addition to these fields, if the extended logging is enabled in the suricata.yaml file the following fields are (can) also
included:

• "length": The content size of the HTTP body

• "status": HTTP status code

• "protocol": Protocol / Version of HTTP (ex: HTTP/1.1)

• "http_method": The HTTP method (ex: GET, POST, HEAD)

• "http_refer": The referer for this action

In addition to the extended logging fields one can also choose to enable/add from more than 50 additional custom
logging HTTP fields enabled in the suricata.yaml file. The additional fields can be enabled as following:

- eve-log:
enabled: yes
type: file #file|syslog|unix_dgram|unix_stream
filename: eve.json
the following are valid when type: syslog above
#identity: "suricata"
#facility: local5
#level: Info ## possible levels: Emergency, Alert, Critical,

Error, Warning, Notice, Info, Debug
types:
- alert
- http:

extended: yes # enable this for extended logging information
custom allows additional http fields to be included in eve-log
the example below adds three additional fields when uncommented
#custom: [Accept-Encoding, Accept-Language, Authorization]
custom: [accept, accept-charset, accept-encoding, accept-language,
accept-datetime, authorization, cache-control, cookie, from,
max-forwards, origin, pragma, proxy-authorization, range, te, via,
x-requested-with, dnt, x-forwarded-proto, accept-range, age,

(continues on next page)

17.1. EVE 439

Suricata User Guide, Release 8.0.0

(continued from previous page)

allow, connection, content-encoding, content-language,
content-length, content-location, content-md5, content-range,
content-type, date, etags, expires, last-modified, link, location,
proxy-authenticate, referer, refresh, retry-after, server,
set-cookie, trailer, transfer-encoding, upgrade, vary, warning,
www-authenticate, x-flash-version, x-authenticated-user]

The benefits here of using the extended logging is to see if this action for example was a POST or perhaps if a download
of an executable actually returned any bytes.

It is also possible to dump every header for HTTP requests/responses or both via the keyword dump-all-headers.

Examples

Event with non-extended logging:

"http": {
"hostname": "www.digip.org",
"url" :"\/jansson\/releases\/jansson-2.6.tar.gz",
"http_user_agent": "<User-Agent>",
"http_content_type": "application\/x-gzip"

}

In case the hostname shows a port number, such as in case there is a header "Host: www.test.org:1337":

"http": {
"http_port": 1337,
"hostname": "www.test.org",
"url" :"\/this\/is\/test.tar.gz",
"http_user_agent": "<User-Agent>",
"http_content_type": "application\/x-gzip"

}

Event with extended logging:

"http": {
"hostname": "direkte.vg.no",
"url":".....",
"http_user_agent": "<User-Agent>",
"http_content_type": "application\/json",
"http_refer": "http:\/\/www.vg.no\/",
"http_method": "GET",
"protocol": "HTTP\/1.1",
"status":"200",
"length":310

}

Event with dump-all-headers set to "both":

"http": {
"hostname": "test.co.uk",
"url":"\/test\/file.json",

(continues on next page)

440 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

"http_user_agent": "<User-Agent>",
"http_content_type": "application\/json",
"http_refer": "http:\/\/www.test.com\/",
"http_method": "GET",
"protocol": "HTTP\/1.1",
"status":"200",
"length":310,
"request_headers": [

{
"name": "User-Agent",
"value": "Wget/1.13.4 (linux-gnu)"

},
{

"name": "Accept",
"value": "*/*"

},
],
"response_headers": [

{
"name": "Date",
"value": "Wed, 25 Mar 2015 15:40:41 GMT"

},
]

}

Event type: DNS

DNS has 2 logging style that can be used together or independently:

• "detailed": "rrname", "rrtype", "rdata" and "ttl" fields are logged for each answer

• "grouped": answers logged are aggregated by their type (A, AAAA, NS, ...)

If no format is chosen, "detailed" will be used by default.

It will be still possible to use the old DNS logging format, you can control it with "version" option in dns configuration
section.

Suricata 8.0.0 introduces version 3 of the DNS logging format. This update unifies the DNS logging style used by dns
events as well as the dns object in alert records. See DNS Logging Changes for 8.0 for more details on the changes
to logging format.

Note: Suricata 7 style DNS logging can be retained by setting the version field to 2, however this will be removed
in Suricata 9.

17.1. EVE 441

Suricata User Guide, Release 8.0.0

Fields

Outline of fields seen in the different kinds of DNS events:

• "type": Indicating DNS message type, can be "request" or "response".

• "id": Identifier field

• "version": Indicating DNS logging version in use

• "flags": Indicating DNS answer flag, in hexadecimal (ex: 8180 , please note 0x is not output)

• "qr": Indicating in case of DNS answer flag, Query/Response flag (ex: true if set)

• "aa": Indicating in case of DNS answer flag, Authoritative Answer flag (ex: true if set)

• "tc": Indicating in case of DNS answer flag, Truncation flag (ex: true if set)

• "rd": Indicating in case of DNS answer flag, Recursion Desired flag (ex: true if set)

• "ra": Indicating in case of DNS answer flag, Recursion Available flag (ex: true if set)

• "z": Indicating in case of DNS answer flag, Reserved bit (ex: true if set)

• "rcode": (ex: NOERROR)

• "ttl": Time-To-Live for this resource record

• "queries": A list of query objects

• "answers": A list of answer objects

• "authorities": A list of authority objects

• "additionals": A list of additional objects

More complex DNS record types may log additional fields for resource data:

• "soa": Section containing fields for the SOA (start of authority) record type

– "mname": Primary name server for this zone

– "rname": Authority's mailbox

– "serial": Serial version number

– "refresh": Refresh interval (seconds)

– "retry": Retry interval (seconds)

– "expire": Upper time limit until zone is no longer authoritative (seconds)

– "minimum": Minimum ttl for records in this zone (seconds)

• "sshfp": section containing fields for the SSHFP (ssh fingerprint) record type

– "fingerprint": Hex format of the fingerprint (ex: 12:34:56:78:9a:bc:de:...)

– "algo": Algorithm number (ex: 1 for RSA, 2 for DSS)

– "type": Fingerprint type (ex: 1 for SHA-1)

• "srv": section containing fields for the SRV (location of services) record type

– "target": Domain name of the target host (ex: foo.bar.baz)

– "priority": Target priority (ex: 20)

– "weight": Weight for target selection (ex: 1)

– "port": Port on this target host of this service (ex: 5060)

442 Chapter 17. Output

Suricata User Guide, Release 8.0.0

One can control which RR types are logged by using the "types" field in the suricata.yaml file. If this field is not
specified, all RR types are logged. More than 50 values can be specified with this field as shown below:

Configuration:

- eve-log:
enabled: yes
type: file #file|syslog|unix_dgram|unix_stream
filename: eve.json
the following are valid when type: syslog above
#identity: "suricata"
#facility: local5
#level: Info ## possible levels: Emergency, Alert, Critical,

Error, Warning, Notice, Info, Debug
types:
- alert
- dns:

Logging format. In 8.0 version 3 is the default. Can be
set to 2 to keep compatibility with Suricata 7.0.
version: 3

Control logging of requests and responses:
- requests: enable logging of DNS queries
- responses: enable logging of DNS answers
By default both requests and responses are logged.
requests: yes
responses: yes
DNS record types to log, based on the query type.
Default: all.
#types: [a, aaaa, cname, mx, ns, ptr, txt]
types: [a, ns, md, mf, cname, soa, mb, mg, mr, null,
wks, ptr, hinfo, minfo, mx, txt, rp, afsdb, x25, isdn,
rt, nsap, nsapptr, sig, key, px, gpos, aaaa, loc, nxt,
srv, atma, naptr, kx, cert, a6, dname, opt, apl, ds,
sshfp, ipseckey, rrsig, nsec, dnskey, dhcid, nsec3,
nsec3param, tlsa, hip, cds, cdnskey, spf, tkey,
tsig, maila, any, uri]

Examples

Example of a DNS query for the IPv4 address of "twitter.com" (resource record type 'A'):

"dns": {
"version": 3,
"type": "request",
"id": 16000,
"queries": [
{
"rrname": "twitter.com",
"rrtype": "A"

}
(continues on next page)

17.1. EVE 443

Suricata User Guide, Release 8.0.0

(continued from previous page)

]
}

Example of a DNS answer with "detailed" format:

"dns": {
"version": 3,
"type": "answer",
"id": 45444,
"flags": "8180",
"qr": true,
"rd": true,
"ra": true,
"rcode": "NOERROR",
"queries": [
{
"rrname": "www.suricata.io",
"rrtype": "A"

}
],
"answers": [
{
"rrname": "www.suricata.io",
"rrtype": "CNAME",
"ttl": 3324,
"rdata": "suricata.io"

},
{
"rrname": "suricata.io",
"rrtype": "A",
"ttl": 10,
"rdata": "192.0.78.24"

},
{
"rrname": "suricata.io",
"rrtype": "A",
"ttl": 10,
"rdata": "192.0.78.25"

}
]

}

Example of a DNS answer with "grouped" format:

"dns": {
"version": 3,
"type": "answer",
"id": 18523,
"flags": "8180",
"qr": true,
"rd": true,
"ra": true,

(continues on next page)

444 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

"rcode": "NOERROR",
"grouped": {
"A": [
"192.0.78.24",
"192.0.78.25"

],
"CNAME": [
"suricata.io"

]
}

}

Event type: FTP

Fields

• "command": The FTP command.

• "command_data": The data accompanying the command.

• "reply": The command reply, which may contain multiple lines, in array format.

• "completion_code": The 3-digit completion code. The first digit indicates whether the response is good, bad
or incomplete. This is also in array format and may contain multiple completion codes matching multiple reply
lines.

• "dynamic_port": The dynamic port established for subsequent data transfers, when applicable, with a "PORT"
or "EPRT" command.

• "mode": The type of FTP connection. Most connections are "passive" but may be "active".

• "reply_received": Indicates whether a response was matched to the command. In some non-typical cases, a
command may lack a response.

Examples

Example of regular FTP logging:

"ftp": {
"command": "RETR",
"command_data": "100KB.zip",
"reply": [
"Opening BINARY mode data connection for 100KB.zip (102400 bytes).",
"Transfer complete."

],
"completion_code": [
"150",
"226"

],

Example showing all fields:

17.1. EVE 445

Suricata User Guide, Release 8.0.0

"ftp": {
"command": "EPRT",
"command_data": "|2|2a01:e34:ee97:b130:8c3e:45ea:5ac6:e301|41813|",
"reply": [
"EPRT command successful. Consider using EPSV."

],
"completion_code": [
"200"

],
"dynamic_port": 41813,
"mode": "active",
"reply_received": "yes"

}

Event type: FTP_DATA

Fields

• "command": The FTP command associated with the event.

• "filename": The name of the involved file.

Examples

Example of FTP_DATA logging:

"ftp_data": {
"filename": "temp.txt",
"command": "RETR"

}

Event type: TLS

Fields

• "subject": The subject field from the TLS certificate

• "issuer": The issuer field from the TLS certificate

• "session_resumed": This field has the value of "true" if the TLS session was resumed via a session id. If this
field appears, "subject" and "issuer" do not appear, since a TLS certificate is not seen.

If extended logging is enabled the following fields are also included:

• "serial": The serial number of the TLS certificate

• "fingerprint": The (SHA1) fingerprint of the TLS certificate

• "sni": The Server Name Indication (SNI) extension sent by the client

• "version": The SSL/TLS version used

• "notbefore": The NotBefore field from the TLS certificate

• "notafter": The NotAfter field from the TLS certificate

446 Chapter 17. Output

Suricata User Guide, Release 8.0.0

• "ja3": The JA3 fingerprint consisting of both a JA3 hash and a JA3 string

• "ja3s": The JA3S fingerprint consisting of both a JA3 hash and a JA3 string

• "ja4": The JA4 client fingerprint for TLS

• "client_alpns": array of strings with ALPN values

• "server_alpns": array of strings with ALPN values

JA3 and JA4 must be enabled in the Suricata config file (set 'app-layer.protocols.tls.ja3-fingerprints'/'app-
layer.protocols.tls.ja4-fingerprints' to 'yes').

In addition to this, custom logging also allows the following fields:

• "certificate": The TLS certificate base64 encoded

• "chain": The entire TLS certificate chain base64 encoded

• "client_handshake": structure containing "version", "ciphers" ([u16]), "exts" ([u16]), "sig_algs" ([u16]), for
client hello supported cipher suites, extensions, and signature algorithms, respectively, in the order that they're
mentioned (ie. unsorted)

• "server_handshake": structure containing "version", "chosen cipher", "exts" ([u16]), for server hello in the order
that they're mentioned (ie. unsorted)

Examples

Example of regular TLS logging:

"tls": {
"subject": "C=US, ST=California, L=Mountain View, O=Google Inc, CN=*.google.com",
"issuerdn": "C=US, O=Google Inc, CN=Google Internet Authority G2"

}

Example of regular TLS logging for resumed sessions:

"tls": {
"session_resumed": true

}

Example of extended TLS logging:

"tls": {
"subject": "C=US, ST=California, L=Mountain View, O=Google Inc, CN=*.google.com",
"issuerdn": "C=US, O=Google Inc, CN=Google Internet Authority G2",
"serial": "0C:00:99:B7:D7:54:C9:F6:77:26:31:7E:BA:EA:7C:1C",
"fingerprint": "8f:51:12:06:a0:cc:4e:cd:e8:a3:8b:38:f8:87:59:e5:af:95:ca:cd",
"sni": "calendar.google.com",
"version": "TLS 1.2",
"notbefore": "2017-01-04T10:48:43",
"notafter": "2017-03-29T10:18:00"

}

Example of certificate logging using TLS custom logging (subject, sni, certificate):

17.1. EVE 447

Suricata User Guide, Release 8.0.0

"tls": {
"subject": "C=US, ST=California, L=Mountain View, O=Google Inc, CN=*.googleapis.com
"sni": "www.googleapis.com",
"certificate": "MIIE3TCCA8WgAwIBAgIIQPsvobRZN0gwDQYJKoZIhvcNAQELBQAwSTELMA [...]"

}

Event type: TFTP

Fields

• "packet": The operation code, can be "read" or "write" or "error"

• "file": The filename transported with the tftp protocol

• "mode": The mode field, can be "octet" or "mail" or "netascii" (or any combination of upper and lower case)

Example of TFTP logging:

"tftp": {
"packet": "write",
"file": "rfc1350.txt",
"mode": "octet"

}

Event type: KRB5

KRB5 Fields

• "cname" (string): The client PrincipalName

• "encryption" (string): Encryption used (only in AS-REP and TGS-REP)

• "error_code" (string): Error code, if request has failed

• "failed_request" (string): The request type for which the response had an error_code

• "msg_type" (string): The message type: AS-REQ, AS-REP, etc...

• "realm" (string): The server Realm

• "sname" (string): The server PrincipalName

• "ticket_encryption" (string): Encryption used for ticket

• "ticket_weak_encryption" (boolean): Whether the encryption used for ticket is a weak cipher

• "weak_encryption" (boolean): Whether the encryption used in AS-REP or TGS-REP is a weak cipher

Examples of KRB5 logging:

Pipe open:

"krb5": {
"msg_type": "KRB_TGS_REP",
"cname": "robin",
"realm": "CYLERA.LAB",
"sname": "ldap/dc01",

(continues on next page)

448 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

"encryption": "aes256-cts-hmac-sha1-96",
"weak_encryption": false,
"ticket_encryption": "aes256-cts-hmac-sha1-96",
"ticket_weak_encryption": false

}

Event type: SMB

SMB Fields

• "id" (integer): internal transaction id

• "dialect" (string): the negotiated protocol dialect, or "unknown" if missing

• "command" (string): command name. E.g. SMB2_COMMAND_CREATE or
SMB1_COMMAND_WRITE_ANDX

• "status" (string): status string. Can be both NT_STATUS or DOS_ERR and other variants

• "status_code" (string): status code as hex string

• "session_id" (integer): SMB2+ session_id. SMB1 user id.

• "tree_id" (integer): Tree ID

• "filename" (string): filename for CREATE and other commands.

• "disposition" (string): requested disposition. E.g. FILE_OPEN, FILE_CREATE and FILE_OVERWRITE. See
https://msdn.microsoft.com/en-us/library/ee442175.aspx#Appendix_A_Target_119

• "access" (string): indication of how the file was opened. "normal" or "delete on close" (field is subject to change)

• "created", "accessed", "modified", "changed" (integer): timestamps in seconds since unix epoch

• "size" (integer): size of the requested file

• "fuid" (string): SMB2+ file GUID. SMB1 FID as hex.

• "share" (string): share name.

• "share_type" (string): FILE, PIPE, PRINT or unknown.

• "client_dialects" (array of strings): list of SMB dialects the client speaks.

• "client_guid" (string): client GUID

• "server_guid" (string): server GUID

• "request.native_os" (string): SMB1 native OS string

• "request.native_lm" (string): SMB1 native Lan Manager string

• "response.native_os" (string): SMB1 native OS string

• "response.native_lm" (string): SMB1 native Lan Manager string

One can restrict which transactions are logged by using the "types" field in the suricata.yaml file. If this field is not
specified, all transactions types are logged. 9 values can be specified with this field as shown below:

Configuration:

17.1. EVE 449

https://msdn.microsoft.com/en-us/library/ee442175.aspx#Appendix_A_Target_119

Suricata User Guide, Release 8.0.0

- eve-log:
enabled: yes
type: file
filename: eve.json
types:
- smb:

types: [file, tree_connect, negotiate, dcerpc, create,
session_setup, ioctl, rename, set_file_path_info, generic]

Examples of SMB logging:

Pipe open:

"smb": {
"id": 1,
"dialect": "unknown",
"command": "SMB2_COMMAND_CREATE",
"status": "STATUS_SUCCESS",
"status_code": "0x0",
"session_id": 4398046511201,
"tree_id": 1,
"filename": "atsvc",
"disposition": "FILE_OPEN",
"access": "normal",
"created": 0,
"accessed": 0,
"modified": 0,
"changed": 0,
"size": 0,
"fuid": "0000004d-0000-0000-0005-0000ffffffff"

}

File/pipe close:

"smb": {
"id": 15,
"dialect": "2.10",
"command": "SMB2_COMMAND_CLOSE",
"status": "STATUS_SUCCESS",
"status_code": "0x0",
"session_id": 4398046511121,
"tree_id": 1,

}

Tree connect (share open):

"smb": {
"id": 3,
"dialect": "2.10",
"command": "SMB2_COMMAND_TREE_CONNECT",
"status": "STATUS_SUCCESS",
"status_code": "0x0",
"session_id": 4398046511121,
"tree_id": 1,

(continues on next page)

450 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

"share": "\\\\admin-pc\\c$",
"share_type": "FILE"

}

Dialect negotiation from SMB1 to SMB2 dialect 2.10:

"smb": {
"id": 1,
"dialect": "2.??",
"command": "SMB1_COMMAND_NEGOTIATE_PROTOCOL",
"status": "STATUS_SUCCESS",
"status_code": "0x0",
"session_id": 0,
"tree_id": 0,
"client_dialects": [
"PC NETWORK PROGRAM 1.0",
"LANMAN1.0",
"Windows for Workgroups 3.1a",
"LM1.2X002",
"LANMAN2.1",
"NT LM 0.12",
"SMB 2.002",
"SMB 2.???"

],
"server_guid": "aec6e793-2b11-4019-2d95-55453a0ad2f1"

}
"smb": {
"id": 2,
"dialect": "2.10",
"command": "SMB2_COMMAND_NEGOTIATE_PROTOCOL",
"status": "STATUS_SUCCESS",
"status_code": "0x0",
"session_id": 0,
"tree_id": 0,
"client_dialects": [
"2.02",
"2.10"

],
"client_guid": "601985d2-aad9-11e7-8494-00088bb57f27",
"server_guid": "aec6e793-2b11-4019-2d95-55453a0ad2f1"

}

SMB1 partial SMB1_COMMAND_SESSION_SETUP_ANDX:

"request": {
"native_os": "Unix",
"native_lm": "Samba 3.9.0-SVN-build-11572"

},
"response": {
"native_os": "Windows (TM) Code Name \"Longhorn\" Ultimate 5231",
"native_lm": "Windows (TM) Code Name \"Longhorn\" Ultimate 6.0"

}

17.1. EVE 451

Suricata User Guide, Release 8.0.0

DCERPC fields

• "request" (string): command. E.g. REQUEST, BIND.

• "response" (string): reply. E.g. RESPONSE, BINDACK or FAULT.

• "opnum" (integer): the opnum

• "call_id" (integer): the call id

• "frag_cnt" (integer): the number of fragments for the stub data

• "stub_data_size": total stub data size

• "interfaces" (array): list of interfaces

• "interfaces.uuid" (string): string representation of the UUID

• "interfaces.version" (string): interface version

• "interfaces.ack_result" (integer): ack result

• "interfaces.ack_reason" (integer): ack reason

DCERPC REQUEST/RESPONSE:

"smb": {
"id": 4,
"dialect": "unknown",
"command": "SMB2_COMMAND_IOCTL",
"status": "STATUS_SUCCESS",
"status_code": "0x0",
"session_id": 4398046511201,
"tree_id": 0,
"dcerpc": {
"request": "REQUEST",
"response": "RESPONSE",
"opnum": 0,
"req": {
"frag_cnt": 1,
"stub_data_size": 136

},
"res": {
"frag_cnt": 1,
"stub_data_size": 8

},
"call_id": 2

}
}

DCERPC BIND/BINDACK:

"smb": {
"id": 53,
"dialect": "2.10",
"command": "SMB2_COMMAND_WRITE",
"status": "STATUS_SUCCESS",
"status_code": "0x0",
"session_id": 35184439197745,

(continues on next page)

452 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

"tree_id": 1,
"dcerpc": {
"request": "BIND",
"response": "BINDACK",
"interfaces": [
{
"uuid": "12345778-1234-abcd-ef00-0123456789ac",
"version": "1.0",
"ack_result": 2,
"ack_reason": 0

},
{
"uuid": "12345778-1234-abcd-ef00-0123456789ac",
"version": "1.0",
"ack_result": 0,
"ack_reason": 0

},
{
"uuid": "12345778-1234-abcd-ef00-0123456789ac",
"version": "1.0",
"ack_result": 3,
"ack_reason": 0

}
],
"call_id": 2

}

NTLMSSP fields

• "domain" (string): the Windows domain.

• "user" (string): the user.

• "host" (string): the host.

• "version" (string): the client version.

Example:

"ntlmssp": {
"domain": "VNET3",
"user": "administrator",
"host": "BLU",
"version": "60.230 build 13699 rev 188"

}

More complete example:

"smb": {
"id": 3,
"dialect": "NT LM 0.12",
"command": "SMB1_COMMAND_SESSION_SETUP_ANDX",
"status": "STATUS_SUCCESS",

(continues on next page)

17.1. EVE 453

Suricata User Guide, Release 8.0.0

(continued from previous page)

"status_code": "0x0",
"session_id": 2048,
"tree_id": 0,
"ntlmssp": {
"domain": "VNET3",
"user": "administrator",
"host": "BLU",
"version": "60.230 build 13699 rev 188"

},
"request": {
"native_os": "Unix",
"native_lm": "Samba 3.9.0-SVN-build-11572"

},
"response": {
"native_os": "Windows (TM) Code Name \"Longhorn\" Ultimate 5231",
"native_lm": "Windows (TM) Code Name \"Longhorn\" Ultimate 6.0"

}
}

Kerberos fields

• "kerberos.realm" (string): the Kerberos Realm.

• "kerberos.snames (array of strings): snames.

Example:

"smb": {
"dialect": "2.10",
"command": "SMB2_COMMAND_SESSION_SETUP",
"status": "STATUS_SUCCESS",
"status_code": "0x0",
"session_id": 35184439197745,
"tree_id": 0,
"kerberos": {
"realm": "CONTOSO.LOCAL",
"snames": [
"cifs",
"DC1.contoso.local"

]
}

}

454 Chapter 17. Output

Suricata User Guide, Release 8.0.0

Event type: BITTORRENT-DHT

Common fields:

• "transaction_id" (hex): the unique id of the transaction, generated by node making the request (a.k.a the querying
node). Same transaction_id is echoed back by responding nodes.

• "client_version" (hex): identifies the type and version of the bittorrent-dht client. Some implementations may be
missing this field.

Extra fields:

Packets should also contain one of either the fields:

error

• "error": details of an error which occurred while processing the request
– "error.num" (num): the error code

– "error.msg" (string): the error message

request_type and request

• "request_type" (string): the type of the request (a.k.a. the query). Included if this packet was a request

• "request": a request (a.k.a. a query) sent by the bittorrent-dht client
– "request.id" (hex): the node ID of the node which sent the request (20 bytes in network byte order)

– "request.target" (hex): the target node ID. Used by the find_node request_type

– "request.info_hash" (hex): info hash of target torrent (20 bytes). Used by the get_peers and an-
nounce_peer request_types

– "request.token" (hex): token key received from previous get_peers request. Used by the announce_peer
request type

– "request.implied_port" (num): 0 or 1, if 1 ignore provided port and use source port of UDP packet.
Used by the announce_peer request_type

– "request.port" (num): port on which peer will download torrent. Used by the announce_peer re-
quest_type

response

• "response": a response to the client's request
– "response.id" (hex): the node ID of the node which sent the response (20 bytes in network byte order)

– "response.nodes" (array): find_node/get_peers - a list of info objects for target node or K(8) closest
good nodes in routing table

– "response.nodes6" (array): find_node/get_peers - a list of info objects for target node or K(8) closest
good nodes in routing table (ipv6)

17.1. EVE 455

Suricata User Guide, Release 8.0.0

– "response.values" (array): list of compact peer info strings. Used by the get_peers request_type

– "response.token" (hex): token key required for sender's future announce_peer query

node object

• "id" (hex): node ID

• "ip" (string): IPv4 or IPv6 address of node

• "port" (integer): node port

peer object (values array)

• "ip" (string): IPv6 or IPv6 address of node

• "port" (integer): node port

Examples:

Ping and response:

"bittorrent_dht": {
"transaction_id": "0c17",
"client_version": "4c540126",
"request_type": "ping",
"request": {
"id": "41aff1580119f074e2f537f231f12adf684f0d1f"

}
}

"bittorrent_dht": {
"transaction_id": "0c17",
"client_version": "5554b50c",
"response": {
"id": "42aeb304a0845b3b9ee089327b48967b8e87b2e2"

}
}

Find_node and response:

"bittorrent_dht": {
"transaction_id": "420f0000",
"client_version": "5554b50c",
"request_type": "find_node",
"request": {
"id": "37579bad1bad166af4329508096fae8c553c6cf4",
"target": "37579bad1bad166af4329508096fae8c553c6cf4"

}
}

Get_peers and response with values param:

456 Chapter 17. Output

Suricata User Guide, Release 8.0.0

"bittorrent_dht": {
"transaction_id": "05e4",
"client_version": "4c540126",
"request_type": "get_peers",
"request": {
"id": "41aff1580119f074e2f537f231f12adf684f0d1f",
"info_hash": "19a6fcfcba6cc2c6d371eb754074d095adb5d291"

}
}
"bittorrent_dht": {
"transaction_id": "05e4",
"client_version": "555462d6",
"response": {
"id": "19a6f98be177e32e7b5bd77276d529f03e3ba8a9",
"values": [
{
"ip": "45.238.190.2",
"port": 6881

},
{
"ip": "185.70.52.245",
"port": 51215

},
{
"ip": "45.21.238.247",
"port": 55909

},
{
"ip": "62.28.248.195",
"port": 6881

}
],
"token": "c17094641ca8844d711120baecb2b5cf25435614"

}
}

Get_peers and response with nodes param:

"bittorrent_dht": {
"transaction_id": "44e6",
"client_version": "4c540126",
"request_type": "get_peers",
"request": {
"id": "41aff1580119f074e2f537f231f12adf684f0d1f",
"info_hash": "19a6fcfcba6cc2c6d371eb754074d095adb5d291"

}
}

"bittorrent_dht": {
"transaction_id": "44e6",
"response": {
"id": "19a7c8f4f6d14d9f87a67671720633e551f30cb7",
"values": [

(continues on next page)

17.1. EVE 457

Suricata User Guide, Release 8.0.0

(continued from previous page)

{
"ip": "45.22.252.153",
"port": 36798

},
{
"ip": "94.41.206.37",
"port": 30850

},
{
"ip": "84.228.120.50",
"port": 6881

},
{
"ip": "178.81.206.84",
"port": 12373

},
{
"ip": "110.188.93.186",
"port": 22223

}
],
"token": "c897ee539e02a54595b4d7cfb6319ad48e71b282"

}
}

Announce_peer and response:

"bittorrent_dht": {
"transaction_id": "aa",
"request_type": "announce_peer",
"request": {
"id": "abcdefghij0123456789",
"info_hash": "mnopqrstuvwxyz123456",
"token": "aoeusnth",
"port": 6881

}
}
"bittorrent_dht": {
"transaction_id": "aa",
"response": {
"id": "mnopqrstuvwxyz123456"

}
}

Announce_peer with implied_port param and response:

"bittorrent_dht": {
"transaction_id": "7fe9",
"client_version": "4c540126",
"request_type": "announce_peer",
"request": {
"id": "51bc83f53417a62a40e8a48170cad369a13fef3c",

(continues on next page)

458 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

"info_hash": "19a6fcfcba6cc2c6d371eb754074d095adb5d291",
"token": "cacbef35",
"implied_port": 1,
"port": 54892

}
}

"bittorrent_dht": {
"transaction_id": "7fe9",
"client_version": "4c54012f",
"response": {
"id": "19a66dece45e0288ab75d141e0255738a1ce8508"

}
}

Sample error responses:

"bittorrent_dht": {
"transaction_id": "aa",
"error": {
"num": 201,
"msg": "A Generic Error Ocurred"

}
}
"bittorrent_dht": {
"transaction_id": "aa",
"error": {
"num": 203,
"msg": "Malformed Packet"

}
}

Event type: SSH

Fields

• "proto_version": The protocol version transported with the ssh protocol (1.x, 2.x)

• "software_version": The software version used by end user

• "hassh.hash": MD5 of hassh algorithms of client or server

• "hassh.string": hassh algorithms of client or server

Hassh must be enabled in the Suricata config file (set 'app-layer.protocols.ssh.hassh' to 'yes').

Example of SSH logging:

"ssh": {
"client": {

"proto_version": "2.0",
"software_version": "OpenSSH_6.7",
"hassh": {

(continues on next page)

17.1. EVE 459

Suricata User Guide, Release 8.0.0

(continued from previous page)

"hash": "ec7378c1a92f5a8dde7e8b7a1ddf33d1",
"string": "curve25519-sha256,diffie-hellman-group14-sha256,diffie-hellman-

→˓group14-sha1,ext-info-c",
}

},
"server": {

"proto_version": "2.0",
"software_version": "OpenSSH_6.7",
"hassh": {

"hash": "ec7378c1a92f5a8dde7e8b7a1ddf33d1",
"string": "curve25519-sha256,curve25519-sha256@libssh.org,ecdh-sha2-nistp256",

}
}

}

Event type: Flow

Fields

• "pkts_toserver": total number of packets to server, include bypassed packets

• "pkts_toclient": total number of packets to client

• "bytes_toserver": total bytes count to server

• "bytes_toclient": total bytes count to client

• "bypassed.pkts_toserver": number of bypassed packets to server

• "bypassed.pkts_toclient": number of bypassed packets to client

• "bypassed.bytes_toserver": bypassed bytes count to server

• "bypassed.bytes_toclient": bypassed bytes count to client

• "start": date of start of the flow

• "end": date of end of flow (last seen packet)

• "age": duration of the flow

• "bypass": if the flow has been bypassed, it is set to "local" (internal bypass) or "capture"

• "state": display state of the flow (include "new", "established", "closed", "bypassed")

• "reason": mechanism that did trigger the end of the flow (include "timeout", "forced" and "shutdown")

• "alerted": "true" or "false" depending if an alert has been seen on flow

• "action": "pass" or "drop" depending if flow was PASS'ed or DROP'ed (no present if none)

• "tx_cnt": number of transactions seen in the flow (only present if flow has an application layer)

• "exception_policy": array consisting of exception policies that have been triggered by the flow:

– "target": if an exception policy was triggered, what setting exceptions led to this (cf. Exception Policy -
Specific Settings).

– "policy": if an exception policy was triggered, what policy was applied (to the flow or to any packet(s) from
it).

460 Chapter 17. Output

Suricata User Guide, Release 8.0.0

Example

"flow": {
"pkts_toserver": 23,
"pkts_toclient": 21,
"bytes_toserver": 4884,
"bytes_toclient": 7392,
"bypassed": {
"pkts_toserver": 10,
"pkts_toclient": 8,
"bytes_toserver": 1305,
"bytes_toclient": 984

},
"start": "2019-05-28T23:32:29.025256+0200",
"end": "2019-05-28T23:35:28.071281+0200",
"age": 179,
"bypass": "capture",
"state": "bypassed",
"reason": "timeout",
"alerted": false,
"action": "pass",
"exception_policy": [
{
"target": "stream_midstream",
"policy": "pass_flow"

}
]

}

Event type: RDP

Initial negotiations between RDP client and server are stored as transactions and logged.

Each RDP record contains a per-flow incrementing "tx_id" field.

The "event_type" field indicates an RDP event subtype. Possible values:

• "initial_request"

• "initial_response"

• "connect_request"

• "connect_response"

• "tls_handshake"

17.1. EVE 461

Suricata User Guide, Release 8.0.0

RDP type: Initial Request

The optional "cookie" field is a string identifier the RDP client has chosen to provide.

The optional "flags" field is a list of client directives. Possible values:

• "restricted_admin_mode_required"

• "redirected_authentication_mode_required"

• "correlation_info_present"

RDP type: Initial Response

In the event of a standard initial response:

The "protocol" field is the selected protocol. Possible values:

• "rdp"

• "ssl"

• "hybrid"

• "rds_tls"

• "hybrid_ex"

The optional "flags" field is a list of support server modes. Possible values:

• "extended_client_data"

• "dynvc_gfx"

• "restricted_admin"

• "redirected_authentication"

Alternatively, in the event of an error-indicating initial response:

There will be no "protocol" or "flags" fields.

The "error_code" field will contain the numeric code provided by the RDP server.

The "reason" field will contain a text summary of this code. Possible values:

• "ssl required by server" (error code 0x1)

• "ssl not allowed by server" (error code 0x2)

• "ssl cert not on server" (error code 0x3)

• "inconsistent flags" (error code 0x4)

• "hybrid required by server" (error code 0x5)

• "ssl with user auth required by server" (error code 0x6)

462 Chapter 17. Output

Suricata User Guide, Release 8.0.0

RDP type: Connect Request

The optional "channel" field is a list of requested data channel names.

Common channels:

• "rdpdr" (device redirection)

• "cliprdr" (shared clipboard)

• "rdpsnd" (sound)

The optional "client" field is a sub-object that may contain the following:

• "version": RDP protocol version. Possible values are "v4", "v5", "v10.0", "v10.1", "v10.2", "v10.3", "v10.4",
"v10.5", "v10.6", "v10.7", "unknown".

• "desktop_width": Numeric desktop width value.

• "desktop_height": Numeric desktop height value.

• "color_depth": Numeric color depth. Possible values are 4, 8, 15, 16, 24.

• "keyboard_layout": Locale identifier name, e.g., "en-US".

• "build": OS and SP level, e.g., "Windows XP", "Windows 7 SP1".

• "client_name": Client computer name.

• "keyboard_type": Possible values are "xt", "ico", "at", "enhanced", "1050", "9140", "jp".

• "keyboard_subtype": Numeric code for keyboard.

• "function_keys": Number of function keys on client keyboard.

• "ime": Input method editor (IME) file name.

• "product_id": Product id string.

• "serial_number": Numeric value.

• "capabilities": List of any of the following: "support_errinfo_pdf", "want_32bpp_session", "sup-
port_statusinfo_pdu", "strong_asymmetric_keys", "valid_connection_type", "support_monitor_layout_pdu",
"support_netchar_autodetect", "support_dynvc_gfx_protocol", "support_dynamic_time_zone", "sup-
port_heartbeat_pdu".

• "id": Client product id string.

• "connection_hint": Possible values are "modem", "low_broadband", "satellite", "high_broadband", "wan", "lan",
"autodetect".

• "physical_width": Numeric physical width of display.

• "physical_height": Numeric physical height of display.

• "desktop_orientation": Numeric angle of orientation.

• "scale_factor": Numeric scale factor of desktop.

• "device_scale_factor": Numeric scale factor of display.

17.1. EVE 463

Suricata User Guide, Release 8.0.0

RDP type: Connect Response

With this event, the initial RDP negotiation is complete in terms of tracking and logging.

RDP type: TLS Handshake

With this event, the initial RDP negotiation is complete in terms of tracking and logging.

The session will use TLS encryption.

The "x509_serials" field is a list of observed certificate serial numbers, e.g., "16ed2aa0495f259d4f5d99edada570d1".

Examples

RDP logging:

"rdp": {
"tx_id": 0,
"event_type": "initial_request",
"cookie": "A70067"

}

"rdp": {
"tx_id": 1,
"event_type": "initial_response"

}

"rdp": {
"tx_id": 2,
"event_type": "connect_request",
"client": {
"version": "v5",
"desktop_width": 1152,
"desktop_height": 864,
"color_depth": 15,
"keyboard_layout": "en-US",
"build": "Windows XP",
"client_name": "ISD2-KM84178",
"keyboard_type": "enhanced",
"function_keys": 12,
"product_id": 1,
"capabilities": [
"support_errinfo_pdf"

],
"id": "55274-OEM-0011903-00107"

},
"channels": [
"rdpdr",
"cliprdr",
"rdpsnd"

]
}

(continues on next page)

464 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

"rdp": {
"tx_id": 3,
"event_type": "connect_response"

}

RDP logging, with transition to TLS:

"rdp": {
"tx_id": 0,
"event_type": "initial_request",
"cookie": "AWAKECODI"

}

"rdp": {
"tx_id": 1,
"event_type": "initial_response",
"server_supports": [
"extended_client_data"

],
"protocol": "hybrid"

}

"rdp": {
"tx_id": 2,
"event_type": "tls_handshake",
"x509_serials": [
"16ed2aa0495f259d4f5d99edada570d1"

]
}

Event type: RFB

Fields

• "server_protocol_version.major", "server_protocol_version.minor": The RFB protocol version offered by the
server.

• "client_protocol_version.major", "client_protocol_version.minor": The RFB protocol version agreed by the
client.

• "authentication.security_type": Security type agreed upon in the logged transaction, e.g. 2 is VNC auth.

• "authentication.vnc.challenge", "authentication.vnc.response": Only available when security type 2 is used. Con-
tains the challenge and response byte buffers exchanged by the server and client as hex strings.

• "authentication.security_result": Result of the authentication process (OK, FAIL or TOOMANY).

• "screen_shared": Boolean value describing whether the client requested screen sharing.

• "framebuffer": Contains metadata about the initial screen setup process. Only available when the handshake
completed this far.

• "framebuffer.width", "framebuffer.height": Screen size as offered by the server.

17.1. EVE 465

Suricata User Guide, Release 8.0.0

• "framebuffer.name": Desktop name as advertised by the server.

• "framebuffer.pixel_format": Pixel representation information, such as color depth. See RFC6143 (https://tools.
ietf.org/html/rfc6143) for details.

Examples

Example of RFB logging, with full VNC style authentication parameters:

"rfb": {
"server_protocol_version": {
"major": "003",
"minor": "007"

},
"client_protocol_version": {
"major": "003",
"minor": "007"

},
"authentication": {
"security_type": 2,
"vnc": {
"challenge": "0805b790b58e967f2b350a0c99de3881",
"response": "aecb26faeaaa62179636a5934bac1078"

},
"security_result": "OK"

},
"screen_shared": false,
"framebuffer": {
"width": 1280,
"height": 800,
"name": "foobar@localhost.localdomain",
"pixel_format": {
"bits_per_pixel": 32,
"depth": 24,
"big_endian": false,
"true_color": true,
"red_max": 255,
"green_max": 255,
"blue_max": 255,
"red_shift": 16,
"green_shift": 8,
"blue_shift": 0

}
}

466 Chapter 17. Output

https://tools.ietf.org/html/rfc6143
https://tools.ietf.org/html/rfc6143

Suricata User Guide, Release 8.0.0

Event type: MQTT

EVE-JSON output for MQTT consists of one object per MQTT transaction, with some common and various type-
specific fields.

Transactions

A single MQTT communication can consist of multiple messages that need to be exchanged between broker and client.
For example, some actions at higher QoS levels (> 0) usually involve a combination of requests and acknowledgement
messages that are linked by a common identifier:

• CONNECT followed by CONNACK

• PUBLISH followed by PUBACK (QoS 1) or PUBREC/PUBREL/PUBCOMP (QoS 2)

• SUBSCRIBE followed by SUBACK

• UNSUBSCRIBE followed by UNSUBACK

The MQTT parser merges individual messages into one EVE output item if they belong to one transaction. In such
cases, the source and destination information (IP/port) reflect the direction of the initial request, but contain messages
from both sides.

Example for a PUBLISH at QoS 2:

{
"timestamp": "2020-05-19T18:00:39.016985+0200",
"flow_id": 1454127794305760,
"pcap_cnt": 65,
"event_type": "mqtt",
"src_ip": "0000:0000:0000:0000:0000:0000:0000:0001",
"src_port": 60105,
"dest_ip": "0000:0000:0000:0000:0000:0000:0000:0001",
"dest_port": 1883,
"proto": "TCP",
"mqtt": {
"publish": {
"qos": 2,
"retain": false,
"dup": false,
"topic": "house/bulbs/bulb1",
"message_id": 3,
"message": "OFF"

},
"pubrec": {
"qos": 0,
"retain": false,
"dup": false,
"message_id": 3

},
"pubrel": {
"qos": 1,
"retain": false,
"dup": false,
"message_id": 3

(continues on next page)

17.1. EVE 467

Suricata User Guide, Release 8.0.0

(continued from previous page)

},
"pubcomp": {
"qos": 0,
"retain": false,
"dup": false,
"message_id": 3

}
}

}

Note that some message types (aka control packet types), such as PINGREQ and PINGRESP, have no type-specific data,
nor do they have information that facilitate grouping into transactions. These will be logged as single items and only
contain the common fields listed below.

Common fields

Common fields from the MQTT fixed header:

• "*.qos": Quality of service level for the message, integer between 0 and 2.

• "*.retain": Boolean value of the MQTT 'retain' flag.

• "*.dup": Boolean value of the MQTT 'dup' (duplicate) flag.

MQTT CONNECT fields

• "connect.protocol_string": Protocol string as defined in the spec, e.g. MQTT (MQTT 3.1.1 and later) or MQIsdp
(MQTT 3.1).

• "connect.protocol_version": Protocol version as defined in the specification:

– protocol version 3: MQTT 3.1

– protocol version 4: MQTT 3.1.1

– protocol version 5: MQTT 5.0

• "connect.flags.username", "connect.flags.password": Set to true if credentials are submitted with the connect
request.

• "connect.flags.will": Set to true if a will is set.

• "connect.flags.will_retain": Set to true if the will is to be retained on the broker.

• "connect.will.clean_session": Set to true if the connection is to made with a clean session.

• "connect.client_id": Client ID string submitted my the connecting client.

• "connect.username", "connect.password": User/password authentication credentials submitted with the connect
request. Passwords are only logged when the corresponding configuration setting is enabled (mqtt.passwords:
yes).

• "connect.will.topic": Topic to publish the will message to.

• "connect.will.message": Message to be published on connection loss.

• "connect.will.properties": (Optional, MQTT 5.0) Will properties set on this request. See 3.1.3.2 in the spec for
more information on will properties.

468 Chapter 17. Output

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901060

Suricata User Guide, Release 8.0.0

• "connect.properties": (Optional, MQTT 5.0) CONNECT properties set on this request. See 3.1.2.11 in the spec
for more information on CONNECT properties.

Example of MQTT CONNECT logging:

"connect": {
"qos": 0,
"retain": false,
"dup": false,
"protocol_string": "MQTT",
"protocol_version": 5,
"flags": {
"username": true,
"password": true,
"will_retain": false,
"will": true,
"clean_session": true

},
"client_id": "client",
"username": "user",
"password": "pass",
"will": {
"topic": "willtopic",
"message": "willmessage",
"properties": {
"content_type": "mywilltype",
"correlation_data": "3c32aa4313b3e",
"message_expiry_interval": 133,
"payload_format_indicator": 144,
"response_topic": "response_topic1",
"userprop": "uservalue",
"will_delay_interval": 200

}
},
"properties": {
"maximum_packet_size": 11111,
"receive_maximum": 222,
"session_expiry_interval": 555,
"topic_alias_maximum": 666,
"userprop1": "userval1",
"userprop2": "userval2"

}
}

17.1. EVE 469

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901046

Suricata User Guide, Release 8.0.0

MQTT CONNACK fields

• "connack.session_present": Set to true if a session is continued on connection.

• "connack.return_code": Return code/reason code for this reply. See 3.2.2.2 in the spec for more information on
these codes.

• "connect.properties": (Optional, MQTT 5.0) CONNACK properties set on this request. See 3.2.2.3 in the spec
for more information on CONNACK properties.

Example of MQTT CONNACK logging:

"connack": {
"qos": 0,
"retain": false,
"dup": false,
"session_present": false,
"return_code": 0,
"properties": {
"topic_alias_maximum": 10

}
}

MQTT PUBLISH fields

• "publish.topic": Topic this message is published to.

• "publish.message_id": (Only present if QOS level > 0) Message ID for this publication.

• "publish.message": Message to be published.

• "publish.properties": (Optional, MQTT 5.0) PUBLISH properties set on this request. See 3.3.2.3 in the spec for
more information on PUBLISH properties.

Example of MQTT PUBLISH logging:

"publish": {
"qos": 1,
"retain": false,
"dup": false,
"topic": "topic",
"message_id": 1,
"message": "baa baa sheep",
"properties": {
"content_type": "mytype",
"correlation_data": "3c32aa4313b3e",
"message_expiry_interval": 77,
"payload_format_indicator": 88,
"response_topic": "response_topic1",
"topic_alias": 5,
"userprop": "userval"

}
}

470 Chapter 17. Output

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901079
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901080
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901109

Suricata User Guide, Release 8.0.0

MQTT PUBACK/PUBREL/PUBREC/PUBCOMP fields

• "[puback|pubrel|pubrec|pubcomp].message_id": Original message ID this message refers to.

• "[puback|pubrel|pubrec|pubcomp].reason_code": Return code/reason code for this reply. See the spec for more
information on these codes.

• "[puback|pubrel|pubrec|pubcomp].properties": (Optional, MQTT 5.0) Properties set on this request. See the spec
for more information on these properties.

Example of MQTT PUBACK/PUBREL/PUBREC/PUBCOMP logging:

"puback": {
"qos": 0,
"retain": false,
"dup": false,
"message_id": 1,
"reason_code": 16

}

MQTT SUBSCRIBE fields

• "subscribe.message_id": (Only present if QOS level > 0) Message ID for this subscription.

• "subscribe.topics": Array of pairs describing the subscribed topics:

– "subscribe.topics[].topic": Topic to subscribe to.

– "subscribe.topics[].qos": QOS level to apply for when subscribing.

• "subscribe.properties": (Optional, MQTT 5.0) SUBSCRIBE properties set on this request. See 3.8.2.1 in the
spec for more information on SUBSCRIBE properties.

Example of MQTT SUBSCRIBE logging:

"subscribe": {
"qos": 1,
"retain": false,
"dup": false,
"message_id": 1,
"topics": [
{
"topic": "topicX",
"qos": 0

},
{
"topic": "topicY",
"qos": 0

}
]

}

17.1. EVE 471

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901164
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901164

Suricata User Guide, Release 8.0.0

MQTT SUBACK fields

• "suback.message_id": Original message ID this message refers to.

• "suback.qos_granted": Array of QOS levels granted for the subscribed topics, in the order of the original request.

• "suback.properties": (Optional, MQTT 5.0) SUBACK properties set on this request. See 3.9.2.1 in the spec for
more information on SUBACK properties.

Example of MQTT SUBACK logging:

"suback": {
"qos": 0,
"retain": false,
"dup": false,
"message_id": 1,
"qos_granted": [
0,
0

]
}

MQTT UNSUBSCRIBE fields

• "unsubscribe.message_id": (Only present if QOS level > 0) Message ID for this unsubscribe action.

• "unsubscribe.topics": Array of topics to be unsubscribed from.

• "unsubscribe.properties": (Optional, MQTT 5.0) UNSUBSCRIBE properties set on this request. See 3.10.2.1
in the spec for more information on UNSUBSCRIBE properties.

Example of MQTT UNSUBSCRIBE logging:

"unsubscribe": {
"qos": 1,
"retain": false,
"dup": false,
"message_id": 1,
"topics": [
"topicX",
"topicY"

]
}

MQTT UNSUBACK fields

• "unsuback.message_id": Original message ID this message refers to.

Example of MQTT UNSUBACK logging:

"unsuback": {
"qos": 0,
"retain": false,
"dup": false,

(continues on next page)

472 Chapter 17. Output

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901174
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901182
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901182

Suricata User Guide, Release 8.0.0

(continued from previous page)

"message_id": 1
}

MQTT AUTH fields (MQTT 5.0)

• "auth.reason_code": Return code/reason code for this message. See 3.15.2.1 in the spec for more information on
these codes.

• "auth.properties": (Optional, MQTT 5.0) Properties set on this request. See 3.15.2.2 in the spec for more infor-
mation on these properties.

Example of MQTT AUTH logging:

"auth": {
"qos": 0,
"retain": false,
"dup": false,
"reason_code": 16

}

MQTT DISCONNECT fields

• "auth.reason_code": (Optional) Return code/reason code for this message. See 3.14.2.1 in the spec for more
information on these codes.

• "auth.properties": (Optional, MQTT 5.0) Properties set on this request. See 3.14.2.2 in the spec for more infor-
mation on DISCONNECT properties.

Example of MQTT DISCONNECT logging:

"disconnect": {
"qos": 0,
"retain": false,
"dup": false,
"reason_code": 4,
"properties": {
"session_expiry_interval": 122,

}
}

Truncated MQTT data

Messages exceeding the maximum message length limit (config setting app-layer.protocols.mqtt.
max-msg-length) will not be parsed entirely to reduce the danger of denial of service issues. In such cases,
only reduced metadata will be included in the EVE-JSON output. Furthermore, since no message ID is parsed, such
messages can not be placed into transactions, hence, they will always appear as a single transaction.

These truncated events will -- besides basic communication metadata -- only contain the following fields:

• "truncated": Set to true if the entry is truncated.

• "skipped_length": Size of the original message.

17.1. EVE 473

https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901220
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901221
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901208
https://docs.oasis-open.org/mqtt/mqtt/v5.0/os/mqtt-v5.0-os.html#_Toc3901209

Suricata User Guide, Release 8.0.0

Example of a truncated MQTT PUBLISH message (with 10000 being the maximum length):

{
"timestamp": "2020-06-23T16:25:48.729785+0200",
"flow_id": 1872904524326406,
"pcap_cnt": 107,
"event_type": "mqtt",
"src_ip": "0000:0000:0000:0000:0000:0000:0000:0001",
"src_port": 53335,
"dest_ip": "0000:0000:0000:0000:0000:0000:0000:0001",
"dest_port": 1883,
"proto": "TCP",
"mqtt": {
"publish": {
"qos": 0,
"retain": false,
"dup": false,
"truncated": true,
"skipped_length": 100011

}

Event type: HTTP2

Fields

There are the two fields "request" and "response" which can each contain the same set of fields : * "settings": a list of
settings with "name" and "value" * "headers": a list of headers with either "name" and "value", or "table_size_update",
or "error" if any * "error_code": the error code from GOAWAY or RST_STREAM, which can be "NO_ERROR" *
"priority": the stream priority.

Examples

Example of HTTP2 logging, of a settings frame:

"http2": {
"request": {
"settings": [
{
"settings_id": "SETTINGSMAXCONCURRENTSTREAMS",
"settings_value": 100

},
{
"settings_id": "SETTINGSINITIALWINDOWSIZE",
"settings_value": 65535

}
]

},
"response": {}

}

Example of HTTP2 logging, of a request and response:

474 Chapter 17. Output

Suricata User Guide, Release 8.0.0

"http2": {
"request": {
"headers": [
{
"name": ":authority",
"value": "localhost:3000"

},
{
"name": ":method",
"value": "GET"

},
{
"name": ":path",
"value": "/doc/manual/html/index.html"

},
{
"name": ":scheme",
"value": "http"

},
{
"name": "accept",
"value": "*/*"

},
{
"name": "accept-encoding",
"value": "gzip, deflate"

},
{
"name": "user-agent",
"value": "nghttp2/0.5.2-DEV"

}
]

},
"response": {
"headers": [
{
"name": ":status",
"value": "200"

},
{
"name": "server",
"value": "nghttpd nghttp2/0.5.2-DEV"

},
{
"name": "content-length",
"value": "22617"

},
{
"name": "cache-control",
"value": "max-age=3600"

},
{
"name": "date",

(continues on next page)

17.1. EVE 475

Suricata User Guide, Release 8.0.0

(continued from previous page)

"value": "Sat, 02 Aug 2014 10:50:25 GMT"
},
{
"name": "last-modified",
"value": "Sat, 02 Aug 2014 07:58:59 GMT"

}
]

}
}

Event type: PGSQL

PGSQL eve-logs reflect the bidirectional nature of the protocol transactions. Each PGSQL event lists at most one
"Request" message field and one or more "Response" messages.

The PGSQL parser merges individual messages into one EVE output item if they belong to the same transaction. In such
cases, the source and destination information (IP/port) reflect the direction of the initial request, but contain messages
from both sides.

Example of pgsql event for a SimpleQuery transaction complete with request with a SELECT statement and its re-
sponse:

{
"timestamp": "2021-11-24T16:56:24.403417+0000",
"flow_id": 1960113262002448,
"pcap_cnt": 780,
"event_type": "pgsql",
"src_ip": "172.18.0.1",
"src_port": 54408,
"dest_ip": "172.18.0.2",
"dest_port": 5432,
"proto": "TCP",
"pgsql": {
"tx_id": 4,
"request": {
"simple_query": "select * from rule limit 5000;"

},
"response": {
"field_count": 7,
"data_rows": 5000,
"data_size": 3035751,
"command_completed": "SELECT 5000"

}
}

}

While on the wire PGSQL messages follow basically two types (startup messages and regular messages), those may
have different subfields and/or meanings, based on the message type. Messages are logged based on their type and
relevant fields.

We list a few possible message types and what they mean in Suricata. For more details on message types and formats
as well as what each message and field mean for PGSQL, check PostgreSQL's official documentation.

476 Chapter 17. Output

https://www.postgresql.org/docs/14/protocol-message-formats.html

Suricata User Guide, Release 8.0.0

Fields

• "tx_id": internal transaction id.

• "request": each PGSQL transaction may have up to one request message. The possible messages will be described
in another section.

• "response": even when there are several "Response" messages, there is one response field that summarizes all
responses for that transaction. The possible messages will be described in another section.

Request Messages

Requests are sent by the frontend (client), which would be the source of a pgsql flow. Some of the possible request
messages are:

• "startup_message": message sent to start a new PostgreSQL connection

• "password": if password output for PGSQL is enabled in suricata.yaml, carries the password sent during Au-
thentication phase

• "password_redacted": set to true in case there is a password message, but its logging is disabled

• "simple_query": issued SQL command during simple query subprotocol. PostgreSQL identifies specific sets of
commands that change the set of expected messages to be exchanged as subprotocols.

• "message": "cancel_request": sent after a query, when the frontend attempts to cancel said query. This
message is sent over a different port, thus bring shown as a different flow. It has no direct answer from the
backend, but if successful will lead to an ErrorResponse in the transaction where the query was sent.

• "message": requests which do not have meaningful payloads are logged like this, where the field value is the
message type

• "copy_data_in": object. Part of the CopyIn subprotocol, consolidated data resulting from a Copy From Stdin
query

• "copy_done": string. Similar to command_completed but sent after the frontend finishes sending a batch of
CopyData messages

There are several different authentication messages possible, based on selected authentication method. (e.g. the SASL
authentication will have a set of authentication messages different from when md5 authentication is chosen).

Response Messages

Responses are sent by the backend (server), which would be the destination of a pgsql flow. Some of the possible
request messages are:

• "authentication_sasl_final": final SCRAM server-final-message, as explained at https://www.postgresql.
org/docs/14/sasl-authentication.html#SASL-SCRAM-SHA-256

• "message": Backend responses which do not have meaningful payloads are logged like this, where the field value
is the message type

• "error_response"

• "notice_response"

• "notification_response"

• "authentication_md5_password": a string with the md5 salt value

• "parameter_status": logged as an array

17.1. EVE 477

https://www.postgresql.org/docs/14/sasl-authentication.html#SASL-SCRAM-SHA-256
https://www.postgresql.org/docs/14/sasl-authentication.html#SASL-SCRAM-SHA-256

Suricata User Guide, Release 8.0.0

• "backend_key_data"

• "data_rows": integer. When one or many DataRow messages are parsed, the total returned rows

• "data_size": in bytes. When one or many DataRowmessages are parsed, the total size in bytes of the data returned

• "command_completed": string. Informs the command just completed by the backend

• "copy_in_response": object. Indicates the beginning of a CopyIn mode, shows how many columns will be copied
from STDIN (columns field)

• "copy_out_response": object. Indicates the beginning of a CopyTo mode, shows how many columns will be
copied to STDOUT (columns field)

• "copy_data_out": object. Consolidated data on the CopyData sent by the backend in a CopyOut transaction

• "copy_done": string. Similar to command_completed but sent after the backend finishes sending a batch of
CopyData messages

• "ssl_accepted": bool. With this event, the initial PGSQL SSL Handshake negotiation is complete in terms of
tracking and logging. The session will be upgraded to use TLS encryption

Examples

The two pgsql events in this example represent a rejected SSL handshake and a following connection request where
the authentication method indicated by the backend was md5:

{
"timestamp": "2021-11-24T16:56:19.435242+0000",
"flow_id": 1960113262002448,
"pcap_cnt": 21,
"event_type": "pgsql",
"src_ip": "172.18.0.1",
"src_port": 54408,
"dest_ip": "172.18.0.2",
"dest_port": 5432,
"proto": "TCP",
"pgsql": {
"tx_id": 1,
"request": {
"message": "SSL Request"

},
"response": {
"accepted": false

}
}

}
{
"timestamp": "2021-11-24T16:56:19.436228+0000",
"flow_id": 1960113262002448,
"pcap_cnt": 25,
"event_type": "pgsql",
"src_ip": "172.18.0.1",
"src_port": 54408,
"dest_ip": "172.18.0.2",
"dest_port": 5432,

(continues on next page)

478 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

"proto": "TCP",
"pgsql": {
"tx_id": 2,
"request": {
"protocol_version": "3.0",
"startup_parameters": {
"user": "rules",
"database": "rules",
"optional_parameters": [
{
"application_name": "psql"

},
{
"client_encoding": "UTF8"

}
]

}
},
"response": {
"authentication_md5_password": "Z\\xdc\\xfdf"

}
}

}

AuthenticationOk: a response indicating that the connection was successfully established.:

{
"pgsql": {
"tx_id": 3,
"response": {
"message": "authentication_ok",
"parameter_status": [
{
"application_name": "psql"

},
{
"client_encoding": "UTF8"

},
{
"date_style": "ISO, MDY"

},
{
"integer_datetimes": "on"

},
{
"interval_style": "postgres"

},
{
"is_superuser": "on"

},
{
"server_encoding": "UTF8"

(continues on next page)

17.1. EVE 479

Suricata User Guide, Release 8.0.0

(continued from previous page)

},
{
"server_version": "13.6 (Debian 13.6-1.pgdg110+1)"

},
{
"session_authorization": "rules"

},
{
"standard_conforming_strings": "on"

},
{
"time_zone": "Etc/UTC"

}
],
"process_id": 28954,
"secret_key": 889887985

}
}

}

Note: In Suricata, the AuthenticationOk message is also where the backend's process_id and secret_key are
logged. These must be sent by the frontend when it issues a CancelRequest message (seen below).

A CancelRequest message:

{
"timestamp": "2023-12-07T15:46:56.971150+0000",
"flow_id": 775771889500133,
"event_type": "pgsql",
"src_ip": "100.88.2.140",
"src_port": 39706,
"dest_ip": "100.96.199.113",
"dest_port": 5432,
"proto": "TCP",
"pkt_src": "stream (flow timeout)",
"pgsql": {
"tx_id": 1,
"request": {
"message": "cancel_request",
"process_id": 28954,
"secret_key": 889887985

}
}

}

Note: As the CancelRequest message is sent over a new connection, the way to correlate it with the proper fron-
tend/flow from which it originates is by querying on process_id and secret_key seen in the AuthenticationOk
event.

References:

480 Chapter 17. Output

Suricata User Guide, Release 8.0.0

• PostgreSQL protocol - Canceling Requests in Progress

• PostgreSQL message format - BackendKeyData

Field Reference

Top Level (object)

Name Type Description
request object
response object
tx_id integer

response (object)

Name Type Description
authentication_md5_password string
authentication_sasl_final string
code string
command_completed string
copy_data_out object CopyData message from CopyOut mode
copy_in_response object Backend/server response accepting CopyIn mode
copy_out_response object Backend/server response accepting CopyOut

mode
data_rows integer
data_size integer
field_count integer
file string
line string
message string
parameter_status array of objects
process_id integer
routine string
secret_key integer
severity_localizable string
severity_non_localizable string
ssl_accepted boolean

17.1. EVE 481

https://www.postgresql.org/docs/current/protocol-flow.html#PROTOCOL-FLOW-CANCELING-REQUESTS
https://www.postgresql.org/docs/current/protocol-message-formats.html#PROTOCOL-MESSAGE-FORMATS-BACKENDKEYDATA

Suricata User Guide, Release 8.0.0

response.parameter_status (array of objects)

Name Type Description
application_name string
client_encoding string
date_style string
integer_datetimes string
interval_style string
is_superuser string
server_encoding string
server_version string
session_authorization string
standard_conforming_strings string
time_zone string

response.copy_out_response (object)

Name Type Description
columns integer Number of columns that will be copied in the

CopyData message

response.copy_in_response (object)

Name Type Description
columns integer Number of columns that will be copied in the

CopyData message

response.copy_data_out (object)

Name Type Description
data_size integer Accumulated data size of all CopyData messages

sent
row_count integer Number of rows sent in CopyData messages

482 Chapter 17. Output

Suricata User Guide, Release 8.0.0

request (object)

Name Type Description
copy_data_in object CopyData message from CopyIn mode
message string
password string
password_redacted boolean indicates if a password message was received but

not logged due to Suricata settings
process_id integer
protocol_version string
sasl_authentication_mechanism string
sasl_param string
sasl_response string
secret_key integer
simple_query string
startup_parameters object

request.startup_parameters (object)

Name Type Description
optional_parameters array of objects
user string

request.startup_parameters.optional_parameters (array of objects)

Name Type Description
application_name string
client_encoding string
database string
datestyle string
extra_float_digits string
options string
replication string

request.copy_data_in (object)

Name Type Description
data_size integer Accumulated data size of all CopyData messages

sent
msg_count integer How many CopyData messages were sent (does

not necessarily match number of rows from the
query)

17.1. EVE 483

Suricata User Guide, Release 8.0.0

Event type: IKE

The parser implementations for IKEv1 and IKEv2 have a slightly different feature set. They can be distinguished using
the "version_major" field (which equals either 1 or 2). The unique properties are contained within a separate "ikev1"
and "ikev2" sub-object.

Fields

• "init_spi", "resp_spi": The Security Parameter Index (SPI) of the initiator and responder.

• "version_major": Major version of the ISAKMP header.

• "version_minor": Minor version of the ISAKMP header.

• "payload": List of payload types in the current packet.

• "exchange_type": Type of the exchange, as numeric values.

• "exchange_type_verbose": Type of the exchange, in human-readable form. Needs extended: yes set in the
ike EVE output option.

• "alg_enc", "alg_hash", "alg_auth", "alg_dh", "alg_esn": Properties of the chosen security association by the
server.

• "ikev1.encrypted_payloads": Set to true if the payloads in the packet are encrypted.

• "ikev1.doi": Value of the domain of interpretation (DOI).

• "ikev1.server.key_exchange_payload", "ikev1.client.key_exchange_payload": Public key exchange payloads of
the server and client.

• "ikev1.server.key_exchange_payload_length", "ikev1.client.key_exchange_payload_length": Length of the pub-
lic key exchange payload.

• "ikev1.server.nonce_payload", "ikev1.client.nonce_payload": Nonce payload of the server and client.

• "ikev1.server.nonce_payload_length", "ikev1.client.nonce_payload_length": Length of the nonce payload.

• "ikev1.client.client_proposals": List of the security associations proposed to the server.

• "ikev1.vendor_ids": List of the vendor IDs observed in the communication.

• "server_proposals": List of server proposals with parameters, if there are more than one. This is a non-standard
case; this field is only present if such a situation was observed in the inspected traffic.

Examples

Example of IKE logging:

"ike": {
"version_major": 1,
"version_minor": 0,
"init_spi": "8511617bfea2f172",
"resp_spi": "c0fc6bae013de0f5",
"message_id": 0,
"exchange_type": 2,
"exchange_type_verbose": "Identity Protection",
"sa_life_type": "LifeTypeSeconds",
"sa_life_type_raw": 1,

(continues on next page)

484 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

"sa_life_duration": "Unknown",
"sa_life_duration_raw": 900,
"alg_enc": "EncAesCbc",
"alg_enc_raw": 7,
"alg_hash": "HashSha2_256",
"alg_hash_raw": 4,
"alg_auth": "AuthPreSharedKey",
"alg_auth_raw": 1,
"alg_dh": "GroupModp2048Bit",
"alg_dh_raw": 14,
"sa_key_length": "Unknown",
"sa_key_length_raw": 256,
"alg_esn": "NoESN",
"payload": [
"VendorID",
"Transform",
"Proposal",
"SecurityAssociation"

],
"ikev1": {
"doi": 1,
"encrypted_payloads": false,
"client": {
"key_exchange_payload": "0bf7907681a656aabed38fb1ba8918b10d707a8e635a...",
"key_exchange_payload_length": 256,
"nonce_payload": "1427d158fc1ed6bbbc1bd81e6b74960809c87d18af5f0abef14d5274ac232904

→˓",
"nonce_payload_length": 32,
"proposals": [
{
"sa_life_type": "LifeTypeSeconds",
"sa_life_type_raw": 1,
"sa_life_duration": "Unknown",
"sa_life_duration_raw": 900,
"alg_enc": "EncAesCbc",
"alg_enc_raw": 7,
"alg_hash": "HashSha2_256",
"alg_hash_raw": 4,
"alg_auth": "AuthPreSharedKey",
"alg_auth_raw": 1,
"alg_dh": "GroupModp2048Bit",
"alg_dh_raw": 14,
"sa_key_length": "Unknown",
"sa_key_length_raw": 256

}
]

},
"server": {
"key_exchange_payload": "1e43be52b088ec840ff81865074b6d459b5ca7813b46...",
"key_exchange_payload_length": 256,
"nonce_payload": "04d78293ead007bc1a0f0c6c821a3515286a935af12ca50e08905b15d6c8fcd4

→˓",

(continues on next page)

17.1. EVE 485

Suricata User Guide, Release 8.0.0

(continued from previous page)

"nonce_payload_length": 32
},
"vendor_ids": [
"4048b7d56ebce88525e7de7f00d6c2d3",
"4a131c81070358455c5728f20e95452f",
"afcad71368a1f1c96b8696fc77570100",
"7d9419a65310ca6f2c179d9215529d56",
"cd60464335df21f87cfdb2fc68b6a448",
"90cb80913ebb696e086381b5ec427b1f"

]
},

}

Event type: Modbus

Common fields

• "id": The unique transaction number given by Suricata

Request/Response fields

• "transaction_id": The transaction id found in the packet

• "protocol_id": The modbus version

• "unit_id": ID of the remote server to interact with

• "function_raw": Raw value of the function code byte

• "function_code": Associated name of the raw function value

• "access_type": Type of access requested by the function

• "category": The function code's category

• "error_flags": Errors found in the data while parsing

Exception fields

• "raw": Raw value of the exception code byte

• "code": Associated name of the raw exception value

486 Chapter 17. Output

Suricata User Guide, Release 8.0.0

Diagnostic fields

• "raw": Raw value of the subfunction code bytes

• "code": Associated name of the raw subfunction value

• "data": Bytes following the subfunction code

MEI fields

• "raw": Raw value of the mei function code bytes

• "code": Associated name of the raw mei function value

• "data": Bytes following the mei function code

Read Request fields

• "address": Starting address to read from

• "quantity": Amount to read

Read Response fields

• "data": Data that was read

Multiple Write Request fields

• "address": Starting address to write to

• "quantity": Amount to write

• "data": Data to write

Mask Write fields

• "address": Starting address of content modification

• "and_mask": And mask to modify content with

• "or_mask": Or mask to modify content with

Other Write fields

• "address": Starting address to write to

• "data": Data to write

17.1. EVE 487

Suricata User Guide, Release 8.0.0

Generic Data fields

• "data": Data following the function code

Example

Example of Modbus logging of a request and response:

"modbus": {
"id": 1,
"request": {
"transaction_id": 0,
"protocol_id": 0,
"unit_id": 0,
"function_raw": 1,
"function_code": "RdCoils",
"access_type": "READ | COILS",
"category": "PUBLIC_ASSIGNED",
"error_flags": "NONE",

},
"response": {
"transaction_id": 0,
"protocol_id": 0,
"unit_id": 0,
"function_raw": 1,
"function_code": "RdCoils",
"access_type": "READ | COILS",
"category": "PUBLIC_ASSIGNED",
"error_flags": "DATA_VALUE",

},
}

Event type: QUIC

Fields

• "version": Version of the QUIC packet if contained in the packet, 0 if not

• "cyu": List of found CYUs in the packet

• "cyu[].hash": CYU hash

• "cyu[].string": CYU string

• "ja3": The JA3 fingerprint consisting of both a JA3 hash and a JA3 string

• "ja3s": The JA3S fingerprint consisting of both a JA3 hash and a JA3 string

• "ja4": The JA4 client fingerprint for QUIC

488 Chapter 17. Output

Suricata User Guide, Release 8.0.0

Examples

Example of QUIC logging with CYU, JA3 and JA4 hashes (note that the JA4 hash is only an example to illustrate the
format and does not correlate with the others):

"quic": {
"version": 1362113590,
"cyu": [

{
"hash": "7b3ceb1adc974ad360cfa634e8d0a730",
"string": "46,PAD-SNI-STK-SNO-VER-CCS-NONC-AEAD-UAID-SCID-TCID-PDMD-SMHL-ICSL-

→˓NONP-PUBS-MIDS-SCLS-KEXS-XLCT-CSCT-COPT-CCRT-IRTT-CFCW-SFCW"
}

],
"ja3": {

"hash": "324f8c50e267adba4b5dd06c964faf67",
"string": "771,4865-4866-4867,51-43-13-27-17513-16-45-0-10-57,29-23-24,"

},
"ja4": "q13d0310h3_55b375c5d22e_cd85d2d88918"

}

Output Reference

Top Level (object)

Name Type Description
cyu array of objects ja3-like fingerprint for versions of QUIC before

standardization
extensions array of objects list of extensions in hello
ja3 object ja3 from client, as in TLS
ja3s object ja3 from server, as in TLS
ja4 string
sni string Server Name Indication
ua string User Agent for versions of QUIC before standard-

ization
version string Quic protocol version

ja3s (object)

Name Type Description
hash string ja3s hex representation
string string ja3s string representation

17.1. EVE 489

Suricata User Guide, Release 8.0.0

ja3 (object)

Name Type Description
hash string ja3 hex representation
string string ja3 string representation

extensions (array of objects)

Name Type Description
name string human-friendly name of the extension
type integer integer identifier of the extension
values array of strings extension values

cyu (array of objects)

Name Type Description
hash string cyu hash hex representation
string string cyu hash string representation

Event type: DHCP

The default DHCP logging level only logs enough information to map a MAC address to an IP address. Enable extended
mode to log all DHCP message types in full detail.

Fields

• "type": message type (e.g. request, reply)

• "id": DHCP transaction id

• "client_mac": client MAC address

• "assigned_ip": IP address given by DHCP server

• "client_ip": client IP address

• "dhcp_type": DHCP message type

• "client_id": DHCP client identifier

• "hostname": DHCP client host name

• "params": DHCP parameter request list

• "requested_ip": DHCP client requesting specific IP address

• "relay_ip": BOOTP relay agent IP address

• "next_server_ip": BOOTP next IP address to use for booting process

• "subnet_mask": subnet mask to use with client IP address

• "routers": IP address(es) to be used as default gateways on DHCP client

490 Chapter 17. Output

Suricata User Guide, Release 8.0.0

• "lease_time": Duration of IP address assignment to client

• "renewal_time": Time in seconds since client began IP address request or renewal process

• "rebinding_time": Time in seconds before the client begins to renew its IP address lease

• "dns_servers": IP address(es) of servers the client will use for DNS queries

Examples

Example of DHCP log entry (default logging level):

"dhcp": {
"type":"reply",
"id":755466399,
"client_mac":"54:ee:75:51:e0:66",
"assigned_ip":"100.78.202.125",
"dhcp_type":"ack",
"renewal_time":21600,
"client_id":"54:ee:75:51:e0:66"

}

Example of DHCP log entry (extended logging enabled):

"dhcp": {
"type":"reply",
"id":2787908432,
"client_mac":"54:ee:75:51:e0:66",
"assigned_ip":"192.168.1.120",
"client_ip":"0.0.0.0",
"relay_ip":"192.168.1.1",
"next_server_ip":"0.0.0.0",
"dhcp_type":"offer",
"subnet_mask":"255.255.255.0",
"routers":["192.168.1.100"],
"hostname":"test",
"lease_time":86400,
"renewal_time":21600,
"rebinding_time":43200,
"client_id":"54:ee:75:51:e0:66",
"dns_servers":["192.168.1.50","192.168.1.49"]

}

Event type: ARP

Fields

• "hw_type": network link protocol type

• "proto_type": internetwork protocol for which the request is intended

• "opcode": operation that the sender is performing (e.g. request, response)

• "src_mac": source MAC address

17.1. EVE 491

Suricata User Guide, Release 8.0.0

• "src_ip": source IP address

• "dest_mac": destination MAC address

• "dest_ip": destination IP address

Examples

Example of ARP logging: request and response

"arp": {
"hw_type": "ethernet",
"proto_type": "ipv4",
"opcode": "request",
"src_mac": "00:1a:6b:6c:0c:cc",
"src_ip": "10.10.10.2",
"dest_mac": "00:00:00:00:00:00",
"dest_ip": "10.10.10.1"

}

"arp": {
"hw_type": "ethernet",
"proto_type": "ipv4",
"opcode": "reply",
"src_mac": "00:1a:6b:6c:0c:cc",
"src_ip": "10.10.10.2",
"dest_mac": "00:1d:09:f0:92:ab",
"dest_ip": "10.10.10.1"

}

Event type: POP3

Fields

• "request" (optional): a request sent by the pop3 client
– "request.command" (string): a pop3 command, for example "USER" or "STAT", if unknown but valid

UnknownCommand event will be set

– "request.args" (array of strings): pop3 command arguments, if incorrect number for command Incor-
rectArgumentCount event will be set

• "response" (optional): a response sent by the pop3 server
– "response.success" (boolean): whether the response is successful, ie. +OK

– "response.status" (string): the response status, one of "OK" or "ERR"

– "response.header" (string): the content of the first line of the response

– "response.data" (array of strings): the response data, which may contain multiple lines

Example of POP3 logging:

492 Chapter 17. Output

Suricata User Guide, Release 8.0.0

"pop3": {
"request": {

"command": "USER",
"args": ["user@example.com"],

},
"response": {

"success": true,
"status": "OK",
"header": "+OK password required for \"user@example.com\"",
"data": []

}
}

17.1.3 Eve JSON 'jq' Examples

The jq tool is very useful for quickly parsing and filtering JSON files. This page is contains various examples of how
it can be used with Suricata's Eve.json.

The basics are discussed here:

• https://www.stamus-networks.com/2015/05/18/looking-at-suricata-json-events-on-command-line/

Colorize output

tail -f eve.json | jq -c '.'

DNS NXDOMAIN

tail -f eve.json|jq -c 'select(.dns.rcode=="NXDOMAIN")'

Unique HTTP User Agents

cat eve.json | jq -s '[.[]|.http.http_user_agent]|group_by(.)|map({key:.[0],value:(.
→˓|length)})|from_entries'

Source: https://twitter.com/mattarnao/status/601807374647750657

Data use for a host

tail -n500000 eve.json | jq -s 'map(select(.event_type=="netflow" and .dest_ip=="192.168.
→˓1.3").netflow.bytes)|add'|numfmt --to=iec
1.3G

Note: can use a lot of memory. Source: https://twitter.com/pkt_inspector/status/605524218722148352

17.1. EVE 493

https://www.stamus-networks.com/2015/05/18/looking-at-suricata-json-events-on-command-line/
https://twitter.com/mattarnao/status/601807374647750657
https://twitter.com/pkt_inspector/status/605524218722148352

Suricata User Guide, Release 8.0.0

Monitor part of the stats

$ tail -f eve.json | jq -c 'select(.event_type=="stats")|.stats.decoder'

Inspect Alert Data

cat eve.json | jq -r -c 'select(.event_type=="alert")|.payload'|base64 --decode

Top 10 Destination Ports

cat eve.json | jq -c 'select(.event_type=="flow")|[.proto, .dest_port]'|sort |uniq -
→˓c|sort -nr|head -n10

17.2 Lua Output

Suricata offers the possibility to get more detailed output on specific kinds of network traffic via pluggable lua scripts.
You can write these scripts yourself and only need to define four hook functions.

For lua output scripts suricata offers a wide range of lua functions. They all return information on specific engine
internals and aspects of the network traffic. They are described in the following sections, grouped by the event/traffic
type. But let's start with an example explaining the four hook functions, and how to make suricata load a lua output
script.

17.2.1 Script structure

A lua output script needs to define 4 hook functions: init(), setup(), log(), deinit()

• init() -- registers where the script hooks into the output engine

• setup() -- does per output thread setup

• log() -- logging function

• deinit() -- clean up function

Example:

local config = require("suricata.config")
local logger = require("suricata.log")

function init (args)
local needs = {}
needs["protocol"] = "http"
return needs

end

function setup (args)
filename = config.log_path() .. "/" .. name
file = assert(io.open(filename, "a"))
logger.info("HTTP Log Filename " .. filename)

(continues on next page)

494 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

http = 0
end

function log(args)
http_uri = HttpGetRequestUriRaw()
if http_uri == nil then

http_uri = "<unknown>"
end
http_uri = string.gsub(http_uri, "%c", ".")

http_host = HttpGetRequestHost()
if http_host == nil then

http_host = "<hostname unknown>"
end
http_host = string.gsub(http_host, "%c", ".")

http_ua = HttpGetRequestHeader("User-Agent")
if http_ua == nil then

http_ua = "<useragent unknown>"
end
http_ua = string.gsub(http_ua, "%g", ".")

timestring = SCPacketTimeString()
ip_version, src_ip, dst_ip, protocol, src_port, dst_port = SCFlowTuple()

file:write (timestring .. " " .. http_host .. " [**] " .. http_uri .. " [**] " ..
http_ua .. " [**] " .. src_ip .. ":" .. src_port .. " -> " ..
dst_ip .. ":" .. dst_port .. "\n")

file:flush()

http = http + 1
end

function deinit (args)
logger.info ("HTTP transactions logged: " .. http);
file:close(file)

end

17.2.2 YAML

To enable the lua output, add the 'lua' output and add one or more scripts like so:

outputs:
- lua:

enabled: yes
scripts-dir: /etc/suricata/lua-output/

By default the Lua module search paths are empty. If you plan
to use external modules these paths will need to be set. The
examples below are likely suitable for finding modules
installed with a package manager on a 64 bit Linux system, but

(continues on next page)

17.2. Lua Output 495

Suricata User Guide, Release 8.0.0

(continued from previous page)

may need tweaking.
#path: "/usr/share/lua/5.4/?.lua;/usr/share/lua/5.4/?/init.lua;/usr/lib64/lua/5.4/?

→˓.lua;/usr/lib64/lua/5.4/?/init.lua;./?.lua;./?/init.lua"
#cpath: "/usr/lib64/lua/5.4/?.so;/usr/lib64/lua/5.4/loadall.so;./?.so"

scripts:
- tcp-data.lua
- flow.lua

The scripts-dir option is optional. It makes Suricata load the scripts from this directory. Otherwise scripts will be
loaded from the current workdir.

17.2.3 Developing lua output script

You can use functions described in Lua Functions

17.3 Syslog Alerting Compatibility

Suricata can alert via syslog which is a very handy feature for central log collection, compliance, and reporting to a
SIEM. Instructions on setting this up can be found in the .yaml file in the section where you can configure what type
of alert (and other) logging you would like.

However, there are different syslog daemons and there can be parsing issues with the syslog format a SIEM expects
and what syslog format Suricata sends. The syslog format from Suricata is dependent on the syslog daemon running
on the Suricata sensor but often the format it sends is not the format the SIEM expects and cannot parse it properly.

17.3.1 Popular syslog daemons

• syslogd - logs system messages

• syslog-ng - logs system messages but also supports TCP, TLS, and other enhanced enterprise features

• rsyslogd - logs system messages but also support TCP, TLS, multi-threading, and other enhanced features

• klogd - logs kernel messages

• sysklogd - basically a bundle of syslogd and klogd

If the syslog format the Suricata sensor is sending is not compatible with what your SIEM or syslog collector expects,
you will need to fix this. You can do this on your SIEM if it is capable of being able to be configured to interpret the
message, or by configuring the syslog daemon on the Suricata sensor itself to send in a format you SIEM can parse.
The latter can be done by applying a template to your syslog config file.

496 Chapter 17. Output

Suricata User Guide, Release 8.0.0

17.3.2 Finding what syslog daemon you are using

There are many ways to find out what syslog daemon you are using but here is one way:

cd /etc/init.d
ls | grep syslog

You should see a file with the word syslog in it, e.g. "syslog", "rsyslogd", etc. Obviously if the name is "rsyslogd" you
can be fairly confident you are running rsyslogd. If unsure or the filename is just "syslog", take a look at that file. For
example, if it was "rsyslogd", run:

less rsyslogd

At the top you should see a comment line that looks something like this:

rsyslog Starts rsyslogd/rklogd.

Locate those files and look at them to give you clues as to what syslog daemon you are running. Also look in the start()
section of the file you ran "less" on and see what binaries get started because that can give you clues as well.

17.3.3 Example

Here is an example where the Suricata sensor is sending syslog messages in rsyslogd format but the SIEM is expecting
and parsing them in a sysklogd format. In the syslog configuration file (usually in /etc with a filename like rsyslog.conf
or syslog.conf), first add the template:

$template sysklogd, "<%PRI%>%syslogtag:1:32%%msg:::sp-if-no-1st-sp%%msg%"

Then send it to the syslog server with the template applied:

user.alert @10.8.75.24:514;sysklogd

Of course this is just one example and it will probably be different in your environment depending on what syslog
daemons and SIEM you use but hopefully this will point you in the right direction.

17.4 Custom http logging

Attention: http-log is deprecated in Suricata 8.0 and will be removed in Suricata 9.0.

In your Suricata.yaml, find the http-log section and edit as follows:

- http-log:
enabled: yes
filename: http.log
custom: yes # enable the custom logging format (defined by custom format)
customformat: "%{%D-%H:%M:%S}t.%z %{X-Forwarded-For}i %{User-agent}i %H %m %h %u

→˓%s %B %a:%p -> %A:%P"
append: no
#extended: yes # enable this for extended logging information
#filetype: regular # 'regular', 'unix_stream' or 'unix_dgram'

17.4. Custom http logging 497

Suricata User Guide, Release 8.0.0

And in your http.log file you would get the following, for example:

8/28/12-22:14:21.101619 - Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:11.0) Gecko/20100101␣
→˓Firefox/11.0 HTTP/1.1 GET us.cnn.com /video/data/3.0/video/world/2012/08/28/hancocks-
→˓korea-typhoon-bolavan.cnn/index.xml 200 16856 192.168.1.91:45111 -> 157.166.255.18:80

08/28/12-22:14:30.693856 - Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:11.0) Gecko/20100101␣
→˓Firefox/11.0 HTTP/1.1 GET us.cnn.com /video/data/3.0/video/showbiz/2012/08/28/conan-
→˓reports-from-rnc-convention.teamcoco/index.xml 200 15789 192.168.1.91:45108 -> 157.166.
→˓255.18:80

The list of supported format strings is the following:

• %h - Host HTTP Header (remote host name). ie: google.com

• %H - Request Protocol. ie: HTTP/1.1

• %m - Request Method. ie: GET

• %u - URL including query string. ie: /search?q=suricata

• %{header_name}i - contents of the defined HTTP Request Header name. ie:

• %{User-agent}i: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:11.0) Gecko/20100101 Firefox/11.0

• %{X-Forwarded-For}i: outputs the IP address contained in the X-Forwarded-For HTTP header (inserted by a
reverse proxy)

• %s - return status code. In the case of 301 and 302 it will print the url in brackets. ie: 200

• %B - response size in bytes. ie: 15789

• %{header_name}o - contents of the defined HTTP Response Header name

• %{strftime_format]t - timestamp of the HTTP transaction in the selected strftime format. ie: 08/28/12-22:14:30

• %z - precision time in useconds. ie: 693856

• %a - client IP address

• %p - client port number

• %A - server IP address

• %P - server port number

Any non printable character will be represented by its byte value in hexadecimal format (|XX|, where XX is the hex
code)

17.5 Custom tls logging

Attention: tls-log is deprecated in Suricata 8.0 and will be removed in Suricata 9.0.

In your Suricata.yaml, find the tls-log section and edit as follows:

- tls-log:
enabled: yes # Log TLS connections.
filename: tls.log # File to store TLS logs.

(continues on next page)

498 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

append: yes
custom: yes # enabled the custom logging format (defined by customformat)
customformat: "%{%D-%H:%M:%S}t.%z %a:%p -> %A:%P %v %n %d %D"

And in your tls.log file you would get the following, for example:

12/03/16-19:20:14.85859 10.10.10.4:58274 -> 192.0.78.24:443 VERSION='TLS 1.2' suricata.
→˓io NOTBEFORE='2016-10-27T20:36:00' NOTAFTER='2017-01-25T20:36:00'

The list of supported format strings is the following:

• %n - client SNI

• %v - TLS/SSL version

• %d - certificate date not before

• %D - certificate date not after

• %f - certificate fingerprint SHA1

• %s - certificate subject

• %i - certificate issuer dn

• %E - extended format

• %{strftime_format}t - timestamp of the TLS transaction in the selected strftime format. ie: 08/28/12-22:14:30

• %z - precision time in useconds. ie: 693856

• %a - client IP address

• %p - client port number

• %A - server IP address

• %P - server port number

Any non printable character will be represented by its byte value in hexadecimal format (|XX|, where XX is the hex
code)

17.6 Log Rotation

All outputs in the outputs section of the configuration file can be subject to log rotation.

For most outputs an external tool like logrotate is required to rotate the log files in combination with sending a SIGHUP
to Suricata to notify it that the log files have been rotated.

On receipt of a SIGHUP, Suricata simply closes all open log files and then re-opens them in append mode. If the
external tool has renamed any of the log files, new files will be created, otherwise the files will be re-opened and new
data will be appended to them with no noticeable affect.

The following is an example logrotate configuration file that will rotate Suricata log files then send Suricata a SIGHUP
triggering Suricata to open new files:

/var/log/suricata/*.log /var/log/suricata/*.json
{

rotate 3
missingok

(continues on next page)

17.6. Log Rotation 499

Suricata User Guide, Release 8.0.0

(continued from previous page)

nocompress
create
sharedscripts
postrotate

/bin/kill -HUP `cat /var/run/suricata.pid 2>/dev/null` 2>/dev/null || true
endscript

}

Note: The above logrotate configuration file depends on the existence of a Suricata PID file. If running in daemon
mode a PID file will be created by default, otherwise the --pidfile option should be used to create a PID file.

In addition to the SIGHUP style rotation discussed above, some outputs support their own time and date based rotation,
however removal of old log files is still the responsibility of external tools. These outputs include:

• Eve

• PCAP log

500 Chapter 17. Output

CHAPTER

EIGHTEEN

LUA SUPPORT

18.1 Lua usage in Suricata

Lua scripting can be used in two components of Suricata:

• Output

• Detection: lua keyword and luaxform transform

Both features are using a list of functions to access the data extracted by Suricata. You can get the list of functions in
the Lua functions page.

Note: Currently, there is a difference in the needs key in the init function, depending on what is the usage: output
or detection. The list of available functions may also differ. The luaxform doesn't use the needs key.

18.1.1 Lua output

Lua scripts can be used to write arbitrary output. See Lua Output for more information.

18.1.2 Lua detection

Lua scripts can be used as a filter condition in signatures. See Lua Scripting for Detection for more information.

18.1.3 Lua transform

The luaxform transform can be used in signatures. See luaxform for more information.

18.2 Lua functions

18.2.1 Differences between output and detect:

Currently, the needs key initialization varies, depending on what is the goal of the script: output or detection. The Lua
script for the luaxform transform does not use ``needs``.
If the script is for detection, the needs initialization should be as seen in the example below (see Lua Scripting for
Detection for a complete example of a detection script):

501

Suricata User Guide, Release 8.0.0

function init (args)
local needs = {}
needs["packet"] = tostring(true)
return needs

end

For output logs, follow the pattern below. (The complete script structure can be seen at Lua Output:)

function init (args)
local needs = {}
needs["protocol"] = "tls"
return needs

end

Do notice that the functions and protocols available for log and match may also vary. DNP3, for instance, is not
available for logging.

18.2.2 packet

Initialize with:

function init (args)
local needs = {}
needs["type"] = "packet"
return needs

end

18.2.3 flow

function init (args)
local needs = {}
needs["type"] = "flow"
return needs

end

18.2.4 http

For output, init with:

function init (args)
local needs = {}
needs["protocol"] = "http"
return needs

end

For detection, use the specific buffer (cf Lua Scripting for Detection for a complete list), as with:

function init (args)
local needs = {}

(continues on next page)

502 Chapter 18. Lua support

Suricata User Guide, Release 8.0.0

(continued from previous page)

needs["http.uri"] = tostring(true)
return needs

end

18.2.5 Streaming Data

Streaming data can currently log out reassembled TCP data and normalized HTTP data. The script will be invoked for
each consecutive data chunk.

In case of TCP reassembled data, all possible overlaps are removed according to the host OS settings.

function init (args)
return {streaming = "tcp"}

end

In case of HTTP body data, the bodies are unzipped and dechunked if applicable.

function init (args)
return {streaming = "http"}

end

The streaming data will be provided in the args to the log function within a stream subtable:

function log(args)
-- The data (buffer)
local data = args["stream"]["data"]

-- Buffer open?
local open = args["stream"]["open"]

-- Buffer closed?
local close = args["stream"]["close"]

-- To server?
local ts = args["stream"]["toserver"]

-- To client?
local tc = args["stream"]["toclient"]

end

18.3 Lua Libraries

Suricata provides Lua extensions, or libraries to Lua scripts with the require keyword. These extensions are particu-
larly important in Lua rules as Lua rules are executed in a restricted sandbox environment without access to additional
modules.

18.3. Lua Libraries 503

Suricata User Guide, Release 8.0.0

18.3.1 Base64

Base64 functions are exposed to Lua scripts with the suricata.base64 library. For example:

local base64 = require("suricata.base64")

Functions

encode(string)

Encode a buffer with standard base64 encoding. This standard encoding includes padding.

decode(string)

Decode a base64 string that contains padding.

encode_nopad(string)

Encode a buffer with standard base64 encoding but don't include any padding.

decode_nopad(string)

Decode a base64 string that contains no padding.

decode_padopt(string)

Decode a base64 string that may or may not contain trailing padding.

decode_rfc2045(string)

Decode an RFC 2045 formatted base64 string.

decode_rfc4648(string)

Decode an RFC 4648 formatted base64 string.

Implementation Details

The base64 functions provided come from the Rust base64 library documented at https://docs.rs/base64 and correspond
to the STANDARD and STANDARD_NO_PAD base64 engines provided in that library.

504 Chapter 18. Lua support

https://docs.rs/base64

Suricata User Guide, Release 8.0.0

18.3.2 Bytevar

The suricata.bytevar module provides access to variables defined by byte_extract and byte_math keywords
in Suricata rules.

It is only available in Suricata Lua rules, not output scripts.

Setup

local bytevars = require("suricata.bytevar")

Module Functions

bytevars.map(sig, varname)
Ensures that the bytevar exists and sets it up for further use in the script by mapping it into the Lua context.
Must be called during init().

Parameters
• sig -- The signature object passed to init()

• varname (string) -- Name of the variable as defined in the rule

Raises
• error -- If the variable name is unknown

• error -- If too many byte variables are mapped

Example:

function init(sig)
bytevars.map(sig, "var1")
bytevars.map(sig, "var2")
return {}

end

bytevars.get(name)
Returns a byte variable object for the given name. May be called during thread_init() to save a handle to the
bytevar.

Parameters
name (number) -- Name of the variable previously setup with map().

Raises
error -- If variable name is not mapped with map().

Returns
A byte variable object

Example:

function thread_init()
bv_var1 = bytevars.get("var1")
bv_var2 = bytevars.get("var2")

end

18.3. Lua Libraries 505

Suricata User Guide, Release 8.0.0

Byte Variable Object Methods

bytevar:value()

Returns the current value of the byte variable.

Returns
The value of the byte variable.

Example:

function match(args)
local var1 = bv_var1:value()
if var1 then

-- Use the value
end

end

18.3.3 Config Library

The config library provides access to Suricata configuration settings.

To use this library, you must require it:

local config = require("suricata.config")

Functions

log_path()

Returns the configured log directory path.

Example:

local config = require("suricata.config")

local log_path, err = config.log_path()
if log_path == nil then

print("failed to get log path " .. err)
end

18.3.4 DNS

DNS transaction details are exposed to Lua scripts with the suricata.dns library, for example:

local dns = require("suricata.dns")

506 Chapter 18. Lua support

Suricata User Guide, Release 8.0.0

Setup

If your purpose is to create a logging script, initialize the buffer as:

function init (args)
local needs = {}
needs["protocol"] = "dns"
return needs

end

If you are going to use the script for rule matching, choose one of the available DNS buffers listed in Lua Scripting for
Detection and follow the pattern:

For use in rule matching, the rule must hook into a DNS transaction state. Available states are request_complete
and response_complete. For example:

alert dns:request_complete any any -> any any (...

Then to initialize the script:

function init (args)
return {}

end

Transaction

DNS is transaction based, and the current transaction must be obtained before use:

local tx, err = dns.get_tx()
if tx == err then

print(err)
end

All other functions are methods on the transaction table.

Transaction Methods

answers()

Get the answers response section as a table of tables.

Example:

local tx = dns.get_tx()
local answers = tx:answers()
if answers ~= nil then

for n, t in pairs(answers) do
rrname = t["rrname"]
rrtype = t["type"]
ttl = t["ttl"]

print ("ANSWER: " .. ts .. " " .. rrname .. " [**] " .. rrtype .. " [**] " ..
ttl .. " [**] " .. srcip .. ":" .. sp .. " -> " ..

(continues on next page)

18.3. Lua Libraries 507

Suricata User Guide, Release 8.0.0

(continued from previous page)

dstip .. ":" .. dp)
end

end

authorities()

Get the authorities response section as a table of tables.

Example:

local tx = dns.get_tx()
local authorities = tx:authorities();
if authorities ~= nil then

for n, t in pairs(authorities) do
rrname = t["rrname"]
rrtype = t["type"]
ttl = t["ttl"]
print ("AUTHORITY: " .. ts .. " " .. rrname .. " [**] " .. rrtype .. " [**] " ..

ttl .. " [**] " .. srcip .. ":" .. sp .. " -> " ..
dstip .. ":" .. dp)

end
end

queries()

Get the queries request or response section as a table of tables.

Example:

local tx = dns.get_tx()
local queries = tx:queries();
if queries ~= nil then

for n, t in pairs(queries) do
rrname = t["rrname"]
rrtype = t["type"]

print ("QUERY: " .. ts .. " " .. rrname .. " [**] " .. rrtype .. " [**] " ..
"TODO" .. " [**] " .. srcip .. ":" .. sp .. " -> " ..
dstip .. ":" .. dp)

end
end

508 Chapter 18. Lua support

Suricata User Guide, Release 8.0.0

rcode()

Get the rcode value as an integer.

Example:

local tx = dns.get_tx()
local rcode = tx:rcode()
print (rcode)

rcode_string()

Get the rcode value as a string.

Example:

local tx = dns.get_tx()
local rcode_string = tx:rcode_string();
print (rcode_string)

recursion_desired()

Return the value of the recursion desired (RD) flag as a boolean.

Example:

local tx = dns.get_tx()
if tx:recursion_desired() == true then

print ("RECURSION DESIRED")
end

rrname()

Return the resource name from the first query object.

Example:

local tx = dns.get_tx()
local rrname = tx:rrname()
print(rrname)

txid()

Return the DNS transaction ID found in the DNS message.

Example:

local tx = dns.get_tx()
local txid = tx:txid()
print(txid)

18.3. Lua Libraries 509

Suricata User Guide, Release 8.0.0

18.3.5 File

File information is exposed to Lua scripts with the suricata.file library, for example:

local filelib = require("suricata.file")

Setup

If your purpose is to create a logging script, initialize the script as:

function init (args)
local needs = {}
needs["type"] = "file"
return needs

end

Currently the Lua file library is not implemented for rules.

API

File Object

File data is accessed through the file object, which must be obtained before use:

local file, err = filelib.get_file()
if file == nil then

print(err)
end

File Methods

file_id()

Returns the ID number of the file.

Example:

local file = filelib.get_file()
local id = file:file_id()
print("File ID: " .. id)

510 Chapter 18. Lua support

Suricata User Guide, Release 8.0.0

tx_id()

Returns the transaction ID associated with the file.

Example:

local file = filelib.get_file()
local tx_id = file:tx_id()
print("Transaction ID: " .. tx_id)

name()

Returns the file name.

Example:

local file = filelib.get_file()
local name = file:name()
if name ~= nil then

print("Filename: " .. name)
end

size()

Returns the file size.

Example:

local file = filelib.get_file()
local size = file:size()
print("File size: " .. size .. " bytes")

magic()

Returns the file type based on libmagic (if available). Will return nil if magic is not available.

Example:

local file = filelib.get_file()
local magic = file:magic()
if magic ~= nil then

print("File type: " .. magic)
end

18.3. Lua Libraries 511

Suricata User Guide, Release 8.0.0

md5()

Returns the MD5 hash of the file (if calculated). Will return nil if the MD5 hash was not calculated.

Example:

local file = filelib.get_file()
local md5 = file:md5()
if md5 ~= nil then

print("MD5: " .. md5)
end

sha1()

Returns the SHA1 hash of the file (if calculated). Will return nil if the SHA1 hash was not calculated.

Example:

local file = filelib.get_file()
local sha1 = file:sha1()
if sha1 ~= nil then

print("SHA1: " .. sha1)
end

sha256()

Returns the SHA256 hash of the file (if calculated). Will return nil if the SHA256 hash was not calculated.

Example:

local file = filelib.get_file()
local sha256 = file:sha256()
if sha256 ~= nil then

print("SHA256: " .. sha256)
end

get_state()

Returns the current state of the file.

Returns:

• State: "CLOSED", "TRUNCATED", "ERROR", "OPENED", "NONE", or
"UNKNOWN"

Example:

local file = filelib.get_file()
local state = file:get_state()
if state ~= nil then

print("File state: " .. state)
end

512 Chapter 18. Lua support

Suricata User Guide, Release 8.0.0

is_stored()

Returns true if the file has been stored to disk, false otherwise.

Example:

local file = filelib.get_file()
local stored = file:is_stored()
print("File stored: " .. tostring(stored))

18.3.6 Flow

Flows are exposed to Lua scripts with the suricata.flow library. To use it, the script must require it. For example:

local flow = require("suricata.flow")

Following are the functions currently available for acessing Flow details.

Initialization

get

Init the flow for use in the script. The flow is the current one the engine is processing.

f = flow.get()

Time

timestamps

Get timestamps of the first and the last packets from the flow, as seconds and microseconds since 1970-01-01 00:00:00
UTC, returning 4 numbers:

f = flow.get()
local start_sec, start_usec, last_sec, last_usec = f:timestamps()

timestring_legacy

Get the timestamp of the first packet from the flow, as a string in the format: 11/24/2009-18:57:25.179869. This is the
format used by fast.log, http.log and other legacy outputs.

f = flow.get()
print f:timestring_legacy()

18.3. Lua Libraries 513

Suricata User Guide, Release 8.0.0

timestring_iso8601

Get the timestamp of the first packet from the flow, as a string in the format: 2015-10-06T15:16:43.136733+0000.
This is the format used by EVE outputs.

f = flow.get()
print f:timestring_iso8601()

Ports and Addresses

tuple

Using the tuple method, the IP version (4 or 6), src IP and dest IP (as string), IP protocol (int), and ports (ints) are
retrieved.

The protocol value comes from the IP header. See further https://www.iana.org/assignments/protocol-numbers/
protocol-numbers.xhtml .

f = flow.get()
ipver, srcip, dstip, proto, sp, dp = f:tuple()

App Layer Protocols

app_layer_proto

Get alproto from the flow as a string. If an alproto is not (yet) known, it returns "unknown".

Returns 5 values: <alproto>, <alproto_ts>, <alproto_tc>, <alproto_orig>, <alproto_expect>.

Example:

f = flow.get()
alproto, alproto_ts, alproto_tc, alproto_orig, alproto_expect = f:app_layer_proto()

orig and expect are used when changing and upgrading protocols. In an SMTP STARTTLS case, orig would normally
be set to "smtp" and expect to "tls".

Misc

has_alerts

Returns true if the flow has alerts.

f = flow.get()
alerted = f:has_alerts()

514 Chapter 18. Lua support

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

Suricata User Guide, Release 8.0.0

id

Get the flow id. Note that simply printing the id will likely result in printing a scientific notation. To avoid that, simply
do:

f = flow.get()
id = f:id()
id_str = string.format("%.0f", id)
print ("Flow ID: " .. id_str .."\n")

stats

Get the packet and byte counts (for both directions), as 4 numbers, per flow.

f = flow.get()
tscnt, tsbytes, tccnt, tcbytes = f:stats()

Example

A simple log function for a script to output Flow details if the flow triggered an alert:

function log(args)
local f = flow.get()
ts = f:timestring_iso8601()
has_alerts = f:has_alerts()
ipver, srcip, dstip, proto, sp, dp = f:tuple()
alproto, alproto_ts, alproto_tc, alproto_orig, alproto_expect = f:app_layer_proto()
start_sec, start_usec, last_sec, last_usec = f:timestamps()
id = f:id()

if has_alerts then
file:write ("[**] Start time " .. ts .. " [**] -> alproto " .. alproto .. " [**]

→˓" .. proto .. " [**] alerted: true\n[**] First packet: " .. start_sec .." [**] Last␣
→˓packet: " .. last_sec .. " [**] Flow id: " .. id .. "\n")

file:flush()
end

end

For complete scripts using these and other lua functions, the Suricata-verify can be a good resource: https://github.
com/OISF/suricata-verify/tree/master/tests .

18.3.7 Flowint Library

The suricata.flowint library exposes flowint variables to Lua scripts.

18.3. Lua Libraries 515

https://github.com/OISF/suricata-verify/tree/master/tests
https://github.com/OISF/suricata-verify/tree/master/tests

Suricata User Guide, Release 8.0.0

Initialization

First, the flowint module must be loaded:

local flowintlib = require("suricata.flowint")

Then in the init method, any flow integers used in the script should be registered. This is optional and could be
skipped if you know for sure the flow integers will be registered by some other means.

Example:

local flowintlib = require("suricata.flowint")

function init ()
flowintlib.register("count")
return {}

end

Finally, in the thread_init function a handle is acquired for the flow integers and stored as a global:

function thread_init ()
count_flow_int = flowintlib.get("count")

end

Flow Integer Methods

decr()

Decrement the value of the flowint by 1. The new value is returned. If the value is 0, it will remain 0.

incr()

Increment the value of the flowint by 1. The new value is returned.

value()

Get the current value of the flow integer. Note that nil may be returned if the flow integer does not have a value.

set(value)

Set the value of the flowint to the value provided.

516 Chapter 18. Lua support

Suricata User Guide, Release 8.0.0

18.3.8 Flowvar

The suricata.flowvar library exposes flow variables to Lua scripts.

Initialization

First, the flowvar lib module must be loaded:

local flowvarlib = require("suricata.flowvar")

Then in the init method, any flow variables used in the script should be registered. This is optional and could be
skipped if you know for sure the flow variable will be registered by some other means.

Example:

local flowvarlib = require("suricata.flowvar")

function init ()
flowvarlib.register("count")
return {}

end

Finally, in the thread_init function a handle is acquired for the flow variables and stored as a global:

function thread_init ()
count_flow_var = flowvarlib.get("count")

end

Flow Variable Methods

value()

Get the current value of the flow variable as a string. Note that nil may be returned if the flow variable does not have
a value.

set(value, len)

Set the value of the flow variable to the value provided. The length of the value must also be provided.

Example

local flowvarlib = require("suricata.flowvar")

function init ()
flowvarlib.register("count")
return {}

end

function thread_init ()
count_var = flowvarlib.get("count")

(continues on next page)

18.3. Lua Libraries 517

Suricata User Guide, Release 8.0.0

(continued from previous page)

end

function match ()
local value = count_var:value()
if value == nil then

-- Initialize value to 1.
value = tostring(1)
count_var:set(value, #value)

else
value = tostring(tonumber(value) + 1)
count_var:set(value, #value)

fi

-- Return 1 or 0 based on your own logic.
return 1

end

18.3.9 Hashing

Hashing functions are exposed to Lua scripts with suricata.hashing library. For example:

local hashing = require("suricata.hashing")

SHA-256

sha256_digest(string)

SHA-256 hash the provided string returning the digest as bytes.

sha256_hex_digest(string)

SHA-256 hash the provided string returning the digest as a hex string.

sha256()

Returns a SHA-256 hasher that can be updated multiple times, for example:

local hashing = require("suricata.hashing")
hasher = hashing.sha256()
hasher.update("www.suricata")
hasher.update(".io")
hash = hasher.finalize_to_hex()

The methods on the hasher object include:

• update(string): Add more data to the hasher

• finalize(): Finalize the hash returning the hash as a byte string

• finalize_to_hex(): Finalize the hash returning the has as a hex string

518 Chapter 18. Lua support

Suricata User Guide, Release 8.0.0

SHA-1

sha1_digest(string)

SHA-1 hash the provided string returning the digest as bytes.

sha1_hex_digest(string)

SHA-1 hash the provided string returning the digest as a hex string.

sha1()

Returns a SHA-1 hasher that can be updated multiple times, for example:

local hashing = require("suricata.hashing")
hasher = hashing.sha1()
hasher.update("www.suricata")
hasher.update(".io")
hash = hasher.finalize_to_hex()

The methods on the hasher object include:

• update(string): Add more data to the hasher

• finalize(): Finalize the hash returning the hash as a byte string

• finalize_to_hex(): Finalize the hash returning the has as a hex string

MD5

md5_digest(string)

MD5 hash the provided string returning the digest as bytes.

md5_hex_digest(string)

MD5 hash the provided string returning the digest as a hex string.

md5()

Returns a MD5 hasher that can be updated multiple times, for example:

local hashing = require("suricata.hashing")
hasher = hashing.md5()
hasher.update("www.suricata")
hasher.update(".io")
hash = hasher.finalize_to_hex()

The methods on the hasher object include:

• update(string): Add more data to the hasher

18.3. Lua Libraries 519

Suricata User Guide, Release 8.0.0

• finalize(): Finalize the hash returning the hash as a byte string

• finalize_to_hex(): Finalize the hash returning the hash as a hex string

18.3.10 HTTP

HTTP transaction details are exposes to Lua scripts with the suricata.http library, For example:

local http = require("suricata.http")

Setup

If your purpose is to create a logging script, initialize the buffer as:

function init (args)
local needs = {}
needs["protocol"] = "http"
return needs

end

If you are going to use the script for rule matching, choose one of the available HTTP buffers listed in Lua Scripting
for Detection and follow the pattern:

function init (args)
local needs = {}
needs["http.request_line"] = tostring(true)
return needs

end

Transaction

HTTP is transaction based, and the current transaction must be obtained before use:

local tx, err = http.get_tx()
if tx == err then

print(err)
end

All other functions are methods on the transaction table.

Transaction Methods

request_header()

Get the HTTP request header value by key.

Example:

520 Chapter 18. Lua support

Suricata User Guide, Release 8.0.0

local tx = http.get_tx()
local ua = tx:request_header("User-Agent")
if ua ~= nil then

print(ua)
end

response_header()

Get the HTTP response header value by key.

Example:

local tx = http.get_tx()
local content_type = tx:response_header("Content-Type")
if content_type ~= nil then

print(content_type)
end

request_line

Get the HTTP request line as a string.

Example:

local tx = http.get_tx()
local http_request_line = tx:request_line();
if #http_request_line > 0 then

if http_request_line:find("^GET") then
print(http_request_line)

end
end

response_line

Get the HTTP response line as a string.

Example:

local tx = http.get_tx()
local http_response_line = tx:response_line();
if #http_response_line > 0 then

print(http_response_line)
end

18.3. Lua Libraries 521

Suricata User Guide, Release 8.0.0

request_headers_raw()

Get the raw HTTP request headers.

Example:

http_request_headers_raw = tx:request_headers_raw()

if #http_request_headers_raw > 0 then
if http_request_headers_raw:find("User%-Agent: curl") then

print(http_request_headers_raw)
end

end

response_headers_raw()

Get the raw HTTP response headers.

Example:

http_response_headers_raw = tx:response_headers_raw()

if #http_response_headers_raw > 0 then
print(http_response_headers_raw)

end

request_uri_raw()

Get the raw HTTP request URI.

Example:

local tx = http.get_tx()
http_request_uri_raw = tx:request_uri_raw()
print(http_request_uri_raw)

request_uri_normalized()

Get the normalized HTTP request URI.

Example:

local tx = http.get_tx()
http_request_uri_normalized = tx:request_uri_normalized()
print(http_request_uri_normalized)

522 Chapter 18. Lua support

Suricata User Guide, Release 8.0.0

request_headers()

Get the HTTP request headers.

Example:

local tx = http.get_tx()
http_request_headers = tx:request_headers()
print(http_request_headers)

response_headers()

Get the HTTP response headers.

Example:

local tx = http.get_tx()
http_response_headers = tx:response_headers()
print(http_response_headers)

request_body()

Get the HTTP request body.

Example:

local tx = http.get_tx()
http_request_body = tx:request_body()
print(http_request_body)

response_body()

Get the HTTP response body.

Example:

local tx = http.get_tx()
http_response_body = tx:response_body()
print(http_response_body)

request_host()

Get the HTTP request host.

Example:

local tx = http.get_tx()
http_host = tx:request_host()
print(http_host)

18.3. Lua Libraries 523

Suricata User Guide, Release 8.0.0

18.3.11 Log

The suricata.log Lua library exposes the Suricata application logging functions to Lua scripts. These are equivalant
to SCLogNotice, SCLogError, etc, in the Suricata source.

In Suricata, the logging priority order is:

• Error

• Warning

• Notice

• Info

• Perf

• Config

• Debug

Note: Debug logging will only work if Suricata was compiled with --enable-debug.

Setup

To use the logging functions, first require the module:

local logger = require("suricata.log")

Functions

info

Log an informational message:

logger.info("Processing HTTP request")

This is equivalent to SCLogInfo.

notice

Log a notice message:

logger.notice("Unusual pattern detected")

This is equivalent to SCLogNotice.

524 Chapter 18. Lua support

Suricata User Guide, Release 8.0.0

warning

Log a warning message:

logger.warning("Connection limit approaching")

This is equivalent to SCLogWarning.

error

Log an error message:

logger.error("Failed to parse data")

This is equivalent to SCLogError.

debug

Log a debug message (only visible when debug logger.ing is enabled):

logger.debug("Variable value: " .. tostring(value))

This is equivalent to SCLogDebug.

config

Log a configuration-related message:

logger.config("Loading configuration from " .. filename)

This is equivalent to SCLogConfig.

perf

Log a performance-related message:

logger.perf("Processing took " .. elapsed .. " seconds")

This is equivalent to SCLogPerf.

18.3.12 Packet

Packets are exposed to Lua scripts with suricata.packet library. For example:

local packet = require("suricata.packet")

18.3. Lua Libraries 525

Suricata User Guide, Release 8.0.0

Initialization

get

Init the packet for use in the script. The packet is the current packet the engine is processing.

p = packet.get()

Time

timestamp

Get packet timestamp as 2 numbers: seconds & microseconds elapsed since 1970-01-01 00:00:00 UTC.

p = packet.get()
local sec, usec = p:timestamp()

timestring_legacy

Get packet timestamp as a string in the format: 11/24/2009-18:57:25.179869. This is the format used by fast.log,
http.log and other legacy outputs.

p = packet.get()
print p:timestring_legacy()

timestring_iso8601

Get packet timestamp as a string in the format: 2015-10-06T15:16:43.137833+0000. This is the format used by eve.

p = packet.get()
print p:timestring_iso8601()

Ports and Addresses

tuple

Using the tuple method the IP version (4 or 6), src IP and dest IP (as string), IP protocol (int) and ports (ints) are
retrieved.

The protocol value comes from the IP header, see further https://www.iana.org/assignments/protocol-numbers/
protocol-numbers.xhtml

p = packet.get()
ipver, srcip, dstip, proto, sp, dp = p:tuple()

If the protocol is ICMPv4 or ICMPv6, so when proto == 1 or proto == 58, then the final two results are icmp type and
icmp code.

526 Chapter 18. Lua support

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml
https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

Suricata User Guide, Release 8.0.0

p = packet.get()
ipver, srcip, dstip, proto, itype, icode = p:tuple()
if ipver == 6 and proto == 1 then

-- weird, ICMPv4 on IPv6
return 1

end

sp

Get the packets TCP, UDP or SCTP source port as an int. Returns nil for other protocols.

p = packet.get()
source_port = p:sp()
if source_port == 31337 then

return 1
end

dp

Get the packets TCP, UDP or SCTP destination port as an int. Returns nil for other protocols.

p = packet.get()
dest_port = p:dp()
-- not port 443
if dest_port ~= 443 then

return 1
end

Data

payload

Packet payload.

payload = p:payload()

packet

Entire packet, including headers for protocols like TCP, Ethernet, VLAN, etc.

raw_packet = p:packet()

18.3. Lua Libraries 527

Suricata User Guide, Release 8.0.0

Misc

pcap_cnt

The packet number when reading from a pcap file.

p = packet.get()
print p:pcap_cnt()

Example

Example match function that takes a packet, inspect the payload line by line and checks if it finds the HTTP request
line. If it is found, issue a notice log with packet details.

local logger = require("suricata.log")

function match (args)
p = packet.get()
payload = p:payload()
ts = p:timestring()

for line in payload:gmatch("([^\r\n]*)[\r\n]+") do
if line == "GET /index.html HTTP/1.0" then

ipver, srcip, dstip, proto, sp, dp = p:tuple()
logger.notice(string.format("%s %s->%s %d->%d (pcap_cnt:%d) match! %s", ts,␣

→˓srcip, dstip, sp, dp, p:pcap_cnt(), line));
return 1

end
end

return 0
end

18.3.13 Rule

Rule details for an alert are exposed to Lua scripts with the suricata.rule library, for example:

local rule = require("suricata.rule")

Rule Setup

For use in Suricata Lua rules, no additional setup is required.

528 Chapter 18. Lua support

Suricata User Guide, Release 8.0.0

Output Setup

For use in Suricata Lua output scripts, some additional setup is required:

function init(args)
return {

type = "packet",
filter = "alerts",

}
end

Getting a Rule Instance

To obtain a rule object, use the get_rule() function on the rule library:

local sig = rule.get_rule()

Rule Methods

action()

Returns the action of the rule, for example: alert, pass.

class_description()

Returns the classification description.

gid()

Returns the generator ID of the rule.

rev()

Returns the revision of the rule.

msg()

Returns the rule message (msg).

18.3. Lua Libraries 529

Suricata User Guide, Release 8.0.0

priority

Returns the priority of the rule as a number.

sid()

Returns the signature ID of the rule.

18.3.14 SMTP

SMTP transaction details are exposed to Lua scripts with the suricata.smtp library, for example:

local smtp = require("suricata.smtp")

Setup

If your purpose is to create a logging script, initialize the buffer as:

function init (args)
local needs = {}
needs["protocol"] = "smtp"
return needs

end

Otherwise if a detection script:

function init (args)
return {}

end

API

Transaction

SMTP is transaction based, and the current transaction must be obtained before use:

local tx, err = smtp.get_tx()
if tx == nil then

print(err)
end

All other functions are methods on the transaction table.

530 Chapter 18. Lua support

Suricata User Guide, Release 8.0.0

Transaction Methods

get_mime_field(name)

Get a specific MIME header field by name from the SMTP transaction.

Example:

local tx = smtp.get_tx()
local encoding = tx:get_mime_field("Content-Transfer-Encoding")
if encoding ~= nil then

print("Encoding: " .. subject)
end

get_mime_list()

Get all the MIME header field names from the SMTP transaction as a table.

Example:

local tx = smtp.get_tx()
local mime_fields = tx:get_mime_list()
if mime_fields ~= nil then

for i, name in pairs(mime_fields) do
local value = tx:get_mime_field(name)
print(name .. ": " .. value)

end
end

get_mail_from()

Get the sender email address from the MAIL FROM command.

Example:

local tx = smtp.get_tx()
local mail_from = tx:get_mail_from()
if mail_from ~= nil then

print("Sender: " .. mail_from)
end

get_rcpt_list()

Get all recipient email addresses from RCPT TO commands as a table.

Example:

local tx = smtp.get_tx()
local recipients = tx:get_rcpt_list()
if recipients ~= nil then

for i, recipient in pairs(recipients) do
(continues on next page)

18.3. Lua Libraries 531

Suricata User Guide, Release 8.0.0

(continued from previous page)

print("Recipient " .. i .. ": " .. recipient)
end

end

18.3.15 SSH

SSH transaction details are exposes to Lua scripts with the suricata.ssh library, For example:

local ssh = require("suricata.ssh")

If you want to use hassh, you can either set suricata.yaml option app-layer.protocols.ssh.hassh to true, or
specify it in the init function of your lua script by calling ssh.enable_hassh():

function init (args)
ssh.enable_hassh()
return {}

end

For use in rule matching, the rule must hook into a SSH transaction state. Available states are listed in Hooks. For
example:

alert ssh:response_banner_done any any -> any any (...

Setup

If your purpose is to create a logging script, initialize the buffer as:

function init (args)
local needs = {}
return needs

end

If you are going to use the script for rule matching, choose one of the available SSH buffers listed in Lua Scripting for
Detection and follow the pattern:

function init (args)
local needs = {}
return needs

end

Transaction

SSH is transaction based, and the current transaction must be obtained before use:

local tx, err = ssh.get_tx()
if tx == err then

print(err)
end

All other functions are methods on the transaction table.

532 Chapter 18. Lua support

Suricata User Guide, Release 8.0.0

Transaction Methods

server_proto()

Get the server_proto value as a string.

Example:

local tx = ssh.get_tx()
local proto = tx:server_proto();
print (proto)

client_proto()

Get the client_proto value as a string.

Example:

local tx = ssh.get_tx()
local proto = tx:client_proto();
print (proto)

server_software()

Get the server_software value as a string.

Example:

local tx = ssh.get_tx()
local software = tx:server_software();
print (software)

client_software()

Get the client_software value as a string.

Example:

local tx = ssh.get_tx()
local software = tx:client_software();
print (software)

client_hassh()

Should be used with ssh.enable_hassh().

Get MD5 of hassh algorithms used by the client through client_hassh.

Example:

local tx = ssh.get_tx()
local h = tx:client_hassh();
print (h)

18.3. Lua Libraries 533

Suricata User Guide, Release 8.0.0

client_hassh_string()

Should be used with ssh.enable_hassh().

Get hassh algorithms used by the client through client_hassh_string.

Example:

local tx = ssh.get_tx()
local h = tx:client_hassh_string();
print (h)

server_hassh()

Should be used with ssh.enable_hassh().

Get MD5 of hassh algorithms used by the server through server_hassh.

Example:

local tx = ssh.get_tx()
local h = tx:server_hassh();
print (h)

server_hassh_string()

Should be used with ssh.enable_hassh().

Get hassh algorithms used by the server through server_hassh_string.

Example:

local tx = ssh.get_tx()
local h = tx:server_hassh_string();
print (h)

18.3.16 TLS

TLS details are exposed to Lua scripts with the suricata.tls library, for example:

local tls = require("suricata.tls")

Setup

If your purpose is to create a logging script, initialize the buffer as:

function init (args)
local needs = {}
needs["protocol"] = "tls"
return needs

end

Otherwise if a detection script:

534 Chapter 18. Lua support

Suricata User Guide, Release 8.0.0

function init (args)
return {}

end

API

Transaction

TLS is transaction based, and the current transaction must be obtained before use:

local tx, err = tls.get_tx()
if tx == nil then

print(err)
end

All other functions are methods on the transaction table.

Client Methods

get_client_version

Get the negotiated version in a TLS session as a string through get_client_version.

Example:

function log (args)
t, err = tls.get_tx()
version = t:get_client_version()
if version ~= nil then

-- do something
end

end

get_client_cert_chain

Make certificate chain available to the script through get_client_cert_chain

The output is an array of certificate with each certificate being an hash with data and length keys.

Example:

-- Use debian lua-luaossl coming from https://github.com/wahern/luaossl
local x509 = require"openssl.x509"

chain = t:get_client_cert_chain()
for k, v in pairs(chain) do

-- v.length is length of data
-- v.data is raw binary data of certificate
print("data length is" .. v["length"] .. "\n")
cert = x509.new(v["data"], "DER")

(continues on next page)

18.3. Lua Libraries 535

Suricata User Guide, Release 8.0.0

(continued from previous page)

print(cert:text() .. "\n")
end

get_client_cert_info

Make certificate information available to the script through get_client_cert_info

Example:

function log (args)
version, subject, issuer, fingerprint = t:get_client_cert_info()
if version ~= nil then

-- do something
end

end

get_client_cert_not_after

Get the Unix timestamp of end of validity of certificate.

Example:

function log (args)
notafter = t:get_client_cert_not_after()
if notafter < os.time() then

-- expired certificate
end

end

get_client_cert_not_before

Get the Unix timestamp of beginning of validity of certificate.

Example:

function log (args)
notbefore = t:get_client_cert_not_before()
if notbefore > os.time() then

-- not yet valid certificate
end

end

536 Chapter 18. Lua support

Suricata User Guide, Release 8.0.0

get_client_serial

Get TLS certificate serial number through get_client_serial.

Example:

function log (args)
serial = t:get_client_serial()
if serial ~= nil then

-- do something
end

end

get_client_sni

Get the Server name Indication from a TLS connection.

Example:

function log (args)
asked_domain = t:get_client_sni()
if string.find(asked_domain, "badguys") then

-- ok connection to bad guys let's do something
end

end

Server Methods

get_server_cert_info

Make certificate information available to the script through get_server_cert_info

Example:

function log (args)
version, subject, issuer, fingerprint = t:get_server_cert_info()
if version ~= nil then

-- do something
end

end

get_server_cert_chain

Make certificate chain available to the script through get_server_cert_chain

The output is an array of certificate with each certificate being an hash with data and length keys.

Example:

18.3. Lua Libraries 537

Suricata User Guide, Release 8.0.0

-- Use debian lua-luaossl coming from https://github.com/wahern/luaossl
local x509 = require"openssl.x509"

chain = t:get_server_cert_chain()
for k, v in pairs(chain) do

-- v.length is length of data
-- v.data is raw binary data of certificate
print("data length is" .. v["length"] .. "\n")
cert = x509.new(v["data"], "DER")
print(cert:text() .. "\n")

end

get_server_cert_not_after

Get the Unix timestamp of end of validity of certificate.

Example:

function log (args)
notafter = t:get_server_cert_not_after()
if notafter < os.time() then

-- expired certificate
end

end

get_server_cert_not_before

Get the Unix timestamp of beginning of validity of certificate.

Example:

function log (args)
notbefore = t:get_server_cert_not_before()
if notbefore > os.time() then

-- not yet valid certificate
end

end

get_server_serial

Get TLS certificate serial number through get_server_serial.

Example:

function log (args)
serial = t:get_server_serial()
if serial ~= nil then

-- do something
end

end

538 Chapter 18. Lua support

Suricata User Guide, Release 8.0.0

18.3.17 JA3

JA3 details are exposed to Lua scripts with the suricata.ja3 library. For example:

local ja3 = require("suricata.ja3")

If you want to use ja3, you can either set suricata.yaml option app-layer.protocols.tls.ja3-fingerprints to
true, or specify it in the init function of your lua script by calling ja3.enable_ja3():

function init (args)
ja3.enable_ja3()
return {}

end

ja3.enable_ja3()will not enable ja3 if they are explicitly disabled, so you should add requires: feature ja3;
(see requires) to your rule.

For use in rule matching, the rule should use need ja3 or ja3s in your init script:

function init (args)
ja3.enable_ja3()
local needs = {}
needs["ja3s"] = true
return needs

end

Transaction

JA3 is transaction based, and the current transaction must be obtained before use:

local tx, err = ja3.get_tx()
if tx == err then

print(err)
end

All other functions are methods on the transaction (either a QUIC or a TLS one).

Transaction Methods

ja3_get_hash()

Get the ja3 value as a hash.

Example:

local tx = ja3.get_tx()
local h = tx:ja3_get_hash();
print (h)

18.3. Lua Libraries 539

Suricata User Guide, Release 8.0.0

ja3_get_string()

Get the ja3 value as a string.

Example:

local tx = ja3.get_tx()
local s = tx:ja3_get_string();
print (s)

ja3s_get_hash()

Get the ja3s value as a hash.

Example:

local tx = ja3.get_tx()
local h = tx:ja3s_get_hash();
print (h)

ja3s_get_string()

Get the ja3s value as a string.

Example:

local tx = ja3.get_tx()
local s = tx:ja3s_get_string();
print (s)

18.3.18 Util

The suricata.util library provides utility functions for Lua scripts.

Setup

The library must be loaded prior to use:

local util = require("suricata.util")

Functions

thread_info()

Get information about the current thread.

Returns
Table containing thread information with the following fields:

• id (number): Thread ID

540 Chapter 18. Lua support

Suricata User Guide, Release 8.0.0

• name (string): Thread name

• group_name (string): Thread group name

Example:

local util = require("suricata.util")

local info = util.thread_info()
print("Thread ID: " .. info.id)
print("Thread Name: " .. info.name)
print("Thread Group: " .. info.group_name)

18.3. Lua Libraries 541

Suricata User Guide, Release 8.0.0

542 Chapter 18. Lua support

CHAPTER

NINETEEN

FILE EXTRACTION

19.1 Architecture

The file extraction code works on top of selected protocol parsers (see supported protocols below). The application
layer parsers run on top of the stream reassembly engine and the UDP flow tracking.

In case of HTTP, the parser takes care of dechunking and unzipping the request and/or response data if necessary.

This means that settings in the stream engine, reassembly engine and the application layer parsers all affect the workings
of the file extraction.

The rule language controls which files are extracted and stored on disk.

Supported protocols are:

• HTTP

• SMTP

• FTP

• NFS

• SMB

• HTTP2

19.2 Settings

stream.checksum_validation controls whether or not the stream engine rejects packets with invalid checksums. A good
idea normally, but the network interface performs checksum offloading a lot of packets may seem to be broken. This
setting is enabled by default, and can be disabled by setting to "no". Note that the checksum handling can be controlled
per interface, see "checksum_checks" in example configuration.

file-store.stream-depth controls how far into a stream reassembly is done. Beyond this value no reassembly will be
done. This means that after this value the HTTP session will no longer be tracked. By default a setting of 1 Megabyte
is used. 0 sets it to unlimited. If set to no, it is disabled and stream.reassembly.depth is considered. Non-zero values
must be greater than stream.stream-depth to be used.

libhtp.default-config.request-body-limit / libhtp.server-config.<config>.request-body-limit controls how much of the
HTTP request body is tracked for inspection by the http_client_body keyword, but also used to limit file inspection. A
value of 0 means unlimited.

libhtp.default-config.response-body-limit / libhtp.server-config.<config>.response-body-limit is like the request body
limit, only it applies to the HTTP response body.

543

Suricata User Guide, Release 8.0.0

19.3 Output

19.3.1 File-Store and Eve Fileinfo

There are two output modules for logging information about extracted files. The first is eve.files which is an eve
sub-logger that logs fileinfo records. These fileinfo records provide metadata about the file, but not the actual
file contents.

This must be enabled in the eve output:

- outputs:
- eve-log:
types:

- files:
force-magic: no
force-hash: [md5,sha256]

See Eve (Extensible Event Format) for more details on working with the eve output.

The other output module, file-store stores the actual files to disk.

The file-store module uses its own log directory (default: filestore in the default logging directory) and logs files
using the SHA256 of the contents as the filename. Each file is then placed in a directory named 00 to ff where the
directory shares the first 2 characters of the filename. For example, if the SHA256 hex string of an extracted file starts
with "f9bc6d..." the file we be placed in the directory filestore/f9.

The size of a file that can be stored depends on file-store.stream-depth, if this value is reached a file can be
truncated and might not be stored completely. If not enabled, stream.reassembly.depth will be considered.

Setting file-store.stream-depth to 0 permits store of the entire file; here, 0 means "unlimited."

file-store.stream-depth will always override stream.reassembly.depth when filestore keyword is used.
However, it is not possible to set file-store.stream-depth to a value less than stream.reassembly.depth.
Values less than this amount are ignored and a warning message will be displayed.

A protocol parser, like modbus, could permit to set a different store-depth value and use it rather than file-store.
stream-depth.

Using the SHA256 for file names allows for automatic de-duplication of extracted files. However, the timestamp of a
preexisting file will be updated if the same files is extracted again, similar to the touch command.

Optionally a fileinfo record can be written to its own file sharing the same SHA256 as the file it references. To
handle recording the metadata of each occurrence of an extracted file, these filenames include some extra fields to
ensure uniqueness. Currently the format is:

<SHA256>.<SECONDS>.<ID>.json

where <SECONDS> is the seconds from the packet that triggered the stored file to be closed and <ID> is a unique ID for
the runtime of the Suricata instance. These values should not be depended on, and are simply used to ensure uniqueness.

These fileinfo records are identical to the fileinfo records logged to the eve output.

See File-store (File Extraction) for more information on configuring the file-store output.

Note: This section documents version 2 of the file-store. Version 1 of the file-store has been removed as of
Suricata version 6.

544 Chapter 19. File Extraction

Suricata User Guide, Release 8.0.0

19.4 Rules

Without rules in place no extraction will happen. The simplest rule would be:

alert http any any -> any any (msg:"FILE store all"; filestore; sid:1; rev:1;)

This will simply store all files to disk.

Want to store all files with a pdf extension?

alert http any any -> any any (msg:"FILE PDF file claimed"; fileext:"pdf"; filestore;␣
→˓sid:2; rev:1;)

Or rather all actual pdf files?

alert http any any -> any any (msg:"FILE pdf detected"; filemagic:"PDF document";␣
→˓filestore; sid:3; rev:1;)

Or rather only store files from black list checksum md5 ?

alert http any any -> any any (msg:"Black list checksum match and extract MD5";␣
→˓filemd5:fileextraction-chksum.list; filestore; sid:4; rev:1;)

Or only store files from black list checksum sha1 ?

alert http any any -> any any (msg:"Black list checksum match and extract SHA1";␣
→˓filesha1:fileextraction-chksum.list; filestore; sid:5; rev:1;)

Or finally store files from black list checksum sha256 ?

alert http any any -> any any (msg:"Black list checksum match and extract SHA256";␣
→˓filesha256:fileextraction-chksum.list; filestore; sid:6; rev:1;)

Bundled with the Suricata download, is a file with more example rules. In the archive, go to the rules directory and
check the files.rules file.

19.5 MD5

Suricata can calculate MD5 checksums of files on the fly and log them. See Storing MD5s checksums for an explanation
on how to enable this.

19.5.1 Storing MD5s checksums

Configuration

In the Suricata config file:

- file-store:
enabled: yes # set to yes to enable
dir: filestore # directory to store the files
force-hash: [md5] # force logging of md5 checksums

For JSON output:

19.4. Rules 545

Suricata User Guide, Release 8.0.0

outputs:
- eve-log:
enabled: yes
filetype: regular #regular|syslog|unix_dgram|unix_stream|redis
filename: eve.json
types:
- files:
force-magic: no # force logging magic on all logged files
force logging of checksums, available hash functions are md5,
sha1 and sha256
#force-hash: [md5]

Other settings affecting File Extraction

stream:
memcap: 64mb
checksum-validation: yes # reject wrong csums
inline: no # no inline mode
reassembly:
memcap: 32mb
depth: 0 # reassemble all of a stream
toserver-chunk-size: 2560
toclient-chunk-size: 2560

Make sure we have depth: 0 so all files can be tracked fully.

libhtp:
default-config:
personality: IDS
Can be specified in kb, mb, gb. Just a number indicates
it's in bytes.
request-body-limit: 0
response-body-limit: 0

Make sure we have request-body-limit: 0 and response-body-limit: 0

Testing

For the purpose of testing we use this rule only in a file.rules (a test/example file):

alert http any any -> any any (msg:"FILE store all"; filestore; sid:1; rev:1;)

This rule above will save all the file data for files that are opened/downloaded through HTTP

Start Suricata (-S option ONLY loads the specified rule file and disregards any other rules that are enabled in suri-
cata.yaml):

suricata -c /etc/suricata/suricata.yaml -S file.rules -i eth0

Meta data:

TIME: 05/01/2012-11:09:52.425751
SRC IP: 2.23.144.170

(continues on next page)

546 Chapter 19. File Extraction

Suricata User Guide, Release 8.0.0

(continued from previous page)

DST IP: 192.168.1.91
PROTO: 6
SRC PORT: 80
DST PORT: 51598
HTTP URI: /en/US/prod/collateral/routers/ps5855/prod_brochure0900aecd8019dc1f.
→˓pdf
HTTP HOST: www.cisco.com
HTTP REFERER: http://www.cisco.com/c/en/us/products/routers/3800-series-integrated-
→˓services-routers-isr/index.html
FILENAME: /en/US/prod/collateral/routers/ps5855/prod_brochure0900aecd8019dc1f.
→˓pdf
MAGIC: PDF document, version 1.6
STATE: CLOSED
MD5: 59eba188e52467adc11bf2442ee5bf57
SIZE: 9485123

and in files-json.log (or eve.json) :

{ "id": 1, "timestamp": "05\/01\/2012-11:10:27.693583", "ipver": 4, "srcip": "2.23.144.
→˓170", "dstip": "192.168.1.91", "protocol": 6, "sp": 80, "dp": 51598, "http_uri": "\/en\
→˓/US\/prod\/collateral\/routers\/ps5855\/prod_brochure0900aecd8019dc1f.pdf", "http_host
→˓": "www.cisco.com", "http_referer": "http:\/\/www.google.com\/url?sa=t&rct=j&q=&esrc=s&
→˓source=web&cd=1&ved=0CDAQFjAA&url=http%3A%2F%2Fwww.cisco.com%2Fen%2FUS%2Fprod
→˓%2Fcollateral%2Frouters%2Fps5855%2Fprod_brochure0900aecd8019dc1f.pdf&
→˓ei=OqyfT9eoJubi4QTyiamhAw&usg=AFQjCNGdjDBpBDfQv2r3VogSH41V6T5x9Q", "filename": "\/en\/
→˓US\/prod\/collateral\/routers\/ps5855\/prod_brochure0900aecd8019dc1f.pdf", "magic":
→˓"PDF document, version 1.6", "state": "CLOSED", "md5":
→˓"59eba188e52467adc11bf2442ee5bf57", "stored": true, "size": 9485123 }
{ "id": 12, "timestamp": "05\/01\/2012-11:12:57.421420", "ipver": 4, "srcip": "2.23.144.
→˓170", "dstip": "192.168.1.91", "protocol": 6, "sp": 80, "dp": 51598, "http_uri": "\/en\
→˓/US\/prod\/collateral\/routers\/ps5855\/prod_brochure0900aecd8019dc1f.pdf", "http_host
→˓": "www.cisco.com", "http_referer": "http:\/\/www.google.com\/url?sa=t&rct=j&q=&esrc=s&
→˓source=web&cd=1&ved=0CDAQFjAA&url=http%3A%2F%2Fwww.cisco.com%2Fen%2FUS%2Fprod
→˓%2Fcollateral%2Frouters%2Fps5855%2Fprod_brochure0900aecd8019dc1f.pdf&
→˓ei=OqyfT9eoJubi4QTyiamhAw&usg=AFQjCNGdjDBpBDfQv2r3VogSH41V6T5x9Q", "filename": "\/en\/
→˓US\/prod\/collateral\/routers\/ps5855\/prod_brochure0900aecd8019dc1f.pdf", "magic":
→˓"PDF document, version 1.6", "state": "CLOSED", "md5":
→˓"59eba188e52467adc11bf2442ee5bf57", "stored": true, "size": 9485123 }

Log all MD5s without any rules

If you would like to log MD5s for everything and anything that passes through the traffic that you are inspecting with
Suricata, but not log the files themselves, all you have to do is disable file-store and enable only the JSON output with
forced MD5s - in suricata.yaml like so:

- file-store:
version: 2
enabled: no # set to yes to enable
log-dir: files # directory to store the files
force-filestore: no
force-hash: [md5] # force logging of md5 checksums

19.5. MD5 547

Suricata User Guide, Release 8.0.0

19.5.2 Public SHA1 MD5 data sets

National Software Reference Library - http://www.nsrl.nist.gov/Downloads.html

19.6 Updating Filestore Configuration

19.6.1 Update File-store v1 Configuration to V2

Given a file-store configuration like:

- file-store:
enabled: yes # set to yes to enable
log-dir: files # directory to store the files
force-magic: no # force logging magic on all stored files
force-hash: [md5] # force logging of md5 checksums
force-filestore: no # force storing of all files
stream-depth: 1mb # reassemble 1mb into a stream, set to no to disable
waldo: file.waldo # waldo file to store the file_id across runs
max-open-files: 0 # how many files to keep open (O means none)
write-meta: yes # write a .meta file if set to yes
include-pid: yes # include the pid in filenames if set to yes.

The following changes will need to be made to convert to a v2 style configuration:

• The version field must be set to 2.

• The log-dir field should be renamed to dir. It is recommended to use a new directory instead of an existing
v1 directory.

• Remove the waldo option. It is no longer used.

• Remove the write-meta option.

• Optionally set write-fileinfo to enable writing of a metadata file along side the extracted file. Not that this
option is disabled by default as a fileinfo event can be written to the Eve log file.

• Remove the include-pid option. There is no equivalent to this option in file-store v2.

Example converted configuration:

- file-store:
version: 2
enabled: yes
dir: filestore
force-hash: [md5]
file-filestore: no
stream-depth: 1mb
max-open-files: 0
write-fileinfo: yes

Refer to the File Extraction section of the manual for information about the format of the file-store directory for file-store
v2.

548 Chapter 19. File Extraction

http://www.nsrl.nist.gov/Downloads.html

CHAPTER

TWENTY

PUBLIC DATA SETS

Collections of pcaps for testing and profiling.

DARPA sets: https://www.ll.mit.edu/r-d/datasets?author=All&rdarea=All&rdgroup=All&keywords=cyber&tag=
All&items_per_page=10

MAWI sets (pkt headers only, no payloads): http://mawi.wide.ad.jp/mawi/samplepoint-F/2012/

MACCDC: http://www.netresec.com/?page=MACCDC

Netresec: http://www.netresec.com/?page=PcapFiles

Wireshark: https://gitlab.com/wireshark/wireshark/-/wikis/SampleCaptures

Security Onion collection: https://docs.securityonion.net/en/2.4/pcaps.html

Stratosphere IPS. Malware Capture Facility Project: https://stratosphereips.org/category/dataset.html

549

https://www.ll.mit.edu/r-d/datasets?author=All&rdarea=All&rdgroup=All&keywords=cyber&tag=All&items_per_page=10
https://www.ll.mit.edu/r-d/datasets?author=All&rdarea=All&rdgroup=All&keywords=cyber&tag=All&items_per_page=10
http://mawi.wide.ad.jp/mawi/samplepoint-F/2012/
http://www.netresec.com/?page=MACCDC
http://www.netresec.com/?page=PcapFiles
https://gitlab.com/wireshark/wireshark/-/wikis/SampleCaptures
https://docs.securityonion.net/en/2.4/pcaps.html
https://stratosphereips.org/category/dataset.html

Suricata User Guide, Release 8.0.0

550 Chapter 20. Public Data Sets

CHAPTER

TWENTYONE

USING CAPTURE HARDWARE

21.1 Endace DAG

Suricata comes with native Endace DAG card support. This means Suricata can use the libdag interface directly, instead
of a libpcap wrapper (which should also work).

Steps:

Configure with DAG support:

./configure --enable-dag --prefix=/usr --sysconfdir=/etc --localstatedir=/var
make
sudo make install

Results in:

Suricata Configuration:
AF_PACKET support: no
PF_RING support: no
NFQueue support: no
IPFW support: no
DAG enabled: yes
Napatech enabled: no

Start with:

suricata -c suricata.yaml --dag 0:0

Started up!

[5570] 10/7/2012 -- 13:52:30 - (source-erf-dag.c:262) <Info> (ReceiveErfDagThreadInit) --
→˓ Attached and started stream: 0 on DAG: /dev/dag0
[5570] 10/7/2012 -- 13:52:30 - (source-erf-dag.c:288) <Info> (ReceiveErfDagThreadInit) --
→˓ Starting processing packets from stream: 0 on DAG: /dev/dag0

551

Suricata User Guide, Release 8.0.0

21.2 Napatech

21.2.1 Contents

• Introduction

• Package Installation

• Basic Configuration

• Advanced Multithreaded Configuration

21.2.2 Introduction

Napatech packet capture accelerator cards can greatly improve the performance of your Suricata deployment using
these hardware based features:

• On board burst buffering (up to 12GB)

• Zero-copy kernel bypass DMA

• Non-blocking PCIe performance

• Port merging

• Load distribution to up 128 host buffers

• Precise timestamping

• Accurate time synchronization

The package uses a proprietary shell script to handle the installation process. In either case, gcc, make and the kernel
header files are required to compile the kernel module and install the software.

21.2.3 Package Installation

Note that make, gcc, and the kernel headers are required for installation

Root privileges are also required

The latest driver and tools installation package can be downloaded from: https://www.napatech.com/downloads.

Note that you will be prompted to install the Napatech libpcap library. Answer "yes" if you would like to use the
Napatech card to capture packets in Wireshark, tcpdump, or another pcap based application. Libpcap is not needed
for Suricata as native Napatech API support is included

Red Hat Based Distros:

$ yum install kernel-devel-$(uname -r) gcc make
$./package_install_3gd.sh

Debian Based Distros:

$ apt-get install linux-headers-$(uname .r) gcc make
$./package_install_3gd.sh

To complete installation for all distros ntservice:

552 Chapter 21. Using Capture Hardware

https://www.napatech.com/downloads

Suricata User Guide, Release 8.0.0

$ /opt/napatech3/bin/ntstart.sh -m

21.2.4 Suricata Installation

After downloading and extracting the Suricata tarball, you need to run configure to enable Napatech support and prepare
for compilation:

$./configure --enable-napatech --with-napatech-includes=/opt/napatech3/include --with-
→˓napatech-libraries=/opt/napatech3/lib
$ make
$ make install-full

21.2.5 Suricata configuration

Now edit the suricata.yaml file to configure the system. There are three ways the system can be configured:

1. Auto-config without cpu-affinity: In this mode you specify the stream configuration in suricata.yaml
file and allow the threads to roam freely. This is good for single processor systems where NUMA node
configuration is not a performance concern.

2. Auto-config with cpu-affinity: In this mode you use the cpu-affinity of the worker threads to control
the creation and configuration of streams. One stream and one worker thread will be created for each
cpu identified in suricata.yaml. This is best in systems with multiple NUMA nodes (i.e. multi-processor
systems) as the NUMA node of the host buffers is matched to the core on which the thread is running.

3. Manual-config (legacy): In this mode the underlying Napatech streams are configured by issuing NTPL
commands prior to running Suricata. Suricata then connects to the existing streams on startup.

21.2.6 Example Configuration - Auto-config without cpu-affinity:

If cpu-affinity is not used it is necessary to explicitly define the streams in the Suricata configuration file. To use this
option the following options should be set in the Suricata configuration file:

1. Turn off cpu-affinity

2. Enable the Napatech "auto-config" option

3. Specify the streams that should be created on startup

4. Specify the ports that will provide traffic to Suricata

5. Specify the hashmode used to distribute traffic to the streams

Below are the options to set:

threading:
set-cpu-affinity: no
.
.
.

napatech:
auto-config: yes
streams: ["0-3"]

(continues on next page)

21.2. Napatech 553

Suricata User Guide, Release 8.0.0

(continued from previous page)

ports: [all]
hashmode: hash5tuplesorted

Now modify ntservice.ini. You also need make sure that you have allocated enough host buffers in ntservice.
ini for the streams. It's a good idea to also set the TimeSyncReferencePriority. To do this make the following
changes to ntservice.ini:

HostBuffersRx = [4,16,-1] # [number of host buffers, Size(MB), NUMA node] TimeSyncReferencePrior-
ity = OSTime # Timestamp clock synchronized to the OS

Stop and restart ntservice after making changes to ntservice:

$ /opt/napatech3/bin/ntstop.sh
$ /opt/napatech3/bin/ntstart.sh

Now you are ready to start Suricata:

$ suricata -c /usr/local/etc/suricata/suricata.yaml --napatech --runmode workers

21.2.7 Example Configuration - Auto-config with cpu-affinity:

This option will create a single worker-thread and stream for each CPU defined in the worker-cpu-set. To use this
option make the following changes to suricata.yaml:

1. Turn on cpu-affinity

2. Specify the worker-cpu-set

3. Enable the Napatech "auto-config" option

4. Specify the ports that will provide traffic to Suricata

5. Specify the hashmode that will be used to control the distribution of traffic to the different streams/cpus.

When you are done it should look similar to this:

threading:
set-cpu-affinity: yes
cpu-affinity:
management-cpu-set:
cpu: [0]

receive-cpu-set:
cpu: [0]

worker-cpu-set:
cpu: [all]
.
.
.

napatech:
auto-config: yes
ports: [all]
hashmode: hash5tuplesorted

Prior to running Suricata in this mode you also need to configure a sufficient number of host buffers on each NUMA
node. So, for example, if you have a two processor server with 32 total cores and you plan to use all of the cores you

554 Chapter 21. Using Capture Hardware

Suricata User Guide, Release 8.0.0

will need to allocate 16 host buffers on each NUMA node. It is also desirable to set the Napatech cards time source to
the OS.

To do this make the following changes to ntservice.ini:

TimeSyncReferencePriority = OSTime # Timestamp clock synchronized to the OS
HostBuffersRx = [16,16,0],[16,16,1] # [number of host buffers, Size(MB), NUMA node]

Stop and restart ntservice after making changes to ntservice:

$ /opt/napatech3/bin/ntstop.sh -m
$ /opt/napatech3/bin/ntstart.sh -m

Now you are ready to start Suricata:

$ suricata -c /usr/local/etc/suricata/suricata.yaml --napatech --runmode workers

21.2.8 Example Configuration - Manual Configuration

For Manual Configuration the Napatech streams are created by running NTPL commands prior to running Suricata.

Note that this option is provided primarily for legacy configurations as previously this was the only way to configure
Napatech products. Newer capabilities such as flow-awareness and inline processing cannot be configured manually.

In this example we will setup the Napatech capture accelerator to merge all physical ports, and then distribute the
merged traffic to four streams that Suricata will ingest.

The steps for this configuration are:
1. Disable the Napatech auto-config option in suricata.yaml

2. Specify the streams that Suricata is to use in suricata.yaml

3. Create a file with NTPL commands to create the underlying Napatech streams.

First suricata.yaml should be configured similar to the following:

napatech:
auto-config: no
streams: ["0-3"]

Next you need to make sure you have enough host buffers defined in ntservice.ini. As it's also a good idea to set up the
TimeSync. Here are the lines to change:

TimeSyncReferencePriority = OSTime # Timestamp clock synchronized to the OS
HostBuffersRx = [4,16,-1] # [number of host buffers, Size(MB), NUMA node]

Stop and restart ntservice after making changes to ntservice:

$ /opt/napatech3/bin/ntstop.sh
$ /opt/napatech3/bin/ntstart.sh

Now that ntservice is running we need to execute a few NTPL (Napatech Programming Language) commands to com-
plete the setup. Create a file will the following commands:

Delete=All # Delete any existing filters
Assign[streamid=(0..3)]= all # Assign all physical ports to stream ID 0

21.2. Napatech 555

Suricata User Guide, Release 8.0.0

Next execute those command using the ntpl tool:

$ /opt/napatech3/bin/ntpl -f <my_ntpl_file>

Now you are ready to start Suricata:

$ suricata -c /usr/local/etc/suricata/suricata.yaml --napatech --runmode workers

It is possible to specify much more elaborate configurations using this option. Simply by creating the appropriate NTPL
file and attaching Suricata to the streams.

21.2.9 Bypassing Flows

On flow-aware Napatech products, traffic from individual flows can be automatically dropped or, in the case of inline
configurations, forwarded by the hardware after an inspection of the initial packet(s) of the flow by Suricata. This will
save CPU cycles since Suricata does not process packets for a flow that has already been adjudicated. This is enabled
via the hardware-bypass option in the Napatech section of the configuration file.

When hardware bypass is used it is important that the ports accepting upstream and downstream traffic from the network
are configured with information on which port the two sides of the connection will arrive. This is needed for the
hardware to properly process traffic in both directions. This is indicated in the "ports" section as a hyphen separated
list of port-pairs that will be receiving upstream and downstream traffic E.g.:

napatech:
hardware-bypass: true
ports[0-1,2-3]

Note that these "port-pairings" are also required for IDS configurations as the hardware needs to know on which port(s)
two sides of the connection will arrive.

For configurations relying on optical taps the two sides of the pairing will typically be different ports. For SPAN port
configurations where both upstream and downstream traffic are delivered to a single port both sides of the "port-pair"
will reference the same port.

For example tap configurations have a form similar to this:

ports[0-1,2-3]

Whereas SPAN port configurations it would look similar to this:

ports[0-0,1-1,2-2,3-3]

Note that SPAN and tap configurations may be combined on the same adapter.

There are multiple ways that Suricata can be configured to bypass traffic. One way is to enable stream.bypass in the
configuration file. E.g.:

stream:
bypass: true

When enabled once Suricata has evaluated the first chunk of the stream (the size of which is also configurable) it will
indicate that the rest of the packets in the flow can be bypassed. In IDS mode this means that the subsequent packets of
the flow will be dropped and not delivered to Suricata. In inline operation the packets will be transmitted on the output
port but not delivered to Suricata.

556 Chapter 21. Using Capture Hardware

Suricata User Guide, Release 8.0.0

Another way is by specifying the "bypass" keyword in a rule. When a rule is triggered with this keyword then the "pass"
or "drop" action will be applied to subsequent packets of the flow automatically without further analysis by Suricata.
For example given the rule:

drop tcp any 443 <> any any (msg: "SURICATA Test rule"; bypass; sid:1000001; rev:2;)

Once Suricata initially evaluates the fist packet(s) and identifies the flow, all subsequent packets from the flow will be
dropped by the hardware; thus saving CPU cycles for more important tasks.

The timeout value for how long to wait before evicting stale flows from the hardware flow table can be specified via the
FlowTimeout attribute in ntservice.ini.

21.2.10 Inline Operation

Napatech flow-aware products can be configured for inline operation. This is specified in the configuration file. When
enabled, ports are specified as port-pairs. With traffic received from one port it is transmitted out the the peer port after
inspection by Suricata. E.g. the configuration:

napatech:
inline: enabled
ports[0-1, 2-3]

Will pair ports 0 and 1; and 2 and 3 as peers. Rules can be defined to pass traffic matching a given signature. For
example, given the rule:

pass tcp any 443 <> any any (msg: "SURICATA Test rule"; bypass; sid:1000001; rev:2;)

Suricata will evaluate the initial packet(s) of the flow and program the flow into the hardware. Subsequent packets from
the flow will be automatically be shunted from one port to it's peer.

21.2.11 Counters

The following counters are available:

• napa_total.pkts - The total of packets received by the card.

• napa_total.byte - The total count of bytes received by the card.

• napa_total.overflow_drop_pkts - The number of packets that were dropped because the host buffers were full.
(I.e. the application is not able to process packets quickly enough.)

• napa_total.overflow_drop_byte - The number of bytes that were dropped because the host buffers were full. (I.e.
the application is not able to process packets quickly enough.)

On flow-aware products the following counters are also available:

• napa_dispatch_host.pkts, napa_dispatch_host.byte:

The total number of packets/bytes that were dispatched to a host buffer for processing by Suricata. (Note: this
count includes packets that may be subsequently dropped if there is no room in the host buffer.)

• napa_dispatch_drop.pkts, napa_dispatch_drop.byte:

The total number of packets/bytes that were dropped at the hardware as a result of a Suricata "drop" bypass rule
or other adjudication by Suricata that the flow packets should be dropped. These packets are not delivered to the
application.

21.2. Napatech 557

Suricata User Guide, Release 8.0.0

• napa_dispatch_fwd.pkts, napa_dispatch_fwd.byte:

When inline operation is configured this is the total number of packets/bytes that were forwarded as result of a
Suricata "pass" bypass rule or as a result of stream or encryption bypass being enabled in the configuration file.
These packets were not delivered to the application.

• napa_bypass.active_flows:

The number of flows actively programmed on the hardware to be forwarded or dropped.

• napa_bypass.total_flows:

The total count of flows programmed since the application started.

If enable-stream-stats is enabled in the configuration file then, for each stream that is being processed, the following
counters will be output in stats.log:

• napa<streamid>.pkts: The number of packets received by the stream.

• napa<streamid>.bytes: The total bytes received by the stream.

• napa<streamid>.drop_pkts: The number of packets dropped from this stream due to buffer overflow conditions.

• napa<streamid>.drop_byte: The number of bytes dropped from this stream due to buffer overflow conditions.

This is useful for fine-grain debugging to determine if a specific CPU core or thread is falling behind resulting in
dropped packets.

Debugging:

For debugging configurations it is useful to see what traffic is flowing as well as what streams are created and receiving
traffic. There are two tools in /opt/napatech3/bin that are useful for this:

• monitoring: this tool will, among other things, show what traffic is arriving at the port interfaces.

• profiling: this will show host-buffers, streams and traffic flow to the streams.

If Suricata terminates abnormally stream definitions, which are normally removed at shutdown, may remain in effect.
If this happens they can be cleared by issuing the "delete=all" NTPL command as follows:

/opt/napatech3/bin/ntpl -e "delete=all"

21.2.12 Napatech configuration options:

These are the Napatech options available in the Suricata configuration file:

napatech:
When use_all_streams is set to "yes" the initialization code will query
the Napatech service for all configured streams and listen on all of them.
When set to "no" the streams config array will be used.
#
This option necessitates running the appropriate NTPL commands to create
the desired streams prior to running Suricata.
#use-all-streams: no

The streams to listen on when auto-config is disabled or when threading
cpu-affinity is disabled. This can be either:
an individual stream (e.g. streams: [0])
or
a range of streams (e.g. streams: ["0-3"])

(continues on next page)

558 Chapter 21. Using Capture Hardware

Suricata User Guide, Release 8.0.0

(continued from previous page)

#
streams: ["0-3"]

Stream stats can be enabled to provide fine grain packet and byte counters
for each thread/stream that is configured.
#
enable-stream-stats: no

When auto-config is enabled the streams will be created and assigned
automatically to the NUMA node where the thread resides. If cpu-affinity
is enabled in the threading section, then the streams will be created
according to the number of worker threads specified in the worker cpu set.
Otherwise, the streams array is used to define the streams.
#
This option cannot be used simultaneous with "use-all-streams".
#
auto-config: yes

Enable hardware level flow bypass.
#
hardware-bypass: yes

Enable inline operation. When enabled traffic arriving on a given port is
automatically forwarded out it's peer port after analysis by Suricata.
hardware-bypass must be enabled when this is enabled.
#
inline: no

Ports indicates which napatech ports are to be used in auto-config mode.
these are the port ID's of the ports that will be merged prior to the
traffic being distributed to the streams.
#
When hardware-bypass is enabled the ports must be configured as a segment
specify the port(s) on which upstream and downstream traffic will arrive.
This information is necessary for the hardware to properly process flows.
#
When using a tap configuration one of the ports will receive inbound traffic
for the network and the other will receive outbound traffic. The two ports on a
given segment must reside on the same network adapter.
#
When using a SPAN-port configuration the upstream and downstream traffic
arrives on a single port. This is configured by setting the two sides of the
segment to reference the same port. (e.g. 0-0 to configure a SPAN port on
port 0).
#
port segments are specified in the form:
ports: [0-1,2-3,4-5,6-6,7-7]
#
For legacy systems when hardware-bypass is disabled this can be specified in any
of the following ways:
#
a list of individual ports (e.g. ports: [0,1,2,3])

(continues on next page)

21.2. Napatech 559

Suricata User Guide, Release 8.0.0

(continued from previous page)

#
a range of ports (e.g. ports: [0-3])
#
"all" to indicate that all ports are to be merged together
(e.g. ports: [all])
#
This parameter has no effect if auto-config is disabled.
#
ports: [0-1,2-3]

When auto-config is enabled the hashmode specifies the algorithm for
determining to which stream a given packet is to be delivered.
This can be any valid Napatech NTPL hashmode command.
#
The most common hashmode commands are: hash2tuple, hash2tuplesorted,
hash5tuple, hash5tuplesorted and roundrobin.
#
See Napatech NTPL documentation other hashmodes and details on their use.
#
This parameter has no effect if auto-config is disabled.
#
hashmode: hash5tuplesorted

Make sure that there are enough host-buffers declared in ntservice.ini to accommodate the number of cores/streams
being used.

21.2.13 Support

Contact a support engineer at: ntsupport@napatech.com

Napatech Documentation can be found at: https://docs.napatech.com (Click the search icon, with no search text, to see
all documents in the portal.)

21.3 Myricom

From: https://blog.inliniac.net/2012/07/10/suricata-on-myricom-capture-cards/

In this guide I'll describe using the Myricom libpcap support. I'm going to assume you installed the card properly,
installed the Sniffer driver and made sure that all works. Make sure dmesg shows that the card is in sniffer mode:

[2102.860241] myri_snf INFO: eth4: Link0 is UP
[2101.341965] myri_snf INFO: eth5: Link0 is UP

I have installed the Myricom runtime and libraries in /opt/snf

Compile Suricata against Myricom's libpcap:

./configure --with-libpcap-includes=/opt/snf/include/ --with-libpcap-libraries=/opt/snf/
→˓lib/ --prefix=/usr --sysconfdir=/etc --localstatedir=/var
make
sudo make install

560 Chapter 21. Using Capture Hardware

mailto:ntsupport@napatech.com
https://docs.napatech.com
https://blog.inliniac.net/2012/07/10/suricata-on-myricom-capture-cards/

Suricata User Guide, Release 8.0.0

Next, configure the amount of ringbuffers. I'm going to work with 8 here, as my quad core + hyper threading has 8
logical CPUs. See below for additional information about the buffer-size parameter.

pcap:
- interface: eth5
threads: 8
buffer-size: 512kb
checksum-checks: no

The 8 threads setting causes Suricata to create 8 reader threads for eth5. The Myricom driver makes sure each of those
is attached to its own ringbuffer.

Then start Suricata as follows:

SNF_NUM_RINGS=8 SNF_FLAGS=0x1 suricata -c suricata.yaml -i eth5 --runmode=workers

If you want 16 ringbuffers, update the "threads" variable in the Suricata configuration file to 16 and start Suricata:

SNF_NUM_RINGS=16 SNF_FLAGS=0x1 suricata -c suricata.yaml -i eth5 --runmode=workers

Note that the pcap.buffer-size configuration setting shown above is currently ignored when using Myricom cards.
The value is passed through to the pcap_set_buffer_size libpcap API within the Suricata source code. From
Myricom support:

"The libpcap interface to Sniffer10G ignores the pcap_set_buffer_size() value. The call␣
→˓to snf_open() uses zero as the dataring_size which informs the Sniffer library to use␣
→˓a default value or the value from the SNF_DATARING_SIZE environment variable."

The following pull request opened by Myricom in the libpcap project indicates that a future SNF software release could
provide support for setting the SNF_DATARING_SIZE via the pcap.buffer-size yaml setting:

• https://github.com/the-tcpdump-group/libpcap/pull/435

Until then, the data ring and descriptor ring values can be explicitly set using the SNF_DATARING_SIZE and
SNF_DESCRING_SIZE environment variables, respectively.

The SNF_DATARING_SIZE is the total amount of memory to be used for storing incoming packet data. This size
is shared across all rings. The SNF_DESCRING_SIZE is the total amount of memory to be used for storing meta
information about the packets (packet lengths, offsets, timestamps). This size is also shared across all rings.

Myricom recommends that the descriptor ring be 1/4 the size of the data ring, but the ratio can be modified based on
your traffic profile. If not set explicitly, Myricom uses the following default values: SNF_DATARING_SIZE = 256MB,
and SNF_DESCRING_SIZE = 64MB

Expanding on the 16 thread example above, you can start Suricata with a 16GB Data Ring and a 4GB Descriptor Ring
using the following command:

SNF_NUM_RINGS=16 SNF_DATARING_SIZE=17179869184 SNF_DESCRING_SIZE=4294967296 SNF_
→˓FLAGS=0x1 suricata -c suricata.yaml -i eth5 --runmode=workers

21.3. Myricom 561

https://github.com/the-tcpdump-group/libpcap/pull/435

Suricata User Guide, Release 8.0.0

21.3.1 Debug Info

Myricom also provides a means for obtaining debug information. This can be useful for verifying your configuration
and gathering additional information. Setting SNF_DEBUG_MASK=3 enables debug information, and optionally
setting the SNF_DEBUG_FILENAME allows you to specify the location of the output file.

Following through with the example:

SNF_NUM_RINGS=16 SNF_DATARING_SIZE=17179869184 SNF_DESCRING_SIZE=4294967296 SNF_
→˓FLAGS=0x1 SNF_DEBUG_MASK=3 SNF_DEBUG_FILENAME="/tmp/snf.out" suricata -c suricata.yaml␣
→˓-i eth5 --runmode=workers

21.3.2 Additional Info

• http://www.40gbe.net/index_files/be59da7f2ab5bf0a299ab99ef441bb2e-28.html

• https://www.broadcom.com/support/knowledgebase/1211161394432/how-to-use-emulex-oneconnect-oce12000-d-adapters-with-faststack-

21.4 eBPF and XDP

21.4.1 Introduction

eBPF stands for extended BPF. This is an extended version of Berkeley Packet Filter available in recent Linux kernel
versions.

It provides more advanced features with eBPF programs developed in C and capability to use structured data shared
between kernel and userspace.

eBPF is used for three things in Suricata:

• eBPF filter: any BPF like filter can be developed. An example of filter accepting only packet for some VLANs
is provided. A bypass implementation is also provided.

• eBPF load balancing: provide programmable load balancing. Simple ippair load balancing is provided.

• XDP programs: Suricata can load XDP programs. A bypass program is provided.

Bypass can be implemented in eBPF and XDP. The advantage of XDP is that the packets are dropped at the earliest
stage possible. So performance is better. But bypassed packets don't reach the network so you can't use this on regular
traffic but only on duplicated/sniffed traffic.

The bypass implementation relies on one of the most powerful concept of eBPF: maps. A map is a data structure shared
between user space and kernel space/hardware. It allows user space and kernel space to interact, pass information. Maps
are often implemented as arrays or hash tables that can contain arbitrary key, value pairs.

562 Chapter 21. Using Capture Hardware

http://www.40gbe.net/index_files/be59da7f2ab5bf0a299ab99ef441bb2e-28.html
https://www.broadcom.com/support/knowledgebase/1211161394432/how-to-use-emulex-oneconnect-oce12000-d-adapters-with-faststack

Suricata User Guide, Release 8.0.0

XDP

XDP provides another Linux native way of optimising Suricata's performance on sniffing high speed networks:

XDP or eXpress Data Path provides a high performance, programmable network data path in the Linux
kernel as part of the IO Visor Project. XDP provides bare metal packet processing at the lowest point in
the software stack which makes it ideal for speed without compromising programmability. Furthermore,
new functions can be implemented dynamically with the integrated fast path without kernel modification.

More info about XDP:

• IOVisor's XDP page

• Cilium's BPF and XDP reference guide

21.4.2 Requirements

You will need a kernel that supports XDP and, for the most performance improvement, a network card that support
XDP in the driver.

Suricata XDP code has been tested with 4.13.10 but 4.15 or later is necessary to use all features like the CPU redirect
map.

If you are using an Intel network card, you will need to stay with in tree kernel NIC drivers. The out of tree drivers do
not contain the XDP support.

Having a network card with support for RSS symmetric hashing is a good point or you will have to use the XDP CPU
redirect map feature.

21.4.3 Prerequisites

This guide has been confirmed on Debian/Ubuntu "LTS" Linux.

Disable irqbalance

irqbalance may cause issues in most setups described here, so it is recommended to deactivate it

systemctl stop irqbalance
systemctl disable irqbalance

Kernel

You need to run a kernel 4.13 or newer.

21.4. eBPF and XDP 563

https://www.iovisor.org/technology/xdp
https://docs.cilium.io/en/stable/bpf/

Suricata User Guide, Release 8.0.0

Clang and dependencies

Make sure you have clang (>=3.9) installed on the system

sudo apt install clang

libbpf

Suricata uses libbpf to interact with eBPF and XDP

sudo apt install libbpf-dev

If the libbpf package is unavailable, it can be cloned from the repository

git clone https://github.com/libbpf/libbpf.git

Now, you can build and install the library

cd libbpf/src/
make && sudo make install

sudo make install_headers
sudo ldconfig

In some cases your system will not find the libbpf library that is installed under /usr/lib64 so you may need to modify
your ldconfig configuration.

21.4.4 Compile and install Suricata

To get Suricata source, you can use the usual

git clone https://github.com/OISF/suricata.git
cd suricata && ./scripts/bundle.sh

./autogen.sh

Then you need to add the eBPF flags to configure and specify the Clang compiler for building all C sources, including
the eBPF programs

CC=clang ./configure --prefix=/usr/ --sysconfdir=/etc/ --localstatedir=/var/ \
--enable-ebpf --enable-ebpf-build

make clean && make
sudo make install-full
sudo ldconfig
sudo mkdir /usr/libexec/suricata/ebpf/

The clang compiler is needed if you want to build eBPF files as the build is done via a specific eBPF backend available
only in llvm/clang suite. If you don't want to use Clang for building Suricata itself, you can still specify it separately,
using the --with-clang parameter

./configure --prefix=/usr/ --sysconfdir=/etc/ --localstatedir=/var/ \
--enable-ebpf --enable-ebpf-build --with-clang=/usr/bin/clang

564 Chapter 21. Using Capture Hardware

Suricata User Guide, Release 8.0.0

21.4.5 Setup bypass

If you plan to use eBPF or XDP for a kernel/hardware level bypass, you need to enable some of the following features:

First, enable bypass in the stream section in suricata.yaml

stream:
bypass: true

This will bypass flows as soon as the stream depth will be reached.

If you want, you can also bypass encrypted flows by setting encryption-handling to bypass in the app-layer tls section

app-layer:
protocols:
tls:
enabled: yes
detection-ports:
dp: 443

encryption-handling: bypass

Another solution is to use a set of signatures using the bypass keyword to obtain a selective bypass. Suricata traffic
ID defines flowbits that can be used in other signatures. For instance one could use

alert any any -> any any (msg:"bypass video"; flowbits:isset,traffic/label/video;␣
→˓noalert; bypass; sid:1000000; rev:1;)
alert any any -> any any (msg:"bypass Skype"; flowbits:isset,traffic/id/skype; noalert;␣
→˓bypass; sid:1000001; rev:1;)

21.4.6 Setup eBPF filter

The file ebpf/vlan_filter.c contains a list of VLAN id in a switch that you need to edit to get something adapted to your
network. Another filter dropping packets from or to a set of IPv4 address is also available in ebpf/filter.c. See Pinned
maps usage for more information.

Suricata can load as eBPF filter any eBPF code exposing a filter section.

Once modifications and build via make are complete, you can copy the resulting eBPF filter as needed

cp ebpf/vlan_filter.bpf /usr/libexec/suricata/ebpf/

Then setup the ebpf-filter-file variable in af-packet section in suricata.yaml

- interface: eth3
threads: 16
cluster-id: 97
cluster-type: cluster_flow # choose any type suitable
defrag: yes
eBPF file containing a 'filter' function that will be inserted into the
kernel and used as load balancing function
ebpf-filter-file: /usr/libexec/suricata/ebpf/vlan_filter.bpf
ring-size: 200000

You can then run Suricata normally

21.4. eBPF and XDP 565

Suricata User Guide, Release 8.0.0

/usr/bin/suricata --pidfile /var/run/suricata.pid --af-packet=eth3 -vvv

21.4.7 Setup eBPF bypass

You can also use eBPF bypass. To do that load the bypass_filter.bpf file and update af-packet configuration in
suricata.yaml to set bypass to yes

- interface: eth3
threads: 16
cluster-id: 97
cluster-type: cluster_qm # symmetric RSS hashing is mandatory to use this mode
eBPF file containing a 'filter' function that will be inserted into the
kernel and used as packet filter function
ebpf-filter-file: /usr/libexec/suricata/ebpf/bypass_filter.bpf
bypass: yes
ring-size: 200000

Constraints on eBPF code to have a bypass compliant code are stronger than for regular filters. The filter must expose
flow_table_v4 and flow_table_v6 per CPU array maps with similar definitions as the one available in bypass_filter.c.
These two maps will be accessed and maintained by Suricata to handle the lists of flows to bypass.

If you are not using VLAN tracking (vlan.use-for-tracking set to false in suricata.yaml) then you also have to set
the VLAN_TRACKING define to 0 in bypass_filter.c.

21.4.8 Setup eBPF load balancing

eBPF load balancing allows to load balance the traffic on the listening sockets With any logic implemented in the eBPF
filter. The value returned by the function tagged with the loadbalancer section is used with a modulo on the CPU
count to know in which socket the packet has to be send.

An implementation of a simple symmetric IP pair hashing function is provided in the lb.bpf file.

Copy the resulting eBPF filter as needed

cp ebpf/lb.bpf /usr/libexec/suricata/ebpf/

Then use cluster_ebpf as load balancing method in the interface section of af-packet and point the ebpf-lb-file
variable to the lb.bpf file

- interface: eth3
threads: 16
cluster-id: 97
cluster-type: cluster_ebpf
defrag: yes
eBPF file containing a 'loadbalancer' function that will be inserted into the
kernel and used as load balancing function
ebpf-lb-file: /usr/libexec/suricata/ebpf/lb.bpf
ring-size: 200000

566 Chapter 21. Using Capture Hardware

Suricata User Guide, Release 8.0.0

21.4.9 Setup XDP bypass

XDP bypass allows Suricata to tell the kernel that packets for some flows have to be dropped via the XDP mechanism.
This is an early drop that occurs before the datagram reaches the Linux kernel network stack.

Linux 4.15 or newer are recommended to use that feature. You can use it on older kernel if you set BUILD_CPUMAP to
0 in ebpf/xdp_filter.c.

Copy the resulting XDP filter as needed:

cp ebpf/xdp_filter.bpf /usr/libexec/suricata/ebpf/

Setup af-packet section/interface in suricata.yaml.

We will use cluster_qm as we have symmetric hashing on the NIC, xdp-mode: driver and we will also use the
/usr/libexec/suricata/ebpf/xdp_filter.bpf (in our example TCP offloading/bypass)

- interface: eth3
threads: 16
cluster-id: 97
cluster-type: cluster_qm # symmetric hashing is a must!
defrag: yes
Xdp mode, "soft" for skb based version, "driver" for network card based
and "hw" for card supporting eBPF.
xdp-mode: driver
xdp-filter-file: /usr/libexec/suricata/ebpf/xdp_filter.bpf
if the ebpf filter implements a bypass function, you can set 'bypass' to
yes and benefit from these feature
bypass: yes
ring-size: 200000
Uncomment the following if you are using hardware XDP with
a card like Netronome (default value is yes)
use-percpu-hash: no

XDP bypass is compatible with AF_PACKET IPS mode. Packets from bypassed flows will be send directly from one
card to the second card without going by the kernel network stack.

If you are using hardware XDP offload you may have to set use-percpu-hash to false and build and install the XDP
filter file after setting USE_PERCPU_HASH to 0.

In the XDP filter file, you can set ENCRYPTED_TLS_BYPASS to 1 if you want to bypass the encrypted TLS 1.2 packets in
the eBPF code. Be aware that this will mean that Suricata will be blind on packets on port 443 with the correct pattern.

If you are not using VLAN tracking (vlan.use-for-tracking set to false in suricata.yaml) then you also have to set
the VLAN_TRACKING define to 0 in xdp_filter.c.

Intel NIC setup

Intel network card don't support symmetric hashing but it is possible to emulate it by using a specific hashing function.

Follow these instructions closely for desired result:

ifconfig eth3 down

Use in tree kernel drivers: XDP support is not available in Intel drivers available on Intel website.

Enable symmetric hashing

21.4. eBPF and XDP 567

Suricata User Guide, Release 8.0.0

ifconfig eth3 down
ethtool -L eth3 combined 16 # if you have at least 16 cores
ethtool -K eth3 rxhash on
ethtool -K eth3 ntuple on
ifconfig eth3 up
./set_irq_affinity 0-15 eth3
ethtool -X eth3 hkey␣
→˓6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A␣
→˓equal 16
ethtool -x eth3
ethtool -n eth3

In the above setup you are free to use any recent set_irq_affinity script. It is available in any Intel x520/710 NIC
sources driver download.

NOTE: We use a special low entropy key for the symmetric hashing. More info about the research for symmetric
hashing set up

Disable any NIC offloading

Run the following command to disable offloading

for i in rx tx tso ufo gso gro lro tx nocache copy sg txvlan rxvlan; do
/sbin/ethtool -K eth3 $i off 2>&1 > /dev/null;

done

Balance as much as you can

Try to use the network card's flow balancing as much as possible

for proto in tcp4 udp4 ah4 esp4 sctp4 tcp6 udp6 ah6 esp6 sctp6; do
/sbin/ethtool -N eth3 rx-flow-hash $proto sd

done

This command triggers load balancing using only source and destination IPs. This may be not optimal in term of load
balancing fairness but this ensures all packets of a flow will reach the same thread even in the case of IP fragmentation
(where source and destination port will not be available for some fragmented packets).

The XDP CPU redirect case

If ever your hardware is not able to do a symmetric load balancing but support XDP in driver mode, you can then
use the CPU redirect map support available in the xdp_filter.bpf and xdp_lb.bpf file. In this mode, the load balancing
will be done by the XDP filter and each CPU will handle the whole packet treatment including the creation of the skb
structure in kernel.

You will need Linux 4.15 or newer to use that feature.

To do so set the xdp-cpu-redirect variable in af-packet interface configuration to a set of CPUs. Then use the cluster_cpu
as load balancing function. You will also need to set the affinity to be certain that CPU cores that have the skb assigned
are used by Suricata.

Also to avoid out of order packets, you need to set the RSS queue number to 1. So if our interface is eth3

568 Chapter 21. Using Capture Hardware

http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf
http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf

Suricata User Guide, Release 8.0.0

/sbin/ethtool -L eth3 combined 1

In case your system has more then 64 core, you need to set CPUMAP_MAX_CPUS to a value greater than this number
in xdp_lb.c and xdp_filter.c.

A sample configuration for pure XDP load balancing could look like

- interface: eth3
threads: 16
cluster-id: 97
cluster-type: cluster_cpu
xdp-mode: driver
xdp-filter-file: /usr/libexec/suricata/ebpf/xdp_lb.bpf
xdp-cpu-redirect: ["1-17"] # or ["all"] to load balance on all CPUs
ring-size: 200000

It is possible to use xdp_monitor to have information about the behavior of CPU redirect. This program is available in
Linux tree under the samples/bpf directory and will be build by the make command. Sample output is the following

sudo ./xdp_monitor --stats
XDP-event CPU:to pps drop-pps extra-info
XDP_REDIRECT 11 2,880,212 0 Success
XDP_REDIRECT total 2,880,212 0 Success
XDP_REDIRECT total 0 0 Error
cpumap-enqueue 11:0 575,954 0 5.27 bulk-average
cpumap-enqueue sum:0 575,954 0 5.27 bulk-average
cpumap-kthread 0 575,990 0 56,409 sched
cpumap-kthread 1 576,090 0 54,897 sched

Start Suricata with XDP

You can now start Suricata with XDP bypass activated

/usr/bin/suricata -c /etc/suricata/xdp-suricata.yaml --pidfile /var/run/suricata.pid --
→˓af-packet=eth3 -vvv

Confirm you have the XDP filter engaged in the output (example):

...

...
(runmode-af-packet.c:220) <Config> (ParseAFPConfig) -- Enabling locked memory for mmap␣
→˓on iface eth3
(runmode-af-packet.c:231) <Config> (ParseAFPConfig) -- Enabling tpacket v3 capture on␣
→˓iface eth3
(runmode-af-packet.c:326) <Config> (ParseAFPConfig) -- Using queue based cluster mode␣
→˓for AF_PACKET (iface eth3)
(runmode-af-packet.c:424) <Info> (ParseAFPConfig) -- af-packet will use '/usr/libexec/
→˓suricata/ebpf/xdp_filter.bpf' as XDP filter file
(runmode-af-packet.c:429) <Config> (ParseAFPConfig) -- Using bypass kernel functionality␣
→˓for AF_PACKET (iface eth3)
(runmode-af-packet.c:609) <Config> (ParseAFPConfig) -- eth3: enabling zero copy mode by␣
→˓using data release call
(util-runmodes.c:296) <Info> (RunModeSetLiveCaptureWorkersForDevice) -- Going to use 8␣

(continues on next page)

21.4. eBPF and XDP 569

Suricata User Guide, Release 8.0.0

(continued from previous page)

→˓thread(s)
...
...

21.4.10 Pinned maps usage

Pinned maps stay attached to the system if the creating process disappears and they can also be accessed by external
tools. In Suricata bypass case, this can be used to keep bypassed flow tables active, so Suricata is not hit by previously
bypassed flows when restarting. In the socket filter case, this can be used to maintain a map from tools outside of
Suricata.

To use pinned maps, you first have to mount the bpf pseudo filesystem

sudo mount -t bpf none /sys/fs/bpf

You can also add to your /etc/fstab

bpffs /sys/fs/bpf bpf defaults 0 0

and run sudo mount -a.

Pinned maps will be accessible as file from the /sys/fs/bpf directory. Suricata will pin them under the name suricata-
$IFACE_NAME-$MAP_NAME.

To activate pinned maps for a interface, set pinned-maps to true in the af-packet configuration of this interface

- interface: eth3
pinned-maps: true

21.4.11 XDP and pinned-maps

This option can be used to expose the maps of a socket filter to other processes. This allows for example, the external
handling of a accept list or block list of IP addresses. See bpfctrl for an example of external list handling.

In the case of XDP, the eBPF filter is attached to the interface so if you activate pinned-maps the eBPF will remain
attached to the interface and the maps will remain accessible upon Suricata start. If XDP bypass is activated, Suricata
will try at start to open the pinned maps flow_v4_table and flow_v6_table. If they are present, this means the XDP filter
is still there and Suricata will just use them instead of attaching the XDP file to the interface.

So if you want to reload the XDP filter, you need to remove the files from /sys/fs/bpf/ before starting Suricata.

In case, you are not using bypass, this means that the used maps are managed from outside Suricata. As their names
are not known by Suricata, you need to specify a name of a map to look for, that will be used to check for the presence
of the XDP filter

- interface: eth3
pinned-maps: true
pinned-maps-name: ipv4_drop
xdp-filter-file: /usr/libexec/suricata/ebpf/xdp_filter.bpf

If XDP bypass is used in IPS mode stopping Suricata will trigger an interruption in the traffic. To fix that, the provided
XDP filter xdp_filter.bpf is containing a map that will trigger a global bypass if set to 1. You need to use pinned-maps
to benefit from this feature.

570 Chapter 21. Using Capture Hardware

https://github.com/StamusNetworks/bpfctrl/

Suricata User Guide, Release 8.0.0

To use it you need to set #define USE_GLOBAL_BYPASS 1 (instead of 0) in the xdp_filter.c file and rebuild the eBPF
code and install the eBPF file in the correct place. If you write 1 as key 0 then the XDP filter will switch to global
bypass mode. Set key 0 to value 0 to send traffic to Suricata.

The switch must be activated on all sniffing interfaces. For an interface named eth0 the global switch map will be
/sys/fs/bpf/suricata-eth0-global_bypass.

Pinned maps and eBPF filter

Pinned maps can also be used with regular eBPF filters. The main difference is that the map will not persist after
Suricata is stopped because it is attached to a socket and not an interface which is persistent.

The eBPF filter filter.bpf uses a ipv4_drop map that contains the set of IPv4 addresses to drop. If pinned-maps is set
to true in the interface configuration then the map will be pinned under /sys/fs/bpf/suricata-eth3-ipv4_drop.

You can then use a tool like bpfctrl to manage the IPv4 addresses in the map.

21.4.12 Hardware bypass with Netronome

Netronome cards support hardware bypass. In this case the eBPF code is running in the card itself. This introduces
some architectural differences compared to driver mode and the configuration and eBPF filter need to be updated.

On eBPF side, as of Linux 4.19 CPU maps and interfaces redirect are not supported and these features need to be
disabled. By architecture, per CPU hash should not be used and has to be disabled. To achieve this, edit the beginning
of ebpf/xdp_filter.c and do

#define BUILD_CPUMAP 0
/* Increase CPUMAP_MAX_CPUS if ever you have more than 64 CPUs */
#define CPUMAP_MAX_CPUS 64

#define USE_PERCPU_HASH 0
#define GOT_TX_PEER 0

Then build the bpf file with make and install it in the expected place.

The Suricata configuration is rather simple as you need to activate hardware mode and the use-percpu-hash option in
the af-packet configuration of the interface

xdp-mode: hw
use-percpu-hash: no

The load balancing will be done on IP pairs inside the eBPF code, so using cluster_qm as cluster type is a good idea

cluster-type: cluster_qm

As of Linux 4.19, the number of threads must be a power of 2. So set threads variable of the af-packet interface to a
power of 2 and in the eBPF filter set the following variable accordingly

#define RSS_QUEUE_NUMBERS 32

21.4. eBPF and XDP 571

Suricata User Guide, Release 8.0.0

21.4.13 Getting live info about bypass

You can get information about bypass via the stats event and through the unix socket. iface-stat will return the
number of bypassed packets (adding packets for a flow when it timeout)

suricatasc -c "iface-stat enp94s0np0" | jq
{
"message": {
"pkts": 56529854964,
"drop": 932328611,
"bypassed": 1569467248,
"invalid-checksums": 0

},
"return": "OK"

}

iface-bypassed-stats command will return the number of elements in IPv4 and IPv6 flow tables for each interface

suricatasc
>>> iface-bypassed-stats
Success:
{

"enp94s0np0": {
"ipv4_fail": 0,
"ipv4_maps_count": 2303,
"ipv4_success": 4232,
"ipv6_fail": 0,
"ipv6_maps_count": 13131,
"ipv6_success": 13500

}
}

The stats entry also contains a stats.flow_bypassed object that has local and capture bytes and packets counters as well
as a bypassed and closed flow counter

{
"local_pkts": 0,
"local_bytes": 0,
"local_capture_pkts": 20,
"local_capture_bytes": 25000,
"closed": 84,
"pkts": 4799,
"bytes": 2975133

}

local_pkts and local_bytes are for Suricata bypassed flows. This can be because local bypass is used or because the
capture method can not bypass more flows. pkts and bytes are counters coming from the capture method. They can
take some time to appear due to the accounting at timeout. local_capture_pkts and local_capture_bytes are counters
for packets that are seen by Suricata before the capture method efficiently bypass the traffic. There is almost always
some for each flow because of the buffer in front of Suricata reading threads.

572 Chapter 21. Using Capture Hardware

Suricata User Guide, Release 8.0.0

21.5 Netmap

Netmap is a high speed capture framework for Linux and FreeBSD. In Linux it is available as an external module, while
in FreeBSD 11+ it is available by default.

21.5.1 Compiling Suricata

FreeBSD

On FreeBSD 11 and up, NETMAP is included and enabled by default in the kernel.

To build Suricata with NETMAP, add --enable-netmap to the configure line. The location of the NETMAP includes
(/usr/src/sys/net/) does not have to be specified.

Linux

On Linux, NETMAP is not included by default. It can be pulled from github. Follow the instructions on installation
included in the NETMAP repository.

When NETMAP is installed, add --enable-netmap to the configure line. If the includes are not added to a standard
location, the location can be specified when configuring Suricata.

Example:

./configure --enable-netmap --with-netmap-includes=/usr/local/include/netmap/

21.5.2 Starting Suricata

When opening an interface, netmap can take various special characters as options in the interface string.

Warning: the interface that netmap reads from will become unavailable for normal network operations. You can
lock yourself out of your system.

IDS

Suricata can be started in 2 ways to use netmap:

suricata --netmap=<interface>
suricata --netmap=igb0

In the above example Suricata will start reading from the igb0 network interface. The number of threads created
depends on the number of RSS queues available on the NIC.

suricata --netmap

In the above example Suricata will take the netmap block from the Suricata configuration and open each of the interfaces
listed.

21.5. Netmap 573

Suricata User Guide, Release 8.0.0

netmap:
- interface: igb0
threads: 2

- interface: igb1
threads: 4

For the above configuration, both igb0 and igb1 would be opened. With 2 threads for igb0 and 4 capture threads for
igb1.

Warning: This multi threaded setup only works correctly if the NIC has symmetric RSS hashing. If this is not the
case, consider using the 'lb' method below.

IPS

Suricata's Netmap based IPS mode is based on the concept of creating a layer 2 software bridge between 2 interfaces.
Suricata reads packets on one interface and transmits them on another.

Packets that are blocked by the IPS policy, are simply not transmitted.

netmap:
- interface: igb0
copy-mode: ips
copy-iface: igb1

- interface: igb1
copy-mode: ips
copy-iface: igb0

21.5.3 Advanced setups

21.5.4 lb (load balance)

"lb" is a tool written by Seth Hall to allow for load balancing for single or multiple tools. One common use case is
being able to run Suricata and Zeek together on the same traffic.

starting lb:

lb -i eth0 -p suricata:6 -p zeek:6

Note: On FreeBSD 11, the named prefix doesn't work.

yaml:

netmap:
- interface: netmap:suricata
threads: 6

startup:

suricata --netmap=netmap:suricata

574 Chapter 21. Using Capture Hardware

Suricata User Guide, Release 8.0.0

The interface name as passed to Suricata includes a 'netmap:' prefix. This tells Suricata that it's going to read from
netmap pipes instead of a real interface.

Then Zeek (formerly Bro) can be configured to load 6 instances. Both will get a copy of the same traffic. The number
of netmap pipes does not have to be equal for both tools.

FreeBSD 11

On FreeBSD 11 the named pipe is not available.

starting lb:

lb -i eth0 -p 6

yaml:

netmap:
- interface: netmap:eth0
threads: 6

startup:

suricata --netmap

Note: "lb" is bundled with netmap.

Single NIC

When an interface enters NETMAP mode, it is no longer available to the OS for other operations. This can be unde-
sirable in certain cases, but there is a workaround.

By running Suricata in a special inline mode, the interface will show it's traffic to the OS.

netmap:
- interface: igb0
copy-mode: tap
copy-iface: igb0^

- interface: igb0^
copy-mode: tap
copy-iface: igb0

The copy-mode can be both 'tap' and 'ips', where the former never drops packets based on the policies in use, and the
latter may drop packets.

Warning: Misconfiguration can lead to connectivity loss. Use with care.

Note: This set up can also be used to mix NETMAP with firewall setups like pf or ipfw.

21.5. Netmap 575

Suricata User Guide, Release 8.0.0

VALE switches

VALE is a virtual switch that can be used to create an all virtual network or a mix of virtual and real nics.

A simple all virtual setup:

vale-ctl -n vi0
vale-ctl -a vale0:vi0
vale-ctl -n vi1
vale-ctl -a vale0:vi1

We now have a virtual switch "vale0" with 2 ports "vi0" and "vi1".

We can start Suricata to listen on one of the ports:

suricata --netmap=vale0:vi1

Then we can

21.5.5 Inline IDS

The inline IDS is almost the same as the IPS setup above, but it will not enforce drop policies.

netmap:
- interface: igb0
copy-mode: tap
copy-iface: igb1

- interface: igb1
copy-mode: tap
copy-iface: igb0

The only difference with the IPS mode is that the copy-mode setting is set to tap.

21.6 AF_XDP

AF_XDP (eXpress Data Path) is a high speed capture framework for Linux that was introduced in Linux v4.18.
AF_XDP aims at improving capture performance by redirecting ingress frames to user-space memory rings, thus by-
passing the network stack.

Note that during af_xdp operation the selected interface cannot be used for regular network usage.

Further reading:

• https://www.kernel.org/doc/html/latest/networking/af_xdp.html

576 Chapter 21. Using Capture Hardware

https://www.kernel.org/doc/html/latest/networking/af_xdp.html

Suricata User Guide, Release 8.0.0

21.6.1 Compiling Suricata

Linux

libxdp and libpbf are required for this feature. When building from source the development files will also be required.

Example:

dnf -y install libxdp-devel libbpf-devel

This feature is enabled provided the libraries above are installed, the user does not need to add any additional command
line options.

The command line option --disable-af-xdp can be used to disable this feature.

Example:

./configure --disable-af-xdp

21.6.2 Starting Suricata

IDS

Suricata can be started as follows to use af-xdp:

af-xdp:
suricata --af-xdp=<interface>
suricata --af-xdp=igb0

In the above example Suricata will start reading from the igb0 network interface.

21.6.3 AF_XDP Configuration

Each of these settings can be configured under af-xdp within the "Configure common capture settings" section of
suricata.yaml configuration file.

The number of threads created can be configured in the suricata.yaml configuration file. It is recommended to use
threads equal to NIC queues/CPU cores.

Another option is to select auto which will allow Suricata to configure the number of threads based on the number of
RSS queues available on the NIC.

With auto selected, Suricata spawns receive threads equal to the number of configured RSS queues on the interface.

af-xdp:
threads: <number>
threads: auto
threads: 8

21.6. AF_XDP 577

Suricata User Guide, Release 8.0.0

21.6.4 Advanced setup

af-xdp capture source will operate using the default configuration settings. However, these settings are available in the
suricata.yaml configuration file.

Available configuration options are:

force-xdp-mode

There are two operating modes employed when loading the XDP program, these are:

• XDP_DRV: Mode chosen when the driver supports AF_XDP

• XDP_SKB: Mode chosen when no AF_XDP support is unavailable

XDP_DRV mode is the preferred mode, used to ensure best performance.

af-xdp:
force-xdp-mode: <value> where: value = <skb|drv|none>
force-xdp-mode: drv

force-bind-mode

During binding the kernel will first attempt to use zero-copy (preferred). If zero-copy support is unavailable it will
fallback to copy mode, copying all packets out to user space.

af-xdp:
force-bind-mode: <value> where: value = <copy|zero|none>
force-bind-mode: zero

For both options, the kernel will attempt the 'preferred' option first and fallback upon failure. Therefore the default
(none) means the kernel has control of which option to apply. By configuring these options the user is forcing said
option. Note that if enabled, the bind will only attempt this option, upon failure the bind will fail i.e. no fallback.

mem-unaligned

AF_XDP can operate in two memory alignment modes, these are:

• Aligned chunk mode

• Unaligned chunk mode

Aligned chunk mode is the default option which ensures alignment of the data within the UMEM.

Unaligned chunk mode uses hugepages for the UMEM. Hugepages start at the size of 2MB but they can be as large as
1GB. Lower count of pages (memory chunks) allows faster lookup of page entries. The hugepages need to be allocated
on the NUMA node where the NIC and CPU resides. Otherwise, if the hugepages are allocated only on NUMA node 0
and the NIC is connected to NUMA node 1, then the application will fail to start. Therefore, it is recommended to first
find out to which NUMA node the NIC is connected to and only then allocate hugepages and set CPU cores affinity to
the given NUMA node.

Memory assigned per socket/thread is 16MB, so each worker thread requires at least 16MB of free space. As stated
above hugepages can be of various sizes, consult the OS to confirm with cat /proc/meminfo.

Example

578 Chapter 21. Using Capture Hardware

Suricata User Guide, Release 8.0.0

8 worker threads * 16Mb = 128Mb
hugepages = 2048 kB
so: pages required = 62.5 (63) pages

See https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt for detailed description.

To enable unaligned chunk mode:

af-xdp:
mem-unaligned: <yes/no>
mem-unaligned: yes

Introduced from Linux v5.11 a SO_PREFER_BUSY_POLL option has been added to AF_XDP that allows a true polling
of the socket queues. This feature has been introduced to reduce context switching and improve CPU reaction time
during traffic reception.

Enabled by default, this feature will apply the following options, unless disabled (see below). The following options
are used to configure this feature.

enable-busy-poll

Enables or disables busy polling.

af-xdp:
enable-busy-poll: <yes/no>
enable-busy-poll: yes

busy-poll-time

Sets the approximate time in microseconds to busy poll on a blocking receive when there is no data.

af-xdp:
busy-poll-time: <time>
busy-poll-time: 20

busy-poll-budget

Budget allowed for batching of ingress frames. Larger values means more frames can be stored/read. It is recommended
to test this for performance.

af-xdp:
busy-poll-budget: <budget>
busy-poll-budget: 64

21.6. AF_XDP 579

https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

Suricata User Guide, Release 8.0.0

Linux tunables

The SO_PREFER_BUSY_POLL option works in concert with the following two Linux knobs to ensure best capture per-
formance. These are not socket options:

• gro-flush-timeout

• napi-defer-hard-irq

The purpose of these two knobs is to defer interrupts and to allow the NAPI context to be scheduled from a watchdog
timer instead.

The gro-flush-timeout indicates the timeout period for the watchdog timer. When no traffic is received for
gro-flush-timeout the timer will exit and softirq handling will resume.

The napi-defer-hard-irq indicates the number of queue scan attempts before exiting to interrupt context. When
enabled, the softirq NAPI context will exit early, allowing busy polling.

af-xdp:
gro-flush-timeout: 2000000
napi-defer-hard-irq: 2

21.6.5 Hardware setup

Intel NIC setup

Intel network cards don't support symmetric hashing but it is possible to emulate it by using a specific hashing function.

Follow these instructions closely for desired result:

ifconfig eth3 down

Enable symmetric hashing

ifconfig eth3 down
ethtool -L eth3 combined 16 # if you have at least 16 cores
ethtool -K eth3 rxhash on
ethtool -K eth3 ntuple on
ifconfig eth3 up
./set_irq_affinity 0-15 eth3
ethtool -X eth3 hkey␣
→˓6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A␣
→˓equal 16
ethtool -x eth3
ethtool -n eth3

In the above setup you are free to use any recent set_irq_affinity script. It is available in any Intel x520/710 NIC
sources driver download.

NOTE: We use a special low entropy key for the symmetric hashing. More info about the research for symmetric
hashing set up

580 Chapter 21. Using Capture Hardware

http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf
http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf

Suricata User Guide, Release 8.0.0

Disable any NIC offloading

Suricata shall disable NIC offloading based on configuration parameter disable-offloading, which is enabled by
default. See capture section of yaml file.

capture:
disable NIC offloading. It's restored when Suricata exits.
Enabled by default.
#disable-offloading: false

Balance as much as you can

Try to use the network card's flow balancing as much as possible

for proto in tcp4 udp4 ah4 esp4 sctp4 tcp6 udp6 ah6 esp6 sctp6; do
/sbin/ethtool -N eth3 rx-flow-hash $proto sd

done

This command triggers load balancing using only source and destination IPs. This may be not optimal in terms of load
balancing fairness but this ensures all packets of a flow will reach the same thread even in the case of IP fragmentation
(where source and destination port will not be available for some fragmented packets).

21.7 DPDK

21.7.1 Introduction

The Data Plane Development Kit (DPDK) is a set of libraries and drivers that enhance and speed up packet processing
in the data plane. Its primary use is to provide faster packet processing by bypassing the kernel network stack, which
can provide significant performance improvements. For detailed instructions on how to setup DPDK, please refer to
Suricata.yaml to learn more about the basic setup for DPDK. The following sections contain examples of how to set
up DPDK and Suricata for more obscure use-cases.

21.7.2 Hugepage analysis

Suricata can analyse utilized hugepages on the system. This can be particularly beneficial when there's a potential
overallocation of hugepages. The hugepage analysis is designed to examine the hugepages in use and provide recom-
mendations on an adequate number of hugepages. This then ensures Suricata operates optimally while leaving sufficient
memory for other applications on the system. The analysis works by comparing snapshots of the hugepages before and
after Suricata is initialized. After the initialization, no more hugepages are allocated by Suricata. The hugepage analy-
sis can be seen in the Perf log level and is printed out during the Suricata start. It is only printed when Suricata detects
some disrepancies in the system related to hugepage allocation.

It's recommended to perform this analysis from a "clean" state - that is a state when all your hugepages are free. It
is especially recommended when no other hugepage-dependent applications are running on your system. This can be
checked in one of two ways:

global check
cat /proc/meminfo

HugePages_Total: 1024
(continues on next page)

21.7. DPDK 581

Suricata User Guide, Release 8.0.0

(continued from previous page)

HugePages_Free: 1024

per-numa check depends on NUMA node ID, hugepage size,
and nr_hugepages/free_hugepages - e.g.:
cat /sys/devices/system/node/node0/hugepages/hugepages-2048kB/free_hugepages

After the termination of Suricata and other hugepage-related applications, if the count of free hugepages is not equal
with the total number of hugepages, it indicates some hugepages were not freed completely. This can be fixed by
removing DPDK-related files from the hugepage-mounted directory (filesystem). It's important to exercise caution
while removing hugepages, especially when other hugepage-dependent applications are in operation, as this action will
disrupt their memory functionality. Removing the DPDK files from the hugepage directory can often be done as:

sudo rm -rf /dev/hugepages/rtemap_*

To check where hugepages are mounted:
dpdk-hugepages.py -s
or
mount | grep huge

21.7.3 Bond interface

Link Bonding Poll Mode Driver (Bond PMD), is a software mechanism provided by the Data Plane Development Kit
(DPDK) for aggregating multiple physical network interfaces into a single logical interface. Bonding can be e.g. used
to:

• deliver bidirectional flows of tapped interfaces to the same worker,

• establish redundancy by monitoring multiple links,

• improve network performance by load-balancing traffic across multiple links.

Bond PMD is essentially a virtual driver that manipulates with multiple physical network interfaces. It can operate in
multiple modes as described in the DPDK docs The individual bonding modes can accustom user needs. DPDK Bond
PMD has a requirement that the aggregated interfaces must be the same device types - e.g. both physical ports run on
mlx5 PMD. Bond PMD supports multiple queues and therefore can work in workers runmode. It should have no effect
on traffic distribution of the individual ports and flows should be distributed by physical ports according to the RSS
configuration the same way as if they would be configured independently.

As an example of Bond PMD, we can setup Suricata to monitor 2 interfaces that receive TAP traffic from optical
interfaces. This means that Suricata receive one direction of the communication on one interface and the other direction
is received on the other interface.

...
dpdk:
eal-params:
proc-type: primary
vdev: 'net_bonding0,mode=0,slave=0000:04:00.0,slave=0000:04:00.1'

DPDK capture support
RX queues (and TX queues in IPS mode) are assigned to cores in 1:1 ratio
interfaces:
- interface: net_bonding0 # PCIe address of the NIC port
Threading: possible values are either "auto" or number of threads

(continues on next page)

582 Chapter 21. Using Capture Hardware

https://doc.dpdk.org/guides/prog_guide/link_bonding_poll_mode_drv_lib.html

Suricata User Guide, Release 8.0.0

(continued from previous page)

- auto takes all cores
in IPS mode it is required to specify the number of cores and the
numbers on both interfaces must match
threads: 4

...

In the DPDK part of suricata.yaml we have added a new parameter to the eal-params section for virtual devices - vdev.
DPDK Environment Abstraction Layer (EAL) can initialize some virtual devices during the initialization of EAL. In
this case, EAL creates a new device of type net_bonding. Suffix of net_bonding signifies the name of the interface (in
this case the zero). Extra arguments are passed after the device name, such as the bonding mode (mode=0). This is the
round-robin mode as is described in the DPDK documentation of Bond PMD. Members (slaves) of the net_bonding0
interface are appended after the bonding mode parameter.

When the device is specified within EAL parameters, it can be used within Suricata interfaces list. Note that the list
doesn't contain PCIe addresses of the physical ports but instead the net_bonding0 interface. Threading section is also
adjusted according to the items in the interfaces list by enablign set-cpu-affinity and listing CPUs that should be used
in management and worker CPU set.

...
threading:
set-cpu-affinity: yes
cpu-affinity:
management-cpu-set:
cpu: [0] # include only these CPUs in affinity settings

receive-cpu-set:
cpu: [0] # include only these CPUs in affinity settings

worker-cpu-set:
cpu: [2,4,6,8]

...

21.7.4 Interrupt (power-saving) mode

The DPDK is traditionally recognized for its polling mode operation. In this mode, CPU cores are continuously query-
ing for packets from the Network Interface Card (NIC). While this approach offers benefits like reduced latency and
improved performance, it might not be the most efficient in scenarios with sporadic or low traffic. The constant polling
can lead to unnecessary CPU consumption. To address this, DPDK offers an interrupt mode.

The obvious advantage that interrupt mode brings is power efficiency. So far in our tests, we haven't observed a decrease
in performance. Suricata's performance has actually seen a slight improvement. The (IPS runmode) users should be
aware that interrupts can introduce non-deterministic latency. However, the latency should never be higher than in other
(e.g. AF_PACKET/AF_XDP/...) capture methods.

Interrupt mode in DPDK can be configured on a per-interface basis. This allows for a hybrid setup where some workers
operate in polling mode, while others utilize the interrupt mode. The configuration for the interrupt mode can be found
and modified in the DPDK section of the suricata.yaml file.

Below is a sample configuration that demonstrates how to enable the interrupt mode for a specific interface:

...
dpdk:

eal-params:
proc-type: primary

(continues on next page)

21.7. DPDK 583

Suricata User Guide, Release 8.0.0

(continued from previous page)

interfaces:
- interface: 0000:3b:00.0
interrupt-mode: true
threads: 4

21.7.5 Automatic interface configuration

A number of interface properties can be manually configured. However, Suricata can automatically configure
the interface properties based on the NIC capabilities. This can be done by setting auto to mempool-size,
mempool-cache-size, rx-descriptors, and tx-descriptors interface node properties. This will allow Suri-
cata to automatically set the sizes of individual properties according to the best-effort calculation based on the NIC
capabilities. For example, receive (RX) descriptors are calculated based on the maximal "power of 2" that is lower
or equal to the number of descriptors supported by the NIC. Number of TX descriptors depends on the configured
copy-mode. IDS (none) mode uses no TX descriptors and does not create any TX queues by default. IPS and TAP
mode uses the same number of TX descriptors as RX descriptors. The number of mempool and its cache is then derived
from the count of descriptors.

Rx (and Tx) descriptors are set to the highest possible value to allow more buffer room when traffic spikes occur.
However, it requires more memory. Individual properties can still be set manually if needed.

Note: Mellanox ConnectX-4 NICs does not support auto-configuration of tx-descriptors in the TAP/IPS modes.
Instead it can be set to a fixed value (e.g. 16384).

21.7.6 Link State Change timeout

The linkup-timeout YAML configuration option allows the user to set a timeout period to wait until the interface's link
is detected. This ensures that Suricata does not start processing packets until the link is up. This option is particularly
useful for Intel E810 (Ice) NICs, which begin receiving packets only after a few seconds have passed since the interface
started. In such cases, if this check is disabled, Suricata reports as started but only begins processing packets after a
few seconds. This issue has not been observed with other cards.

Setting the value to 0 causes Suricata to skip the link check. If the interface's link remains down after the timeout
period, Suricata warns the user but continues with the engine initialization.

21.7.7 Encapsulation stripping

Suricata supports stripping the hardware-offloaded encapsulation stripping on the supported NICs. Currently, VLAN
encapsulation stripping is supported. VLAN encapsulation stripping can be enabled with vlan-strip-offload.

584 Chapter 21. Using Capture Hardware

Suricata User Guide, Release 8.0.0

21.8 PCAP File Reading

Suricata offers a pcap-file capture method to process PCAP files and directories of PCAP files in an offline or live-
feed manner.

21.8.1 Configuration

pcap-file:
checksum-checks: auto
buffer-size: 128 KiB
tenant-id: none
delete-when-done: false
recursive: false
continuous: false
delay: 30
poll-interval: 5

21.8.2 Buffer Size

This option specifies the size of the read buffer for the PCAP file. The larger the buffer, the more data Suricata can read
at once. This can improve performance, especially for large files. The size can be specified through the command line
option, see --pcap-file-buffer-size

21.8.3 Directory-related options

The recursive option enables Suricata to traverse subdirectories within the specified directory, up to a maximum depth
of 255. This allows for processing of PCAP files located in nested folders. Note that the recursive option cannot be
used together with the continuous option. The command-line option is --pcap-file-recursive.

The continuous option allows Suricata to monitor the specified directory for new files, processing them as they appear.
This is useful for live environments where new PCAP files are continuously added. The continuous option cannot be
combined with the recursive option. The command-line option is --pcap-file-continuous..

The delay option specifies the amount of time, in seconds, that Suricata waits before processing newly detected files.
This helps prevent the processing of incomplete files that are still being written. The delay option is applicable with
the continuous mode.

The poll-interval option determines how frequently, in seconds, Suricata checks the directory for new files. Adjusting
this interval can help balance responsiveness and resource usage.

Note: continuous and recursive cannot be enabled simultaneously.

Note: Symlinks are ignored during recursive traversal.

21.8. PCAP File Reading 585

Suricata User Guide, Release 8.0.0

21.8.4 Other options

checksum-checks
• auto (default): Suricata detects checksum offloading statistically.

• yes: Forces checksum validation.

• no: Disables checksum validation.

• The command-line option is -k

tenant-id
• Specifies the tenant for multi-tenant setups with direct select.

• The PCAP is processed by the detection engine assigned to the specified tenant.

delete-when-done
• If true, Suricata deletes the PCAP file after processing.

• The command-line option is --pcap-file-delete

BPF filter
• Suricata supports BPF filters for packet capture that is also applicable to the pcap-file capture method.

• The BPF filter is specified in the file with the -F command-line option.

586 Chapter 21. Using Capture Hardware

CHAPTER

TWENTYTWO

INTERACTING VIA UNIX SOCKET

22.1 Introduction

Suricata can listen to a unix socket and accept commands from the user. The exchange protocol is JSON-based and the
format of the message is generic.

An application called suricatasc is provided and installed automatically when installing/updating Suricata.

The unix socket is always enabled by default.

The creation of the socket is managed by setting enabled to 'yes' or 'auto' under unix-command in Suricata YAML
configuration file:

unix-command:
enabled: yes
#filename: custom.socket # use this to specify an alternate file

The filename variable can be used to set an alternate socket filename. The filename is always relative to the local
state base directory.

Clients are implemented for some programming languages and can be used as code example to write custom scripts:

• Rust: https://github.com/OISF/suricata/blob/master/rust/suricatasc (version provided in Suricata 8+)

• Python: https://github.com/OISF/suricata/blob/main-7.0.x/python/suricata/sc/suricatasc.py (Python version
from older versions of Suricata)

• Perl: https://github.com/aflab/suricatac (a simple Perl client with interactive mode)

• C: https://github.com/regit/SuricataC (a Unix socket mode client in C without interactive mode)

22.2 Commands in standard running mode

The suricatasc command should automatically be installed in the same directory as the main suricata program.

The set of existing commands is the following:

• command-list: list available commands

• shutdown: shutdown Suricata

• iface-list: list interfaces where Suricata is sniffing packets

• iface-stat: list statistics for an interface

• help: alias of command-list

587

https://github.com/OISF/suricata/blob/master/rust/suricatasc
https://github.com/OISF/suricata/blob/main-7.0.x/python/suricata/sc/suricatasc.py
https://github.com/aflab/suricatac
https://github.com/regit/SuricataC

Suricata User Guide, Release 8.0.0

• version: display Suricata's version

• uptime: display Suricata's uptime

• running-mode: display running mode (workers, autofp, simple)

• capture-mode: display capture system used

• conf-get: get configuration item (see example below)

• dump-counters: dump Suricata's performance counters

• reopen-log-files: reopen log files (to be run after external log rotation)

• ruleset-reload-rules: reload ruleset and wait for completion

• ruleset-reload-nonblocking: reload ruleset and proceed without waiting

• ruleset-reload-time: return time of last reload

• ruleset-stats: display the number of rules loaded and failed

• ruleset-failed-rules: display the list of failed rules

• memcap-set: update memcap value of the specified item

• memcap-show: show memcap value of the specified item

• memcap-list: list all memcap values available

• reload-rules: alias of ruleset-reload-rules

• register-tenant-handler: register a tenant handler with the specified mapping

• unregister-tenant-handler: unregister a tenant handler with the specified mapping

• register-tenant: register tenant with a particular ID and filename

• unregister-tenant: unregister tenant with a particular ID

• reload-tenant: reload a tenant with specified ID and filename

• add-hostbit: add hostbit on a host IP with a particular bit name and time of expiry

• remove-hostbit: remove hostbit on a host IP with specified bit name

• list-hostbit: list hostbit for a particular host IP

A typical session with suricatasc looks like:

suricatasc
Command list: shutdown, command-list, help, version, uptime, running-mode, capture-mode,␣
→˓conf-get, dump-counters, iface-stat, iface-list, quit
>>> iface-list
Success: {'count': 2, 'ifaces': ['eth0', 'eth1']}
>>> iface-stat eth0
Success: {'pkts': 378, 'drop': 0, 'invalid-checksums': 0}
>>> conf-get unix-command.enabled
Success:
"yes"

588 Chapter 22. Interacting via Unix Socket

Suricata User Guide, Release 8.0.0

22.3 Commands on the cmd prompt

You can use suricatasc directly on the command prompt:

root@debian64:~# suricatasc -c version
{'message': '5.0.3 RELEASE', 'return': 'OK'}
root@debian64:~#
root@debian64:~# suricatasc -c uptime
{'message': 35264, 'return': 'OK'}
root@debian64:~#

NOTE: You need to quote commands with more than one argument:

root@debian64:~# suricatasc -c "iface-stat eth0"
{'message': {'pkts': 5110429, 'drop': 0, 'invalid-checksums': 0}, 'return': 'OK'}
root@debian64:~#

22.4 PCAP processing mode

This mode is one of main motivations behind this code. The idea is to be able to provide different pcap files to Suricata
without having to restart Suricata for each file. This saves time since you don't need to wait for the signature engine to
initialize.

To use this mode, start Suricata with your preferred configuration YAML file and provide the option --unix-socket
as argument:

suricata -c /etc/suricata-full-sigs.yaml --unix-socket

It is also possible to specify the socket filename as an argument:

suricata --unix-socket=custom.socket

In this last case, you will need to provide the complete path to the socket to suricatasc. To do so, you need to pass
the filename as first argument of suricatasc:

suricatasc custom.socket

Once Suricata is started, you can use suricatasc to connect to the command socket and provide different pcap files:

root@tiger:~# suricatasc
>>> pcap-file /home/benches/file1.pcap /tmp/file1
Success: Successfully added file to list
>>> pcap-file /home/benches/file2.pcap /tmp/file2
Success: Successfully added file to list
>>> pcap-file-continuous /home/pcaps /tmp/dirout
Success: Successfully added file to list

You can add multiple files without waiting for each to be processed; they will be sequentially processed and the gen-
erated log/alert files will be put into the directory specified as second argument of the pcap-file command. You need
to provide an absolute path to the files and directory as Suricata doesn't know from where the script has been run. If
you pass a directory instead of a file, all files in the directory will be processed. If using pcap-file-continuous
and passing in a directory, the directory will be monitored for new files being added until you use pcap-interrupt
or delete/move the directory.

22.3. Commands on the cmd prompt 589

Suricata User Guide, Release 8.0.0

To display how many files are waiting to get processed, you can do:

>>> pcap-file-number
Success: 3

To display the list of queued files, do:

>>> pcap-file-list
Success: {'count': 2, 'files': ['/home/benches/file1.pcap', '/home/benches/file2.pcap']}

To display current processed file:

>>> pcap-current
Success:
"/tmp/test.pcap"

When passing in a directory, you can see last processed time (modified time of last file) in milliseconds since epoch:

>>> pcap-last-processed
Success:
1509138964000

To interrupt directory processing which terminates the current state:

>>> pcap-interrupt
Success:
"Interrupted"

22.5 Build your own client

The protocol is documented in the following page https://redmine.openinfosecfoundation.org/projects/suricata/wiki/
Unix_Socket#Protocol

The following session show what is sent (SND) and received (RCV) by the server. Initial negotiation is the following:

suricatasc
SND: {"version": "0.1"}
RCV: {"return": "OK"}

Once this is done, commands can be issued:

>>> iface-list
SND: {"command": "iface-list"}
RCV: {"message": {"count": 1, "ifaces": ["wlan0"]}, "return": "OK"}
Success: {'count': 1, 'ifaces': ['wlan0']}
>>> iface-stat wlan0
SND: {"command": "iface-stat", "arguments": {"iface": "wlan0"}}
RCV: {"message": {"pkts": 41508, "drop": 0, "invalid-checksums": 0}, "return": "OK"}
Success: {'pkts': 41508, 'drop': 0, 'invalid-checksums': 0}

In pcap-file mode, this gives:

590 Chapter 22. Interacting via Unix Socket

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Unix_Socket#Protocol
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Unix_Socket#Protocol

Suricata User Guide, Release 8.0.0

>>> pcap-file /home/eric/git/oisf/benches/sandnet.pcap /tmp/bench
SND: {"command": "pcap-file", "arguments": {"output-dir": "/tmp/bench", "filename": "/
→˓home/eric/git/oisf/benches/sandnet.pcap"}}
RCV: {"message": "Successfully added file to list", "return": "OK"}
Success: Successfully added file to list
>>> pcap-file-number
SND: {"command": "pcap-file-number"}
RCV: {"message": 1, "return": "OK"}
>>> pcap-file-list
SND: {"command": "pcap-file-list"}
RCV: {"message": {"count": 1, "files": ["/home/eric/git/oisf/benches/sandnet.pcap"]},
→˓"return": "OK"}
Success: {'count': 1, 'files': ['/home/eric/git/oisf/benches/sandnet.pcap']}
>>> pcap-file-continuous /home/eric/git/oisf/benches /tmp/bench 0 true
SND: {"command": "pcap-file", "arguments": {"output-dir": "/tmp/bench", "filename": "/
→˓home/eric/git/oisf/benches/sandnet.pcap", "tenant": 0, "delete-when-done": true}}
RCV: {"message": "Successfully added file to list", "return": "OK"}
Success: Successfully added file to list

There is one thing to be careful about: a Suricata message is sent in multiple send operations. This result in possible
incomplete read on client side. The worse workaround is to sleep a bit before trying a recv call. An other solution is to
use non blocking socket and retry a recv if the previous one has failed.

Pcap-file json format is:

{
"command": "pcap-file",
"arguments": {
"output-dir": "path to output dir",
"filename": "path to file or directory to run",
"tenant": 0,
"continuous": false,
"delete-when-done": false

}
}

output-dir and filename are required. tenant is optional and should be a number, indicating which tenant the file or
directory should run under. continuous is optional and should be true/false, indicating that file or directory should be
run until pcap-interrupt is sent or ctrl-c is invoked. delete-when-done is optional and should be true/false, indicating
that the file or files under the directory specified by filename should be deleted when processing is complete. delete-
when-done defaults to false, indicating files will be kept after processing.

22.5. Build your own client 591

Suricata User Guide, Release 8.0.0

592 Chapter 22. Interacting via Unix Socket

CHAPTER

TWENTYTHREE

PLUGINS

Suricata bundles a few plugins that can't be built-in by default.

23.1 nDPI

23.1.1 Installation

Before using nDPI, Suricata must be built with nDPI support, for example:

./configure --enable-ndpi --with-ndpi=/home/user/src/nDPI

Then make sure the plugin is loaded in your suricata.yaml:

plugins:
- /usr/lib/suricata/ndpi.so

Which should also be present in the default configuration file after building Suricata with nDPI support.

For more information on nDPI, see https://www.ntop.org/products/deep-packet-inspection/ndpi/.

23.1.2 Keywords

Once the nDPI plugin is loaded, the following keyword are available:

• ndpi-protocol

• ndpi-risk

ndpi-protocol

Match on the Layer-7 protocol detected by nDPI.

Note that rules using the ndpi-protocol should check if the ndpi-protocol keyword exists with requires, for
example:

requires: keyword ndpi-protocol

Syntax:

ndpi-protocol:[!]<protocol>;

593

https://www.ntop.org/products/deep-packet-inspection/ndpi/

Suricata User Guide, Release 8.0.0

Where <protocol> is one of the application protocols detected by nDPI. Plase check ndpiReader -H for the full list. It
is possible to specify the transport protocol, the application protocol, or both (dot-separated).

Examples:

ndpi-protocol:HTTP;
ndpi-protocol:!TLS;
ndpi-protocol:TLS.YouTube;

Here is an example of a rule matching TLS traffic on port 53:

alert tcp any any -> any 53 (msg:"TLS traffic over DNS standard port"; requires:keyword ndpi-protocol; ndpi-
protocol:TLS; sid:1;)

ndpi-risk

Match on the flow risks detected by nDPI. Risks are potential issues detected by nDPI during the packet dissection and
include:

• Known protocol on non-standard port

• Binary application transfer

• Self-signed certificate

• Suspected DGA Domain name

• Malware host contacted

• and many others...

Additionally, rules using the ndpi-risk keyword should check if the keyword exists using the requires keyword, for
example:

requires: keyword ndpi-risk

Syntax:

ndpi-risk:[!]<risk>;

Where risk is one (or multiple comma-separated) of the risk codes supported by nDPI (e.g.
NDPI_BINARY_APPLICATION_TRANSFER). Please check ndpiReader -H for the full list.

Examples:

ndpi-risk:NDPI_BINARY_APPLICATION_TRANSFER;
ndpi-risk:NDPI_TLS_OBSOLETE_VERSION,NDPI_TLS_WEAK_CIPHER;

Here is an example of a rule matching HTTP traffic transferring a binary application:

alert tcp any any -> any any (msg:"Binary application transfer over HTTP"; requires:keyword ndpi-protocol, keyword
ndpi-risk; ndpi-protocol:HTTP; ndpi-risk:NDPI_BINARY_APPLICATION_TRANSFER; sid:1;)

594 Chapter 23. Plugins

CHAPTER

TWENTYFOUR

FIREWALL MODE

24.1 Firewall Mode Design

Note: In Suricata 8 the firewall mode is experimental and subject to change.

The firewall mode in Suricata allows the use of a ruleset that has different properties than the default "threat detection"
rulesets:

1. default policy is drop, meaning a firewall ruleset needs to specify what is allowed

2. firewall rules are loaded from separate files

3. firewall rules use a new action accept

4. firewall rules are required to use explicit action scopes and rule hooks (see below)

5. evaluation order is as rules are in the file(s), per protocol state

24.1.1 Concepts

• table collection of rules with different properties: packet:filter, packet:td, app:<proto>:<state>,
app:td. These are built-in. No custom tables can be created.

• state controls a specific protocol state at which a rule is evaluated. Examples are tcp.flow_start or tls.
client_body_done.

The tables for the application layer are per app layer protocol and per protocol state. For example,
app:http:request_line.

24.1.2 Actions and Action Scopes

Firewall rules require action scopes to be explicitly specified.

595

Suricata User Guide, Release 8.0.0

accept

accept is used to issue an accept verdict to the packet, flow or hook.

• packet accept this packet

• flow accept the rest of the packets in this flow

• hook accept rules for the current hook/state, evaluate the next tables

• tx accept rules for the current transaction, evaluate the next tables

The accept action is only available in firewall rules.

Note: some protocol implementations like dns use a transaction per direction. For those accept:tx will only accept
packets that are part of that direction.

drop

drop is used to drop either the packet or the flow

• packet drop this packet directly, don't eval any further rules

• flow drop this packet as with packet and drop all future packets in this flow

Note: the action pass is not available in firewall rules due to ambiguity around the existing meaning for threat detection
rules.

Explicit rule hook (states)

In the regular IDS/IPS rules the engine infers from the rule's matching logic where the rule should be "hooked" into
the engine. While this works well for these types of rules, it does lead to many edge cases that are not acceptable in a
firewall ruleset. For this reason in the firewall rules the hook needs to be explicitly set.

This is done in the protocol field of the rule. Where in threat detection a rule might look like:

alert http ... http.uri; ...

In the firewall case it will be:

accept:hook http1:request_line ... http.uri; ...

The application layer states / hooks are defined per protocol. Each of the hooks has its own default-drop policy, so a
ruleset needs an accept rule for each of the states to allow the traffic to flow through.

596 Chapter 24. Firewall Mode

Suricata User Guide, Release 8.0.0

general

Each protocol has at least the default states.

Request (to_server) side:

• request_started

• request_complete

Response (to_client) side:

• response_started

• response_complete

http

For the HTTP protocol there are a number of states to hook into. These apply to HTTP 0.9, 1.0 and 1.1. HTTP/2 uses
its own state machine.

Available states:

Request (to_server) side:

• request_started

• request_line

• request_headers

• request_body

• request_trailer

• request_complete

Response (to_client) side:

• response_started

• response_line

• response_headers

• response_body

• response_trailer

• response_complete

tls

Available states:

Request (to_server) side:

• client_in_progress

• client_hello_done

• client_cert_done

• client_handshake_done

24.1. Firewall Mode Design 597

Suricata User Guide, Release 8.0.0

• client_finished

Response (to_client) side:

• server_in_progress

• server_hello

• server_cert_done

• server_hello_done

• server_handshake_done

• server_finished

ssh

Available states are listed in Hooks.

Firewall pipeline

The firewall pipeline works in the detection engine, and is invoked after packet decoding, flow update, stream tracking
and reassembly and app-layer parsing are all done in the context of a single packet.

For each packet rules in the first firewall hook packet:filter are then evaluated. Assuming the verdict of this hook
is accept:hook, the next hook is evaluated: packet:td (packet threat detection). In this hook the IDS/IPS rules are
evaluated. Rule actions here are not immediate, as they can still be modified by alert postprocessing like rate_filter,
thresholding, etc.

The default drop for the packet:filter table is drop:packet. Thus the drop is only applied to the current packet.

If the packet has been marked internally as a packet with an application layer update, then the next table is app:*:*.

In app:*:* the per application layer states are all evaluated at least once. At each of these states an accept:hook is
required to progress to the next state. When all available states have been accepted, the pipeline moves to the final table
app:td (application layer threat detection). A drop in the app_filter table is immediate, however and accept is
conditional on the verdict of the app:td table.

The default drop in one of the app:*:* tables is a drop:flow. This means that the current packet as well as all future
packets from that flow are dropped.

In app:td the IDS/IPS rules for the application layer are evaluated. drop actions in this table are queued in the alert
queue.

When all tables have been evaluated, the alert finalize process orders threat detection alerts by action-order logic.
It can then apply a drop or default to accept-ing.

598 Chapter 24. Firewall Mode

Suricata User Guide, Release 8.0.0

Pass rules with Firewall mode

In IDS/IPS mode, a pass rule with app-layer matches will bypass the detection engine for the rest of the flow. In firewall
mode, this bypass no longer happens in the same way, as pass rules do not affect firewall rules. So the detection engine
is still invoked on packets of such a flow, but the packet_td and app_td tables are skipped.

24.2 Firewall Ruleset Examples

Note: In Suricata 8 the firewall mode is experimental and subject to change.

24.2.1 HTTP

In this example a simple HTTP ruleset will be shown. It will allow HTTP to flow as long as:

• method is GET or POST

• User-Agent is "curl"

• Status code is 200.

It starts by allowing the TCP port 80 traffic.

accept:hook tcp:all any any <> any 80 (sid:10;)

The stream tracking combined with the default exception policy handling will enforce a proper TCP handshake, etc.

The HTTP rules need to accept each state:

24.2. Firewall Ruleset Examples 599

Suricata User Guide, Release 8.0.0

allow traffic before the request line is complete
accept:hook http1:request_started any any -> any any (sid:100;)
allow GET
accept:hook http1:request_line any any -> any any (\

http.method; content:"GET"; sid:101;)
or allow POST
accept:hook http1:request_line any any -> any any (\

http.method; content:"POST"; sid:102;)
allow User-Agent curl
accept:hook http1:request_headers any any -> any any (\

http.user_agent; content:"curl"; sid:103;)
allow the body, if any
accept:hook http1:request_body any any -> any any (sid:104;)
allow trailers, if any
accept:hook http1:request_trailer any any -> any any (sid:105;)
allow completion
accept:hook http1:request_complete any any -> any any (sid:106;)

allow traffic before the response line is complete
accept:hook http1:response_started any any -> any any (sid:200;)
allow the 200 ok stat code.
accept:hook http1:response_line any any -> any any (\

http.stat_code; content:"200"; sid:201;)
allow all other states
accept:hook http1:response_headers any any -> any any (sid:202;)
accept:hook http1:response_body any any -> any any (sid:203;)
accept:hook http1:response_trailer any any -> any any (sid:204;)
accept:hook http1:response_complete any any -> any any (sid:205;)

Each state needs an accept rule. Each state is evaluated at least once.

24.2.2 TLS SNI with complex TCP rules

In this example the packet_filter rules will be more opinionated about the traffic:

allow 3-way handshake
accept:hook tcp:all $HOME_NET any -> $EXTERNAL_NET 443 (flags:S; \

flow:not_established; flowbits:set,syn; sid:1;)
accept:hook tcp:all $EXTERNAL_NET 443 -> $HOME_NET any (flags:SA; \

flow:not_established; flowbits:isset,syn; flowbits:set,synack; sid:2;)
accept:hook tcp:all $HOME_NET any -> $EXTERNAL_NET 443 (flags:A; \

flow:not_established; flowbits:isset,synack; \
flowbits:unset,syn; flowbits:unset,synack; sid:3;)

allow established
accept:hook tcp:all $HOME_NET any <> $EXTERNAL_NET 443 (flow:established; sid:4;)

Then on the TLS level this will be a TLS SNI firewall.

Again all the states need to be accepted. Only in the client_hello_done state will there be additional constraints:

accept:hook tls:client_in_progress $HOME_NET any -> $EXTERNAL_NET any (sid:100;)
allow the good sites
accept:hook tls:client_hello_done $HOME_NET any -> $EXTERNAL_NET any (tls.sni; \

(continues on next page)

600 Chapter 24. Firewall Mode

Suricata User Guide, Release 8.0.0

(continued from previous page)

pcre:"/^(suricata.io|oisf.net)$/; sid:101;)
accept:hook tls:client_cert_done $HOME_NET any -> $EXTERNAL_NET any (sid:102;)
accept:hook tls:client_handshake_done $HOME_NET any -> $EXTERNAL_NET any (sid:103;)
accept:hook tls:client_finished $HOME_NET any -> $EXTERNAL_NET any (sid:104;)

accept:hook tls:server_in_progress $EXTERNAL_NET any -> $HOME_NET any (sid:200;)
accept:hook tls:server_hello $EXTERNAL_NET any -> $HOME_NET any (sid:201;)
accept:hook tls:server_cert_done $EXTERNAL_NET any -> $HOME_NET any (sid:202;)
accept:hook tls:server_hello_done $EXTERNAL_NET any -> $HOME_NET any (sid:203;)
accept:hook tls:server_handshake_done $EXTERNAL_NET any -> $HOME_NET any (sid:204;)
accept:hook tls:server_finished $EXTERNAL_NET any -> $HOME_NET any (sid:205;)

24.2. Firewall Ruleset Examples 601

Suricata User Guide, Release 8.0.0

602 Chapter 24. Firewall Mode

CHAPTER

TWENTYFIVE

3RD PARTY INTEGRATION

25.1 Symantec SSL Visibility (BlueCoat)

As Suricata itself cannot decrypt SSL/TLS traffic, some organizations use a decryption product to handle this. This
document will offer some advice on using Suricata with the Symantec SSL Visibility appliance (formerly known as
BlueCoat).

25.1.1 Appliance Software Version

The appliance comes with two major software version options. The 3.x and 4.x series. Suricata works best with the
4.x series.

TLS1.3 is only properly supported in the 4.x version of the appliance software.

25.1.2 Magic Markers

The appliance has an indicator that data is decrypted. This is done using a special magic source MAC address, or using
a special VLAN header. Since Suricata can use VLANs as part of flow tracking, it is recommended to use the source
MAC method.

In the 3.x version of the software these markers are always there, the config just allows setting which type will be used.
In the 4.x software the markers are optional.

25.1.3 TCP handling

In the 3.x software, a bit of care is required in TCP stream reassembly handling in Suricata. The decrypted traffic is
presented to the IDS as TCP data packets, that are not ack'd as regularly as would be expected in a regular TCP session.
A large TCP window is used to not violate the TCP specs. Since in IDS mode Suricata waits for ACKs for much of its
processing, this can lead to delays in detection and logging, as well as increased resource usage due to increased data
buffering.

To avoid this, enable the 'stream.inline' mode, which processed data segments as they come in without waiting for the
ACKs.

The 4.x software sends more regular ACKs and does not need any special handling on the Suricata side.

603

Suricata User Guide, Release 8.0.0

25.1.4 TLS matching in Suricata

The appliance takes care of the TLS handling and decryption, presenting only the decrypted data to Suricata. This
means that Suricata will not see the TLS handshake. As a consequence of this, Suricata cannot inspect the TLS
handshake or otherwise process it. This means that for decrypted TLS sessions, Suricata will not do any TLS keyword
inspection (such as fingerprint matching and ja3), TLS logging or TLS certificate extraction.

If it is important to match on and/or log such information as well, the appliance facilities for matching and logging
themselves will have to be used.

For TLS traffic where the appliance security policy does not lead to decryption of the traffic, the TLS handshake is
presented to Suricata for analysis and logging.

25.1.5 IPS

When using Suricata in IPS mode with the appliance, some things will have to be considered:

• if Suricata DROPs a packet in the decrypted traffic, this will be seen by the appliance after which it will trigger
a RST session teardown.

• if a packet takes more than one second to process, it will automatically be considered a DROP by the appliance.
This should not happen in normal traffic, but with very inefficient Lua scripts this could perhaps happen. The
appliance can also be configured to wait for 5 seconds.

• When using the Suricata 'replace' keyword to modify data, be aware that the 3.x appliance software will not pass
the modification on to the destination so this will not have any effect. The 4.x appliance software does support
passing on modifications that were made to the unencrypted text, by default this feature is disabled but you can
enable it if you want modifications to be passed on to the destination in the re-encrypted stream. Due to how
Suricata works, the size of the payloads cannot be changed.

604 Chapter 25. 3rd Party Integration

CHAPTER

TWENTYSIX

MAN PAGES

26.1 Suricata

26.1.1 SYNOPSIS

suricata [OPTIONS] [BPF FILTER]

26.1.2 DESCRIPTION

suricata is a high performance Network IDS, IPS and Network Security Monitoring engine. Open Source and owned
by a community run non-profit foundation, the Open Information Security Foundation (OISF).

suricata can be used to analyze live traffic and pcap files. It can generate alerts based on rules. suricata will generate
traffic logs.

When used with live traffic suricata can be passive or active. Active modes are: inline in a L2 bridge setup, inline with
L3 integration with host firewall (NFQ, IPFW, WinDivert), or out of band using active responses.

26.1.3 OPTIONS

-h

Display a brief usage overview.

-V

Displays the version of Suricata.

-c <path>

Path to configuration file.

--include <path>

Additional configuration files to include. Multiple additional configuration files can be provided and will be
included in the order specified on the command line. These additional configuration files are loaded as if they
existed at the end of the main configuration file.

Example including one additional file:

--include /etc/suricata/other.yaml

Example including more than one additional file:

605

Suricata User Guide, Release 8.0.0

--include /etc/suricata/other.yaml --include /etc/suricata/extra.yaml

-T

Test configuration.

-v

Increase the verbosity of the Suricata application logging by increasing the log level from the default. This option
can be passed multiple times to further increase the verbosity.

• -v: INFO

• -vv: PERF

• -vvv: CONFIG

• -vvvv: DEBUG

This option will not decrease the log level set in the configuration file if it is already more verbose than the level
requested with this option.

-r <path>

Run in pcap offline mode (replay mode) reading files from pcap file. If <path> specifies a directory, all files in
that directory will be processed in order of modified time maintaining flow state between files.

--pcap-file-continuous

Used with the -r option to indicate that the mode should stay alive until interrupted. This is useful with directories
to add new files and not reset flow state between files.

--pcap-file-recursive

Used with the -r option when the path provided is a directory. This option enables recursive traversal into sub-
directories to a maximum depth of 255. This option cannot be combined with --pcap-file-continuous. Symlinks
are ignored.

--pcap-file-delete

Used with the -r option to indicate that the mode should delete pcap files after they have been processed. This is
useful with pcap-file-continuous to continuously feed files to a directory and have them cleaned up when done.
If this option is not set, pcap files will not be deleted after processing.

--pcap-file-buffer-size <value>

Set read buffer size using setvbuf to speed up pcap reading. Valid values are 4 KiB to 64 MiB. Default value
is 128 KiB. Supported on Linux only.

-i <interface>

After the -i option you can enter the interface card you would like to use to sniff packets from. This option will
try to use the best capture method available. Can be used several times to sniff packets from several interfaces.

--pcap[=<device>]

Run in PCAP mode. If no device is provided the interfaces provided in the pcap section of the configuration file
will be used.

--af-packet[=<device>]

Enable capture of packet using AF_PACKET on Linux. If no device is supplied, the list of devices from the
af-packet section in the yaml is used.

--af-xdp[=<device>]

Enable capture of packet using AF_XDP on Linux. If no device is supplied, the list of devices from the af-xdp
section in the yaml is used.

606 Chapter 26. Man Pages

Suricata User Guide, Release 8.0.0

-q <queue id>

Run inline of the NFQUEUE queue ID provided. May be provided multiple times.

-s <filename.rules>

With the -s option you can set a file with signatures, which will be loaded together with the rules set in the yaml.

It is possible to use globbing when specifying rules files. For example, -s '/path/to/rules/*.rules'

-S <filename.rules>

With the -S option you can set a file with signatures, which will be loaded exclusively, regardless of the rules set
in the yaml.

It is possible to use globbing when specifying rules files. For example, -S '/path/to/rules/*.rules'

-l <directory>

With the -l option you can set the default log directory. If you already have the default-log-dir set in yaml, it will
not be used by Suricata if you use the -l option. It will use the log dir that is set with the -l option. If you do not
set a directory with the -l option, Suricata will use the directory that is set in yaml.

-D

Normally if you run Suricata on your console, it keeps your console occupied. You can not use it for other
purposes, and when you close the window, Suricata stops running. If you run Suricata as daemon (using the -D
option), it runs at the background and you will be able to use the console for other tasks without disturbing the
engine running.

--runmode <runmode>

With the --runmode option you can set the runmode that you would like to use. This command line option can
override the yaml runmode option.

Runmodes are: workers, autofp and single.

For more information about runmodes see Runmodes in the user guide.

-F <bpf filter file>

Use BPF filter from file.

-k [all|none]

Force (all) the checksum check or disable (none) all checksum checks.

--user=<user>

Set the process user after initialization. Overrides the user provided in the run-as section of the configuration
file.

--group=<group>

Set the process group to group after initialization. Overrides the group provided in the run-as section of the
configuration file.

--pidfile <file>

Write the process ID to file. Overrides the pid-file option in the configuration file and forces the file to be written
when not running as a daemon.

--init-errors-fatal

Exit with a failure when errors are encountered loading signatures.

--strict-rule-keywords[=all|<keyword>|<keywords(csv)]

Applies to: classtype, reference and app-layer-event.

By default missing reference or classtype values are warnings and not errors. Additionally, loading outdated
app-layer-event events are also not treated as errors, but as warnings instead.

26.1. Suricata 607

Suricata User Guide, Release 8.0.0

If this option is enabled these warnings are considered errors.

If no value, or the value 'all', is specified, the option applies to all of the keywords above. Alternatively, a comma
separated list can be supplied with the keyword names it should apply to.

--disable-detection

Disable the detection engine.

--disable-hashing

Disable support for hash algorithms such as md5, sha1 and sha256.

By default hashing is enabled. Disabling hashing will also disable some Suricata features such as the filestore,
ja3, and rule keywords that use hash algorithms.

--dump-config

Dump the configuration loaded from the configuration file to the terminal and exit.

--dump-features

Dump the features provided by Suricata modules and exit. Features list (a subset of) the configuration values and
are intended to assist with comparing provided features with those required by one or more rules.

--build-info

Display the build information the Suricata was built with.

--list-app-layer-protos

List all supported application layer protocols.

--list-keywords=[all|csv|<kword>]

List all supported rule keywords.

--list-runmodes

List all supported run modes.

--set <key>=<value>

Set a configuration value. Useful for overriding basic configuration parameters. For example, to change the
default log directory:

--set default-log-dir=/var/tmp

This option cannot be used to add new entries to a list in the configuration file, such as a new output. It can only
be used to modify a value in a list that already exists.

For example, to disable the eve-log in the default configuration file:

--set outputs.1.eve-log.enabled=no

Also note that the index values may change as the suricata.yaml is updated.

See the output of --dump-config for existing values that could be modified with their index.

--engine-analysis

Print reports on analysis of different sections in the engine and exit. Please have a look at the conf parameter
engine-analysis on what reports can be printed

--unix-socket=<file>

Use file as the Suricata unix control socket. Overrides the filename provided in the unix-command section of the
configuration file.

608 Chapter 26. Man Pages

Suricata User Guide, Release 8.0.0

--reject-dev=<device>

Use device to send out RST / ICMP error packets with the reject keyword.

--pcap-buffer-size=<size>

Set the size of the PCAP buffer (0 - 2147483647).

--netmap[=<device>]

Enable capture of packet using NETMAP on FreeBSD or Linux. If no device is supplied, the list of devices from
the netmap section in the yaml is used.

--pfring[=<device>]

Enable PF_RING packet capture. If no device provided, the devices in the Suricata configuration will be used.

--pfring-cluster-id <id>

Set the PF_RING cluster ID.

--pfring-cluster-type <type>

Set the PF_RING cluster type (cluster_round_robin, cluster_flow).

-d <divert-port>

Run inline using IPFW divert mode.

--dag <device>

Enable packet capture off a DAG card. If capturing off a specific stream the stream can be select using a device
name like "dag0:4". This option may be provided multiple times read off multiple devices and/or streams.

--napatech

Enable packet capture using the Napatech Streams API.

--erf-in=<file>

Run in offline mode reading the specific ERF file (Endace extensible record format).

--simulate-ips

Simulate IPS mode when running in a non-IPS mode.

26.1.4 OPTIONS FOR DEVELOPERS

-u

Run the unit tests and exit. Requires that Suricata be configured with --enable-unittests.

-U, --unittest-filter=REGEX

With the -U option you can select which of the unit tests you want to run. This option uses REGEX. Example of
use: suricata -u -U http

--list-unittests

Lists available unit tests.

--fatal-unittests

Enables fatal failure on a unit test error. Suricata will exit instead of continuing more tests.

--unittests-coverage

Display unit test coverage report.

26.1. Suricata 609

Suricata User Guide, Release 8.0.0

26.1.5 SIGNALS

Suricata will respond to the following signals:

SIGUSR2

Causes Suricata to perform a live rule reload.

SIGHUP

Causes Suricata to close and re-open all log files. This can be used to re-open log files after they may have
been moved away by log rotation utilities.

26.1.6 FILES AND DIRECTORIES

/usr/local/etc/suricata/suricata.yaml
Default location of the Suricata configuration file.

/usr/local/var/log/suricata
Default Suricata log directory.

26.1.7 EXAMPLES

To capture live traffic from interface eno1:

suricata -i eno1

To analyze a pcap file and output logs to the CWD:

suricata -r /path/to/capture.pcap

To capture using AF_PACKET and override the flow memcap setting from the suricata.yaml:

suricata --af-packet --set flow.memcap=1gb

To analyze a pcap file with a custom rule file:

suricata -r /pcap/to/capture.pcap -S /path/to/custom.rules

26.1.8 BUGS

Please visit Suricata's support page for information about submitting bugs or feature requests.

26.1.9 NOTES

• Suricata Home Page

https://suricata.io/

• Suricata Support Page

https://suricata.io/support/

610 Chapter 26. Man Pages

https://suricata.io/
https://suricata.io/support/

Suricata User Guide, Release 8.0.0

26.2 Suricata Socket Control

26.2.1 SYNOPSIS

suricatasc

26.2.2 DESCRIPTION

Suricata socket control tool

26.2.3 COMMANDS

shutdown

Shut Suricata instance down.

command-list

List available commands.

help

Get help about the available commands.

version

Print the version of Suricata instance.

uptime

Display the uptime of Suricata.

running-mode

Display running mode. This can either be workers, autofp or single.

capture-mode

Display the capture mode. This can be either of PCAP_DEV, PCAP_FILE, PFRING(DISABLED), NFQ,
NFLOG, IPFW, ERF_FILE, ERF_DAG, AF_PACKET_DEV, NETMAP(DISABLED), UNIX_SOCKET or WIN-
DIVERT(DISABLED).

conf-get <variable>

Get configuration value for a given variable. Variable to be provided can be either of the configuration parameters
that are written in suricata.yaml.

dump-counters

Dump Suricata's performance counters.

ruleset-reload-rules

Reload the ruleset and wait for completion.

reload-rules

Alias .. describe ruleset-reload-rules.

ruleset-reload-nonblocking

Reload ruleset and proceed without waiting.

ruleset-reload-time

Return time of last reload.

26.2. Suricata Socket Control 611

Suricata User Guide, Release 8.0.0

ruleset-stats

Display the number of rules loaded and failed.

ruleset-failed-rules

Display the list of failed rules.

register-tenant-handler <id> <htype> [hargs]

Register a tenant handler with the specified mapping.

unregister-tenant-handler <id> <htype> [hargs]

Unregister a tenant handler with the specified mapping.

register-tenant <id> <filename>

Register tenant with a particular ID and filename.

reload-tenant <id> [filename]

Reload a tenant with specified ID. A filename to a tenant yaml can be specified. If it is omitted, the original yaml
that was used to load / last reload the tenant is used.

reload-tenants

Reload all registered tenants by reloading their yaml.

unregister-tenant <id>

Unregister tenant with a particular ID.

add-hostbit <ipaddress> <hostbit> <expire>

Add hostbit on a host IP with a particular bit name and time of expiry.

remove-hostbit <ipaddress> <hostbit>

Remove hostbit on a host IP with specified IP address and bit name.

list-hostbit <ipaddress>

List hostbit for a particular host IP.

reopen-log-files

Reopen log files to be run after external log rotation.

memcap-set <config> <memcap>

Update memcap value of a specified item.

memcap-show <config>

Show memcap value of a specified item.

memcap-list

List all memcap values available.

26.2.4 PCAP MODE COMMANDS

pcap-file <file> <dir> [tenant] [continuous] [delete-when-done]

Add pcap files to Suricata for sequential processing. The generated log/alert files will be put into the directory
specified as second argument. Make sure to provide absolute path to the files and directory. It is acceptable to
add multiple files without waiting the result.

pcap-file-continuous <file> <dir> [tenant] [delete-when-done]

Add pcap files to Suricata for sequential processing. Directory will be monitored for new files being added until
there is a use of pcap-interrupt or directory is moved or deleted.

612 Chapter 26. Man Pages

Suricata User Guide, Release 8.0.0

pcap-file-number

Number of pcap files waiting to get processed.

pcap-file-list

List of queued pcap files.

pcap-last-processed

Processed time of last file in milliseconds since epoch.

pcap-interrupt

Terminate the current state by interrupting directory processing.

pcap-current

Currently processed file.

26.2.5 BUGS

Please visit Suricata's support page for information about submitting bugs or feature requests.

26.2.6 NOTES

• Suricata Home Page

https://suricata.io/

• Suricata Support Page

https://suricata.io/support/

26.3 Suricata Control

26.3.1 SYNOPSIS

suricatactl [-h] <command> [<args>]

26.3.2 DESCRIPTION

This tool helps control Suricata's features.

26.3.3 OPTIONS

-h

Get help about the available commands.

26.3. Suricata Control 613

https://suricata.io/
https://suricata.io/support/

Suricata User Guide, Release 8.0.0

26.3.4 COMMANDS

suricatactl-filestore(1)

26.3.5 BUGS

Please visit Suricata's Community page for information about submitting bugs or feature requests.

26.3.6 NOTES

• Suricata Home Page

https://suricata.io/

• Suricata Community Page

https://suricata.io/community/

26.4 Suricata Control Filestore

26.4.1 SYNOPSIS

suricatactl filestore [-h] <command> [<args>]

26.4.2 DESCRIPTION

This command lets you perform certain operations on Suricata filestore.

26.4.3 OPTIONS

-h

Get help about the available commands.

26.4.4 COMMANDS

prune [-h|--help] [-n|--dry-run] [-v|verbose] [-q|--quiet] -d <DIRECTORY> --age <AGE>
Prune files older than a given age.

-d <DIRECTORY> | --directory <DIRECTORY> is a required argument which tells that user must provide the suricata
filestore directory on which all the specified operations are to be performed.

--age <AGE> is a required argument asking the age of the files. Files older than the age mentioned with this option
shall be pruned.

-h | --help is an optional argument with which you can ask for help about the command usage.

-n | --dry-run is an optional argument which makes the utility print only what would happen

-v | --verbose is an optional argument to increase the verbosity of command.

-q | --quiet is an optional argument that helps log errors and warnings only and keep silent about everything else.

614 Chapter 26. Man Pages

https://suricata.io/
https://suricata.io/community/

Suricata User Guide, Release 8.0.0

26.4.5 BUGS

Please visit Suricata's support page for information about submitting bugs or feature requests.

26.4.6 NOTES

• Suricata Home Page

https://suricata.io/

• Suricata Support Page

https://suricata.io/support/

26.4. Suricata Control Filestore 615

https://suricata.io/
https://suricata.io/support/

Suricata User Guide, Release 8.0.0

616 Chapter 26. Man Pages

CHAPTER

TWENTYSEVEN

ACKNOWLEDGEMENTS

Thank you to the following for their Wiki and documentation contributions that have made this user guide possible:

• Aaron Bungay

• Abbed

• Alex Savage

• Alexandre Iooss

• Alfredo Cardigliano

• Alice Akaki

• AlirezaPourchali

• Andi

• Andreas Dolp

• Andreas Herz

• Andreas Moe

• Anne-Fleur Koolstra

• Bazzan Don

• Benjamin Wilkins

• Bill Meeks

• Brandon Sterne

• brandonlattin

• Bryant Smith

• Carl Smith

• Chris Speidel

• Christophe Vandeplas

• Cole Dishington

• Comfort Amaechi

• Daisu

• Dana Helwig

• Daniel Olatunji

617

Suricata User Guide, Release 8.0.0

• Danny Browning

• Darren Spruell

• David Cannings

• David Diallo

• David Wharton

• Dean Balandin

• Eloy Pérez González

• Eloïse Brocas

• EmilienCourt

• Emmanuel Thompson

• Eric Leblond

• fooinha

• Frank Honza

• Gaurav Singh

• Giuseppe Longo

• god lol

• Hadiqa Alamdar Bukhari

• Haleema Khan

• Haris Haq

• Hilko Bengen

• Ignacio Sanchez

• Jacob Masen-Smith

• James

• James Dutrisac

• Jason Ish

• Jason Taylor

• Jason Williams

• Jeff Lucovsky

• Jeremy MountainJohnson

• Jo Johnson

• John Dewey

• Jon Zeolla

• Josh Smith

• Josh Stroschein

• Joshua Lumb

• Joyce Yu

618 Chapter 27. Acknowledgements

Suricata User Guide, Release 8.0.0

• Julian

• Juliana Fajardini

• Justin Ossevoort

• Ken Steele

• Kirby Kuehl

• Kirjan Kohuladas

• Konstantin Klinger

• kwong

• Lancer Cheng

• Les Syv

• liaozhiyuan

• Lukas Sismis

• Mark Solaris

• Martin Holste

• Martin Natano

• Mats Klepsland

• Matt Jonkman

• Maurizio Abba

• Max Fillinger

• Michael Bentley

• Michael Hrishenko

• Morris Chan

• myr463

• Nathan Jimerson

• Nathan Scrivens

• Nick Price

• Nicolas Merle

• Nicolas Thill

• Odin Jenseg

• Pascal Delalande

• Peter Manev

• Peter Sanders

• Phil Young

• Philipp Buehler

• Philippe Antoine

• Pierre Chifflier

619

Suricata User Guide, Release 8.0.0

• Rafael Girão

• Ralph Broenink

• Ralph Eastwood

• Ray Ruvinskiy

• Richard McConnell

• Richard Sailer

• Rob MacGregor

• Ruslan Usmanov

• Russel Fulton

• Sascha Steinbiss

• Sebastian Garcia

• Selivanov Pavel

• Shivani Bhardwaj

• showipintbri

• Simon Dugas

• Steven Hostetler

• Todd Mortimer

• Travis Green

• Tristan Fletcher

• Vadym Malakhatko

• Victor Julien

• Vincent Fang

• Vinjar Hillestad

• Wes Hurd

• William Harding

• Zach Kelly

• Zach Rasmor

620 Chapter 27. Acknowledgements

CHAPTER

TWENTYEIGHT

LICENSES

28.1 GNU General Public License

Version 2, June 1991 Copyright © 1989, 1991 Free Software Foundation, Inc. 51 Franklin Street, Fifth Floor, Boston,
MA 02110-1301 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

28.1.1 Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU
General Public License is intended to guarantee your freedom to share and change free software--to make sure the
software is free for all its users. This General Public License applies to most of the Free Software Foundation's software
and to any other program whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Lesser General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to
make sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that
you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender
the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if
you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the
rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them
these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal
permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty
for this free software. If the software is modified by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others will not reflect on the original authors'
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors
of a free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this,
we have made it clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

621

Suricata User Guide, Release 8.0.0

28.1.2 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICA-
TION

0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it
may be distributed under the terms of this General Public License. The "Program", below, refers to any such program
or work, and a "work based on the Program" means either the Program or any derivative work under copyright law: that
is to say, a work containing the Program or a portion of it, either verbatim or with modifications and/or translated into
another language. (Hereinafter, translation is included without limitation in the term "modification".) Each licensee is
addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope.
The act of running the Program is not restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by running the Program). Whether that is
true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium,
provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer
of warranty; keep intact all the notices that refer to this License and to the absence of any warranty; and give any other
recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection
in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program,
and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all
of these conditions:

• a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of
any change.

• b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from
the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this
License.

• c) If the modified program normally reads commands interactively when run, you must cause it, when started
running for such interactive use in the most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling the user how to view a copy of
this License. (Exception: if the Program itself is interactive but does not normally print such an announcement,
your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from
the Program, and can be reasonably considered independent and separate works in themselves, then this License, and
its terms, do not apply to those sections when you distribute them as separate works. But when you distribute the
same sections as part of a whole which is a work based on the Program, the distribution of the whole must be on the
terms of this License, whose permissions for other licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the
intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on
the Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you also do one of the following:

• a) Accompany it with the complete corresponding machine-readable source code, which must be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

622 Chapter 28. Licenses

Suricata User Guide, Release 8.0.0

• b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than
your cost of physically performing source distribution, a complete machine-readable copy of the corresponding
source code, to be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

• c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This
alternative is allowed only for noncommercial distribution and only if you received the program in object code
or executable form with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable
work, complete source code means all the source code for all modules it contains, plus any associated interface definition
files, plus the scripts used to control compilation and installation of the executable. However, as a special exception,
the source code distributed need not include anything that is normally distributed (in either source or binary form) with
the major components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place counts as distribution of the source code, even though
third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License.
Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or rights, from you under this License will
not have their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission
to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept
this License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate
your acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a
license from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You
may not impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited
to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to
satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution
of the Program by all those who receive copies directly or indirectly through you, then the only way you could satisfy
both it and this License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the
section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest
validity of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution
system, which is implemented by public license practices. Many people have made generous contributions to the wide
range of software distributed through that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Program under this License may add an explicit geographical

28.1. GNU General Public License 623

Suricata User Guide, Release 8.0.0

distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to
time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems
or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License which
applies to it and "any later version", you have the option of following the terms and conditions either of that version or
of any later version published by the Free Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different,
write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to
the Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

28.1.3 NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PRO-
GRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITH-
OUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE PRO-
GRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPE-
CIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED IN-
ACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM
TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

28.1.4 How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve
this is to make it free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should have at least the "copyright" line and a pointer to
where the full notice is found.

<one line to give the program's name and a brief idea of what it does.> Copyright (C) <year> <name of
author>

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General
Public License as published by the Free Software Foundation; either version 2 of the License, or (at your
option) any later version.

624 Chapter 28. Licenses

Suricata User Guide, Release 8.0.0

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if not, write
to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with ABSOLUTELY
NO WARRANTY; for details type `show w'. This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w` and `show c` should show the appropriate parts of the General Public License.
Of course, the commands you use may be called something other than `show w' and `show c`; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a "copyright disclaimer"
for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program `Gnomovision' (which makes passes
at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary programs. If your program
is a subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If
this is what you want to do, use the GNU Lesser General Public License instead of this License.

28.2 Creative Commons Attribution-NonCommercial 4.0 International
Public License

By exercising the Licensed Rights (defined below), You accept and agree to be bound by the terms and conditions
of this Creative Commons Attribution-NonCommercial 4.0 International Public License ("Public License"). To the
extent this Public License may be interpreted as a contract, You are granted the Licensed Rights in consideration of
Your acceptance of these terms and conditions, and the Licensor grants You such rights in consideration of benefits the
Licensor receives from making the Licensed Material available under these terms and conditions.

28.2.1 Section 1 – Definitions.

a. Adapted Material means material subject to Copyright and Similar Rights that is derived from or based upon the
Licensed Material and in which the Licensed Material is translated, altered, arranged, transformed, or otherwise
modified in a manner requiring permission under the Copyright and Similar Rights held by the Licensor. For
purposes of this Public License, where the Licensed Material is a musical work, performance, or sound recording,
Adapted Material is always produced where the Licensed Material is synched in timed relation with a moving
image.

b. Adapter's License means the license You apply to Your Copyright and Similar Rights in Your contributions to
Adapted Material in accordance with the terms and conditions of this Public License.

c. Copyright and Similar Rights means copyright and/or similar rights closely related to copyright including,
without limitation, performance, broadcast, sound recording, and Sui Generis Database Rights, without regard
to how the rights are labeled or categorized. For purposes of this Public License, the rights specified in Section
2(b)(1)-(2) are not Copyright and Similar Rights.

28.2. Creative Commons Attribution-NonCommercial 4.0 International Public License 625

Suricata User Guide, Release 8.0.0

d. Effective Technological Measures means those measures that, in the absence of proper authority, may not
be circumvented under laws fulfilling obligations under Article 11 of the WIPO Copyright Treaty adopted on
December 20, 1996, and/or similar international agreements.

e. Exceptions and Limitations means fair use, fair dealing, and/or any other exception or limitation to Copyright
and Similar Rights that applies to Your use of the Licensed Material.

f. Licensed Material means the artistic or literary work, database, or other material to which the Licensor applied
this Public License.

g. Licensed Rights means the rights granted to You subject to the terms and conditions of this Public License,
which are limited to all Copyright and Similar Rights that apply to Your use of the Licensed Material and that
the Licensor has authority to license.

h. Licensor means the individual(s) or entity(ies) granting rights under this Public License.

i. NonCommercial means not primarily intended for or directed towards commercial advantage or monetary com-
pensation. For purposes of this Public License, the exchange of the Licensed Material for other material subject
to Copyright and Similar Rights by digital file-sharing or similar means is NonCommercial provided there is no
payment of monetary compensation in connection with the exchange.

j. Share means to provide material to the public by any means or process that requires permission under the Li-
censed Rights, such as reproduction, public display, public performance, distribution, dissemination, communi-
cation, or importation, and to make material available to the public including in ways that members of the public
may access the material from a place and at a time individually chosen by them.

k. Sui Generis Database Rights means rights other than copyright resulting from Directive 96/9/EC of the Euro-
pean Parliament and of the Council of 11 March 1996 on the legal protection of databases, as amended and/or
succeeded, as well as other essentially equivalent rights anywhere in the world.

l. You means the individual or entity exercising the Licensed Rights under this Public License. Your has a corre-
sponding meaning.

28.2.2 Section 2 – Scope.

a. License grant.
1. Subject to the terms and conditions of this Public License, the Licensor hereby grants You a world-

wide, royalty-free, non-sublicensable, non-exclusive, irrevocable license to exercise the Licensed
Rights in the Licensed Material to:

A. reproduce and Share the Licensed Material, in whole or in part, for NonCommercial purposes only;
and

B. produce, reproduce, and Share Adapted Material for NonCommercial purposes only.

2. Exceptions and Limitations. For the avoidance of doubt, where Exceptions and Limitations apply
to Your use, this Public License does not apply, and You do not need to comply with its terms and
conditions.

3. Term. The term of this Public License is specified in Section 6(a).

4. Media and formats; technical modifications allowed. The Licensor authorizes You to exercise
the Licensed Rights in all media and formats whether now known or hereafter created, and to make
technical modifications necessary to do so. The Licensor waives and/or agrees not to assert any right
or authority to forbid You from making technical modifications necessary to exercise the Licensed
Rights, including technical modifications necessary to circumvent Effective Technological Measures.
For purposes of this Public License, simply making modifications authorized by this Section 2(a)(4)
never produces Adapted Material.

5. Downstream recipients.

626 Chapter 28. Licenses

Suricata User Guide, Release 8.0.0

A. Offer from the Licensor – Licensed Material. Every recipient of the Licensed Material auto-
matically receives an offer from the Licensor to exercise the Licensed Rights under the terms and
conditions of this Public License.

B. No downstream restrictions. You may not offer or impose any additional or different terms or
conditions on, or apply any Effective Technological Measures to, the Licensed Material if doing so
restricts exercise of the Licensed Rights by any recipient of the Licensed Material.

6. No endorsement. Nothing in this Public License constitutes or may be construed as permission to
assert or imply that You are, or that Your use of the Licensed Material is, connected with, or spon-
sored, endorsed, or granted official status by, the Licensor or others designated to receive attribution
as provided in Section 3(a)(1)(A)(i).

b. Other rights.
1. Moral rights, such as the right of integrity, are not licensed under this Public License, nor are publicity, privacy,

and/or other similar personality rights; however, to the extent possible, the Licensor waives and/or agrees not to
assert any such rights held by the Licensor to the limited extent necessary to allow You to exercise the Licensed
Rights, but not otherwise.

2. Patent and trademark rights are not licensed under this Public License.

3. To the extent possible, the Licensor waives any right to collect royalties from You for the exercise of the Licensed
Rights, whether directly or through a collecting society under any voluntary or waivable statutory or compulsory
licensing scheme. In all other cases the Licensor expressly reserves any right to collect such royalties, including
when the Licensed Material is used other than for NonCommercial purposes.

28.2.3 Section 3 – License Conditions.

Your exercise of the Licensed Rights is expressly made subject to the following conditions.

a. Attribution.
1. If You Share the Licensed Material (including in modified form), You must:

A. retain the following if it is supplied by the Licensor with the Licensed Material:

i. identification of the creator(s) of the Licensed Material and any others designated to receive
attribution, in any reasonable manner requested by the Licensor (including by pseudonym
if designated);

ii. a copyright notice;

iii. a notice that refers to this Public License;

iv. a notice that refers to the disclaimer of warranties;

v. a URI or hyperlink to the Licensed Material to the extent reasonably practicable;

B. indicate if You modified the Licensed Material and retain an indication of any previous
modifications; and

C. indicate the Licensed Material is licensed under this Public License, and include the text
of, or the URI or hyperlink to, this Public License.

2. You may satisfy the conditions in Section 3(a)(1) in any reasonable manner based on the medium,
means, and context in which You Share the Licensed Material. For example, it may be reasonable
to satisfy the conditions by providing a URI or hyperlink to a resource that includes the required
information.

3. If requested by the Licensor, You must remove any of the information required by Section 3(a)(1)(A)
to the extent reasonably practicable.

28.2. Creative Commons Attribution-NonCommercial 4.0 International Public License 627

Suricata User Guide, Release 8.0.0

4. If You Share Adapted Material You produce, the Adapter's License You apply must not prevent re-
cipients of the Adapted Material from complying with this Public License.

28.2.4 Section 4 – Sui Generis Database Rights.

Where the Licensed Rights include Sui Generis Database Rights that apply to Your use of the Licensed Material:

a. for the avoidance of doubt, Section 2(a)(1) grants You the right to extract, reuse, reproduce, and Share all or a
substantial portion of the contents of the database for NonCommercial purposes only;

b. if You include all or a substantial portion of the database contents in a database in which You have Sui Generis
Database Rights, then the database in which You have Sui Generis Database Rights (but not its individual con-
tents) is Adapted Material; and

c. You must comply with the conditions in Section 3(a) if You Share all or a substantial portion of the contents of
the database.

For the avoidance of doubt, this Section 4 supplements and does not replace Your obligations under this Public License
where the Licensed Rights include other Copyright and Similar Rights.

28.2.5 Section 5 – Disclaimer of Warranties and Limitation of Liability.

a. Unless otherwise separately undertaken by the Licensor, to the extent possible, the Licensor offers the Li-
censed Material as-is and as-available, and makes no representations or warranties of any kind concern-
ing the Licensed Material, whether express, implied, statutory, or other. This includes, without limitation,
warranties of title, merchantability, fitness for a particular purpose, non-infringement, absence of latent
or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable.
Where disclaimers of warranties are not allowed in full or in part, this disclaimer may not apply to You.

b. To the extent possible, in no event will the Licensor be liable to You on any legal theory (including, without
limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive,
exemplary, or other losses, costs, expenses, or damages arising out of this Public License or use of the
Licensed Material, even if the Licensor has been advised of the possibility of such losses, costs, expenses,
or damages. Where a limitation of liability is not allowed in full or in part, this limitation may not apply
to You.

c. The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to
the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.

28.2.6 Section 6 – Term and Termination.

a. This Public License applies for the term of the Copyright and Similar Rights licensed here. However, if You fail
to comply with this Public License, then Your rights under this Public License terminate automatically.

b. Where Your right to use the Licensed Material has terminated under Section 6(a), it reinstates:

1. automatically as of the date the violation is cured, provided it is cured within 30 days of Your dis-
covery of the violation; or

2. upon express reinstatement by the Licensor.

For the avoidance of doubt, this Section 6(b) does not affect any right the Licensor may have to seek
remedies for Your violations of this Public License.

c. For the avoidance of doubt, the Licensor may also offer the Licensed Material under separate terms or conditions
or stop distributing the Licensed Material at any time; however, doing so will not terminate this Public License.

628 Chapter 28. Licenses

Suricata User Guide, Release 8.0.0

d. Sections 1, 5, 6, 7, and 8 survive termination of this Public License.

28.2.7 Section 7 – Other Terms and Conditions.

a. The Licensor shall not be bound by any additional or different terms or conditions communicated by You unless
expressly agreed.

b. Any arrangements, understandings, or agreements regarding the Licensed Material not stated herein are separate
from and independent of the terms and conditions of this Public License.

28.2.8 Section 8 – Interpretation.

a. For the avoidance of doubt, this Public License does not, and shall not be interpreted to, reduce, limit, restrict,
or impose conditions on any use of the Licensed Material that could lawfully be made without permission under
this Public License.

b. To the extent possible, if any provision of this Public License is deemed unenforceable, it shall be automatically
reformed to the minimum extent necessary to make it enforceable. If the provision cannot be reformed, it shall
be severed from this Public License without affecting the enforceability of the remaining terms and conditions.

c. No term or condition of this Public License will be waived and no failure to comply consented to unless expressly
agreed to by the Licensor.

d. Nothing in this Public License constitutes or may be interpreted as a limitation upon, or waiver of, any privileges
and immunities that apply to the Licensor or You, including from the legal processes of any jurisdiction or
authority.

Creative Commons is not a party to its public licenses. Notwithstanding, Creative Commons may elect to apply
one of its public licenses to material it publishes and in those instances will be considered the "Licensor." Ex-
cept for the limited purpose of indicating that material is shared under a Creative Commons public license or
as otherwise permitted by the Creative Commons policies published at creativecommons.org/policies, Creative
Commons does not authorize the use of the trademark "Creative Commons" or any other trademark or logo of
Creative Commons without its prior written consent including, without limitation, in connection with any unau-
thorized modifications to any of its public licenses or any other arrangements, understandings, or agreements
concerning use of licensed material. For the avoidance of doubt, this paragraph does not form part of the public
licenses.
Creative Commons may be contacted at creativecommons.org.

28.3 Suricata Source Code

The Suricata source code is licensed under version 2 of the GNU General Public License.

28.4 Suricata Documentation

The Suricata documentation (this documentation) is licensed under the Creative Commons Attribution-NonCommercial
4.0 International Public License.

28.3. Suricata Source Code 629

Suricata User Guide, Release 8.0.0

630 Chapter 28. Licenses

CHAPTER

TWENTYNINE

SURICATA DEVELOPER GUIDE

29.1 Working with the Codebase

29.1.1 Installation from GIT

Ubuntu Installation from GIT

This document will explain how to install and use the most recent code of Suricata on Ubuntu. Installing from GIT on
other operating systems is basically the same, except that some commands are Ubuntu-specific (like sudo and apt-get).
In case you are using another operating system, you should replace those commands with your OS-specific commands.

Note: These instructions were tested on Ubuntu 22.04.

Pre-installation requirements

Before you can build Suricata for your system, run the following command to ensure that you have everything you need
for the installation.

sudo apt-get -y install libpcre2-dev build-essential autoconf \
automake libtool libpcap-dev libnet1-dev libyaml-0-2 libyaml-dev \
pkg-config zlib1g zlib1g-dev libcap-ng-dev libcap-ng0 make \
libmagic-dev libjansson-dev rustc cargo jq git-core

Add ${HOME}/.cargo/bin to your path:

export PATH=$PATH:${HOME}/.cargo/bin
cargo install --force cbindgen

Depending on the current status of your system, it may take a while to complete this process.

IPS
By default, Suricata works as an IDS. If you want to use it as an IDS and IPS program, enter:

sudo apt-get -y install libnetfilter-queue-dev libnetfilter-queue1 \
libnfnetlink-dev libnfnetlink0

631

Suricata User Guide, Release 8.0.0

Suricata

First, it is convenient to create a directory for Suricata. Name it 'suricata' or 'oisf', for example. Open the terminal and
enter:

mkdir suricata # mkdir oisf

Followed by:

cd suricata # cd oisf

Next, enter the following line in the terminal:

git clone https://github.com/OISF/suricata.git
cd suricata

Suricata-update is not bundled. Get it by doing:

./scripts/bundle.sh

Followed by:

./autogen.sh

To configure, please enter:

./configure

To compile, please enter:

make

To install Suricata, enter:

sudo make install
sudo ldconfig

Auto-setup

You can also use the available auto-setup features of Suricata. Ex:

./configure && make && sudo make install-conf

make install-conf would do the regular "make install" and then it would automatically create/setup all the necessary
directories and suricata.yaml for you.

./configure && make && make install-rules

make install-rules would do the regular "make install" and then it would automatically download and set-up the latest
ruleset from Emerging Threats available for Suricata.

./configure && make && make install-full

make install-full would combine everything mentioned above (install-conf and install-rules) - and will present you with
a ready to run (configured and set-up) Suricata.

632 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

Post installation

Please continue with Basic setup.

In case you have already created your Suricata directory and cloned the repository in it, if you want to update your local
repository with the most recent code, please run:

cd suricata/suricata

next, enter:

git pull

After that, you should run ./autogen.sh again.

29.1.2 Coding Style

Suricata uses a fairly strict coding style. This document describes it.

Formatting

clang-format

clang-format is configured to help you with formatting C code.

Note: The .clang-format script requires clang 9 or newer. At this time clang-format-14 is used to validate
formatting in CI.

Format your Changes

Before opening a pull request, please also try to ensure it is formatted properly. We use clang-format for this, which
has git integration through the git-clang-format script to only format your changes.

On some systems, it may already be installed (or be installable via your package manager). If so, you can simply run it.

It is recommended to format each commit as you go. However, you can always reformat your whole branch after the
fact.

Note: Depending on your installation, you might have to use the version-specific git clang-format in the com-
mands below, e.g. git clang-format-14, and possibly even provide the clang-format binary with --binary
clang-format-14.

As an alternative, you can use the provided scripts/clang-format.sh that isolates you from the different versions.

29.1. Working with the Codebase 633

Suricata User Guide, Release 8.0.0

Formatting the most recent commit only

The following command will format only the code changed in the most recent commit:

$ git clang-format HEAD^
Or with script:
$ scripts/clang-format.sh commit

Note that this modifies the files, but doesn't commit them. If the changes are trivial, you’ll likely want to run

$ git commit --amend -a

in order to update the last commit with all pending changes.

For bigger formatting changes, we do ask you to add them to separate, dedicated commits.

Formatting code in staging

The following command will format the changes in staging, i.e. files you git add-ed:

$ git clang-format
Or with script:
$ scripts/clang-format.sh cached

If you also want to change the unstaged changes, do:

$ git clang-format --force
Or with script:
$ scripts/clang-format.sh cached --force

Formatting your branch's commits

In case you have multiple commits on your branch already and forgot to format them you can fix that up as well.

The following command will format every commit in your branch off master and rewrite history using the existing
commit metadata.

Tip: Create a new version of your branch first and run this off the new version.

In a new version of your pull request:
$ scripts/clang-format.sh rewrite-branch

Note that the above should only be used for rather minimal formatting changes. As mentioned, we prefer that you add
such changes to a dedicated commit for formatting changes:

Format all changes by commits on your branch:
$ git clang-format first_commit_on_your_branch^
Or with script:
$ scripts/clang-format.sh branch

Note the usage of first_commit_on_your_branch^, not master, to avoid picking up new commits on master in
case you've updated master since you've branched.

634 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

Check formatting

Check if your branch changes' formatting is correct with:

$ scripts/clang-format.sh check-branch

Add the --diffstat parameter if you want to see the files needing formatting. Add the --diff parameter if you want
to see the actual diff of the formatting change.

Formatting a whole file

Note
Do not reformat whole files by default, i.e. do not use clang-format proper in general.

If you were ever to do so, formatting changes of existing code with clang-format shall be a different commit and must
not be mixed with actual code changes.

$ clang-format -i {file}

Disabling clang-format

There might be times, where the clang-format's formatting might not please. This might mostly happen with macros,
arrays (single or multi-dimensional ones), struct initialization, or where one manually formatted code.

You can always disable clang-format.

/* clang-format off */
#define APP_LAYER_INCOMPLETE(c, n) (AppLayerResult){1, (c), (n)}
/* clang-format on */

Installing clang-format and git-clang-format

clang-format 9 or newer is required.

On Ubuntu 24.04:

• It is sufficient to only install clang-format, e.g.

$ sudo apt-get install clang-format-14

• See http://apt.llvm.org for other releases in case the clang-format version is not found in the default repos.

On Fedora:

• Install the clang and git-clang-format packages with

$ sudo dnf install clang git-clang-format

29.1. Working with the Codebase 635

http://apt.llvm.org

Suricata User Guide, Release 8.0.0

Line length

Limit line lengths to 100 characters.

When wrapping lines that are too long, they should be indented at least 8 spaces from previous line. You should attempt
to wrap the minimal portion of the line to meet the 100 character limit.

clang-format:
• ColumnLimit: 100

• ContinuationIndentWidth: 8

• ReflowComments: true

Indent

We use 4 space indentation.

int DecodeEthernet(ThreadVars *tv, DecodeThreadVars *dtv, Packet *p,
uint8_t *pkt, uint16_t len, PacketQueue *pq)

{
SCPerfCounterIncr(dtv->counter_eth, tv->sc_perf_pca);

if (unlikely(len < ETHERNET_HEADER_LEN)) {
ENGINE_SET_INVALID_EVENT(p, ETHERNET_PKT_TOO_SMALL);
return TM_ECODE_FAILED;

}

...

DecodeNetworkLayer(tv, dtv, SCNtohs(p->ethh->eth_type), p,
pkt + ETHERNET_HEADER_LEN, len - ETHERNET_HEADER_LEN);

return TM_ECODE_OK;
}

Use 8 space indentation when wrapping function parameters, loops and if statements.

Use 4 space indentation when wrapping variable definitions.

const SCPlugin PluginSpec = {
.name = OUTPUT_NAME,
.author = "Some Developer",
.license = "GPLv2",
.Init = TemplateInit,

};

clang-format:
• AlignAfterOpenBracket: DontAlign

• Cpp11BracedListStyle: false

• IndentWidth: 4

• TabWidth: 8 [llvm]

• UseTab: Never [llvm]

636 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

Braces

Functions should have the opening brace on a newline:

int SomeFunction(void)
{

DoSomething();
}

Note: you may encounter non-compliant code.

Control and loop statements should have the opening brace on the same line:

if (unlikely(len < ETHERNET_HEADER_LEN)) {
ENGINE_SET_INVALID_EVENT(p, ETHERNET_PKT_TOO_SMALL);
return TM_ECODE_FAILED;

}

for (ascii_code = 0; ascii_code < 256; ascii_code++) {
ctx->goto_table[ctx->state_count][ascii_code] = SC_AC_FAIL;

}

while (funcs != NULL) {
temp = funcs;
funcs = funcs->next;
SCFree(temp);

}

Opening and closing braces go on the same line as as the _else_ (also known as a "cuddled else").

if (this) {
DoThis();

} else {
DoThat();

}

Structs, unions and enums should have the opening brace on the same line:

union {
TCPVars tcpvars;
ICMPV4Vars icmpv4vars;
ICMPV6Vars icmpv6vars;

} l4vars;

struct {
uint8_t type;
uint8_t code;

} icmp_s;

enum {
DETECT_TAG_TYPE_SESSION,
DETECT_TAG_TYPE_HOST,
DETECT_TAG_TYPE_MAX

};

29.1. Working with the Codebase 637

Suricata User Guide, Release 8.0.0

clang-format:
• BreakBeforeBraces: Custom [breakbeforebraces]

• BraceWrapping:

– AfterClass: true

– AfterControlStatement: false

– AfterEnum: false

– AfterFunction: true

– AfterStruct: false

– AfterUnion: false

– AfterExternBlock: true

– BeforeElse: false

– IndentBraces: false

Flow

Don't use conditions and statements on the same line. E.g.

if (a) b = a; // <- wrong

if (a)
b = a; // <- right

for (int i = 0; i < 32; ++i) f(i); // <- wrong

for (int i = 0; i < 32; ++i)
f(i); // <- right

Don't put short or empty functions and structs on one line.

void empty_function(void)
{
}

int short_function(void)
{

return 1;
}

Don't use unnecessary branching. E.g.:

if (error) {
goto error;

} else {
a = b;

}

Can be written as:

638 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

if (error) {
goto error;

}
a = b;

clang-format:
• AllowShortBlocksOnASingleLine: false [llvm]

• AllowShortBlocksOnASingleLine: Never [llvm] (breaking change in clang 10!) [clang10]

• AllowShortEnumsOnASingleLine: false [clang11]

• AllowShortFunctionsOnASingleLine: None

• AllowShortIfStatementsOnASingleLine: Never [llvm]

• AllowShortLoopsOnASingleLine: false [llvm]

• BreakBeforeBraces: Custom [breakbeforebraces]

• BraceWrapping:

– SplitEmptyFunction: true

– SplitEmptyRecord: true

Alignment

Pointers

Pointers shall be right aligned.

void *ptr;
void f(int *a, const char *b);
void (*foo)(int *);

clang-format:
• PointerAlignment: Right

• DerivePointerAlignment: false

Declarations and Comments

Trailing comments should be aligned for consecutive lines.

struct bla {
int a; /* comment */
unsigned bb; /* comment */
int *ccc; /* comment */

};

void alignment()
{

// multiple consecutive vars
int a = 13; /* comment */

(continues on next page)

29.1. Working with the Codebase 639

Suricata User Guide, Release 8.0.0

(continued from previous page)

int32_t abc = 1312; /* comment */
int abcdefghikl = 13; /* comment */

}

clang-format:
• AlignConsecutiveAssignments: false

• AlignConsecutiveDeclarations: false

• AlignTrailingComments: true

Functions

parameter names

TODO

Function names

Function names are SCNamedLikeThis(). All non-static functions should be prefixed with SC.

static SCConfNode *SCConfGetNodeOrCreate(char *name, int final)

static vs non-static

Functions should be declared static whenever possible.

inline

The inlining of functions should be used only in critical paths.

Variables

Names

A variable is named_like_this in all lowercase.

SCConfNode *parent_node = root;

Generally, use descriptive variable names.

In loop vars, make sure i is a signed int type.

640 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

Scope

TODO

Macros

Macro names are ALL_CAPS_WITH_UNDERSCORES. Enclose parameters in parens on each usage inside the macro.

Align macro values on consecutive lines.

#define ACTION_ALERT 0x01
#define ACTION_DROP 0x02
#define ACTION_REJECT 0x04
#define ACTION_REJECT_DST 0x08
#define ACTION_REJECT_BOTH 0x10
#define ACTION_PASS 0x20

Align escape for multi-line macros right-most at ColumnLimit.

#define MULTILINE_DEF(a, b) \
if ((a) > 2) { \

auto temp = (b) / 2; \
(b) += 10; \
someFunctionCall((a), (b)); \

}

clang-format:
• AlignConsecutiveMacros: true [clang9]

• AlignEscapedNewlines: Right

Comments

Function comments

We use Doxygen, functions are documented using Doxygen notation:

/**
* \brief Helper function to get a node, creating it if it does not
* exist.
*
* This function exits on memory failure as creating configuration
* nodes is usually part of application initialization.
*
* \param name The name of the configuration node to get.
* \param final Flag to set created nodes as final or not.
*
* \retval The existing configuration node if it exists, or a newly
* created node for the provided name. On error, NULL will be returned.
*/
static SCConfNode *SCConfGetNodeOrCreate(char *name, int final)

29.1. Working with the Codebase 641

Suricata User Guide, Release 8.0.0

General comments

We use /* foobar */ style and try to avoid // style.

File names

File names are all lowercase and have a .c. .h or .rs (Rust) extension.

Most files have a _subsystem_ prefix, e.g. detect-dsize.c, util-ip.c

Some cases have a multi-layer prefix, e.g. util-mpm-ac.c

Enums

Use a common prefix for all enum values. Value names are ALL_CAPS_WITH_UNDERSCORES.

Put each enum values on a separate line. Tip: Add a trailing comma to the last element to force "one-value-per-line"
formatting in clang-format.

Enums exposed in a header file should be prefixed with SC_.

enum { VALUE_ONE, VALUE_TWO }; // <- wrong

// right
enum {

VALUE_ONE,
VALUE_TWO, // <- force one-value-per-line

};

clang-format:
• AllowShortEnumsOnASingleLine: false [clang11]

Structures and typedefs

Structures and typedefs use TitleCase naming. When exposed in a header file they must be prefixed with SC.

For example:

typedef struct SCPlugin_ {
} SCPlugin;

switch statements

Switch statements are indented like in the following example, so the 'case' is indented from the switch:

switch (ntohs(p->ethh->eth_type)) {
case ETHERNET_TYPE_IP:

DecodeIPV4(tv, dtv, p, pkt + ETHERNET_HEADER_LEN,
len - ETHERNET_HEADER_LEN, pq);

break;

Fall through cases will be commented with /* fall through */. E.g.:

642 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

switch (suri->run_mode) {
case RUNMODE_PCAP_DEV:
case RUNMODE_AFP_DEV:
case RUNMODE_PFRING:

/* find payload for interface and use it */
default_packet_size = GetIfaceMaxPacketSize(suri->pcap_dev);
if (default_packet_size)

break;
/* fall through */

default:
default_packet_size = DEFAULT_PACKET_SIZE;

Do not put short case labels on one line. Put opening brace on same line as case statement.

switch (a) {
case 13: {

int a = bla();
break;

}
case 15:

blu();
break;

default:
gugus();

}

clang-format:
• IndentCaseLabels: true

• IndentCaseBlocks: false [clang11]

• AllowShortCaseLabelsOnASingleLine: false [llvm]

• BreakBeforeBraces: Custom [breakbeforebraces]

• BraceWrapping:

– AfterCaseLabel: false (default)

const

TODO

goto

Goto statements should be used with care. Generally, we use it primarily for error handling. E.g.:

static DetectFileextData *DetectFileextParse (char *str)
{

DetectFileextData *fileext = NULL;

fileext = SCMalloc(sizeof(DetectFileextData));
if (unlikely(fileext == NULL))

goto error;
(continues on next page)

29.1. Working with the Codebase 643

Suricata User Guide, Release 8.0.0

(continued from previous page)

memset(fileext, 0x00, sizeof(DetectFileextData));

if (DetectContentDataParse("fileext", str, &fileext->ext, &fileext->len, &fileext->
→˓flags) == -1) {

goto error;
}

return fileext;

error:
if (fileext != NULL)

DetectFileextFree(fileext);
return NULL;

}

Put goto labels at brace level.

int goto_style_nested()
{

if (foo()) {
label1:

bar();
}

label2:
return 1;

}

clang-format:
• IndentGotoLabels: true (default) [clang10]

Includes

A .c file shall include it's own header first, or immediately after suricata-common.h.

clang-format:
• SortIncludes: false

Unittests

When writing unittests that use a data array containing a protocol message, please put an explanatory comment that
contain the readable content of the message

So instead of:

int SMTPProcessDataChunkTest02(void)
{

char mimemsg[] = {0x4D, 0x49, 0x4D, 0x45, 0x2D, 0x56, 0x65, 0x72,

you should have something like:

644 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

int SMTPParserTest14(void)
{

/* 220 mx.google.com ESMTP d15sm986283wfl.6<CR><LF> */
static uint8_t welcome_reply[] = { 0x32, 0x32, 0x30, 0x20,

Banned functions

function replacement reason
strtok strtok_r
sprintf snprintf unsafe
strcat strlcat unsafe
strcpy strlcpy unsafe
strncpy strlcat
strncat strlcpy
strndup OS specific
strchrnul
rand
rand_r
index
rindex
bzero memset

Also, check the existing code. If yours is wildly different, it's wrong. Example: https://github.com/oisf/suricata/blob/
master/src/decode-ethernet.c

Rust

Pure Rust Code

Rust functions should follow normal Rust style where appropriate, for example:

pub fn try_new_array() -> Result<()> {
Ok(())

}

New Rust code should be formatted with rustfmt or cargo fmt. If reformatting an existing file, format and commit
before making any changes. Such reformatting may be rejected in a PR based on a variety of factors.

FFI

Rust code that is exposed to C should follow our C code style with respect to naming. This applies to all functions
marked as #[no_mangle]. For example:

#[no_mangle]
pub extern "C" SCJbNewArray() -> *mut JsonBuilder {
}

29.1. Working with the Codebase 645

https://github.com/oisf/suricata/blob/master/src/decode-ethernet.c
https://github.com/oisf/suricata/blob/master/src/decode-ethernet.c

Suricata User Guide, Release 8.0.0

29.1.3 Fuzz Testing

To enable fuzz targets compilation, add --enable-fuzztargets to configure.

Note: This changes various parts of Suricata making the suricata binary unsafe for production use.

The targets can be used with libFuzzer, AFL and other fuzz platforms.

Running the Fuzzers

TODO. For now see src/tests/fuzz/README

Reproducing issues

Extending Coverage

Adding Fuzz Targets

Oss-Fuzz

Suricata is continuously fuzz tested in Oss-Fuzz. See https://github.com/google/oss-fuzz/tree/master/projects/suricata

29.1.4 Testing Suricata

Table of Contents

• Testing Suricata

– General Concepts

– Unit tests

∗ Code Examples

– Suricata-Verify

– Generating Input

∗ Using real traffic

∗ Crafting input samples with Scapy

∗ Other examples from our Suricata-Verify tests:

∗ Finding Capture Samples

646 Chapter 29. Suricata Developer Guide

https://github.com/google/oss-fuzz/tree/master/projects/suricata

Suricata User Guide, Release 8.0.0

General Concepts

There are a few ways of testing Suricata:

• Unit tests: for independently checking specific functions or portions of code. This guide has specific sections to
further explain those, for C and Rust;

• Suricata-Verify: those are used to check more complex behavior, like the log output or the alert counts for a
given input, where that input is usually comprised of several packets;

• Static and dynamic analysis tools: to help in finding bugs, memory leaks and other issues (like scan-build,
from clang, which is also used for our C formatting checks; or ASAN, which checks for memory issues);

• Fuzz testing: especially good for uncovering existing, often non-trivial bugs. For more on how to fuzz test
Suricata, check Fuzz Testing;

• CI checks: each PR submitted to the project's public repositories will be run against a suit of Continuous Inte-
gration workflows, as part of our QA process. Those cover: formatting and commit checks; fuzz tests (CI Fuzz),
and several builds. See our github workflows for details and those in action at https://github.com/OISF/suricata/
actions.

Note: If you can run unit tests or other checks and report failures in our issue tracker, that is rather useful and
appreciated!

The focus of this document are Unit tests and Suricata-Verify tests, especially on offering some guidance regarding
when to use each type of test, and how to prepare input for them.

Unit tests

Use these to check that specific functions behave as expected, in success and in failure scenarios. Specially useful
during development, for nom parsers in the Rust codebase, for instance, or for checking that messages or message parts
of a protocol/stream are processed as they should.

To execute all unit tests (both from C and Rust code) from the Suricata main directory, run:

make check

Check the Suricata Devguide on Unit Tests - C or Unit tests - Rust for more on how to write and run unit tests, given
that the way to do so differs, depending on the language.

Code Examples

An example from the DNS parser. This checks that the given raw input (note the comments indicating what it means),
once processed by dns_parse_name yields the expected result, including the unparsed portion.

/// Parse a simple name with no pointers.
#[test]
fn test_dns_parse_name() {

let buf: &[u8] = &[
0x09, 0x63, /*c */

0x6c, 0x69, 0x65, 0x6e, 0x74, 0x2d, 0x63, 0x66, /* lient-cf */
0x07, 0x64, 0x72, 0x6f, 0x70, 0x62, 0x6f, 0x78, /* .dropbox */
0x03, 0x63, 0x6f, 0x6d, 0x00, 0x00, 0x01, 0x00, /* .com.... */

];
(continues on next page)

29.1. Working with the Codebase 647

https://github.com/OISF/suricata-verify
https://clang-analyzer.llvm.org/scan-build.html#scanbuild_basicusage
https://github.com/OISF/suricata/tree/master/.github/workflows
https://github.com/OISF/suricata/actions
https://github.com/OISF/suricata/actions
https://redmine.openinfosecfoundation.org/projects/suricata/issues
https://github.com/OISF/suricata/blob/master/rust/src/dns/parser.rs#L417

Suricata User Guide, Release 8.0.0

(continued from previous page)

let expected_remainder: &[u8] = &[0x00, 0x01, 0x00];
let (remainder,name) = dns_parse_name(buf, buf).unwrap();
assert_eq!("client-cf.dropbox.com".as_bytes(), &name[..]);
assert_eq!(remainder, expected_remainder);

}

From the C side, decode-ethernet.c offers an good example:

/**
* Test a DCE ethernet frame that is too small.
*/
static int DecodeEthernetTestDceTooSmall(void)
{

uint8_t raw_eth[] = {
0x00, 0x10, 0x94, 0x55, 0x00, 0x01, 0x00, 0x10,
0x94, 0x56, 0x00, 0x01, 0x89, 0x03,

};

Packet *p = PacketGetFromAlloc();
FAIL_IF_NULL(p);
ThreadVars tv;
DecodeThreadVars dtv;

memset(&dtv, 0, sizeof(DecodeThreadVars));
memset(&tv, 0, sizeof(ThreadVars));

DecodeEthernet(&tv, &dtv, p, raw_eth, sizeof(raw_eth));

FAIL_IF_NOT(ENGINE_ISSET_EVENT(p, DCE_PKT_TOO_SMALL));

PacketFree(p);
PASS;

}

Suricata-Verify

As mentioned above, these tests are used to check more complex behavior that involve a complete flow, with exchange
of requests and responses. This can be done in an easier and more straightforward way, since one doesn't have to
simulate the network traffic and Suricata engine mechanics - one simply runs it, with the desired input packet capture,
configuration and checks.

A Suricata-verify test can help to ensure that code refactoring doesn't affect protocol logs, or signature detection, for
instance, as this could have a major impact to Suricata users and integrators.

For simpler tests, providing the pcap input is enough. But it is also possible to provide Suricata rules to be inspected,
and have Suricata Verify match for alerts and specific events.

Refer to the Suricata Verify readme for details on how to create this type of test. It suffices to have a packet capture
representative of the behavior one wants to test, and then follow the steps described there.

The Git repository for the Suricata Verify tests is a great source for examples, like the app-layer-template one.

648 Chapter 29. Suricata Developer Guide

https://github.com/OISF/suricata-verify#readme
https://github.com/OISF/suricata-verify/tree/master/tests/app-layer-template

Suricata User Guide, Release 8.0.0

Generating Input

Using real traffic

Having a packet capture for the desired protocol you want to test, open it in Wireshark, and select the specific packet
chosen for the test input, then use the Wireshark option Follow [TCP/UDP/HTTP/HTTP2/QUIC] Stream. This al-
lows for inspecting the whole network traffic stream in a different window. There, it's possible to choose to Show and
save data as C Arrays, as well as to select if one wants to see the whole conversation or just client or server
packets. It is also possible to reach the same effect by accessing the Analyze->Follow->TCP Stream top menu in
Wireshark. (There are other stream options, the available one will depend on the type of network traffic captured).

This option will show the packet data as hexadecimal compatible with C-array style, and easily adapted for Rust, as
well. As shown in the image:

Wireshark can be also used to capture sample network traffic and generate pcap files.

Crafting input samples with Scapy

It is also possible to use Scapy to create specific traffic: Scapy usage

Suricata-verify tests have several examples of pcaps generated in such a way. Look for Python scripts like the one used
for the dce-udp-scapy.

29.1. Working with the Codebase 649

https://www.wireshark.org/
https://gitlab.com/wireshark/wireshark/-/wikis/CaptureSetup
https://scapy.readthedocs.io/en/latest/usage.html
https://github.com/OISF/suricata-verify/blob/master/tests/dcerpc/dcerpc-udp-scapy/dcerpc_udp_scapy.py

Suricata User Guide, Release 8.0.0

Other examples from our Suricata-Verify tests:

Going through Suricata-Verify tests readme files it is also possible to find an assorted collection of pcap generation
possibilities, some with explanation on the how-tos. To list a few:

• http2-range

• http-range

• smb2-delete

• smtp-rset

• http-auth-unrecognized

Finding Capture Samples

If you can't capture traffic for the desired protocol from live traffic, or craft something up, you can try finding the type
of traffic you are interested in in public data sets. There's a thread for Sharing good sources of sample captures in our
forum.

29.1.5 Unit Tests - C

Unit tests are a great way to create tests that can check the internal state of parsers, structures and other objects.

Tests should:

• use FAIL/PASS macros

• be deterministic

• not leak memory on PASS

• not use conditions

Unit tests are used by developers of Suricata and advanced users who would like to contribute by debugging and testing
the engine. Unit tests are small pieces (units) of code which check certain code functionalities in Suricata. If Suricata's
code is modified, developers can run unit tests to see if there are any unforeseen effects on other parts of the engine's
code. Unit tests will not be compiled with Suricata by default. If you would like to compile Suricata with unit tests,
enter the following during the configure-stage:

./configure --enable-unittests

The unit tests specific command line options can be found at Command Line Options.

Example: You can run tests specifically on flowbits. This is how you should do that:

suricata -u -U flowbit

It is highly appreciated if you would run unit tests and report failing tests in our issue tracker.

If you want more info about the unittests, regular debug mode can help. This is enabled by adding the configure option:

--enable-debug

Then, set the debug level from the command-line:

SC_LOG_LEVEL=Debug suricata -u

650 Chapter 29. Suricata Developer Guide

https://github.com/OISF/suricata-verify/blob/master/tests/http2-range/README.md
https://github.com/OISF/suricata-verify/blob/master/tests/http-range/README.md
https://github.com/OISF/suricata-verify/blob/master/tests/smb2-delete/README.md
https://github.com/OISF/suricata-verify/blob/master/tests/smtp-rset/README.md
https://github.com/OISF/suricata-verify/blob/master/tests/http-auth-unrecognized/README.md
https://forum.suricata.io/t/sharing-good-sources-of-sample-captures/1766/4
https://docs.suricata.io/en/latest/command-line-options.html#unit-tests
https://redmine.openinfosecfoundation.org/projects/suricata/issues

Suricata User Guide, Release 8.0.0

This will be very verbose. You can also add the SC_LOG_OP_FILTER to limit the output, it is grep-like:

SC_LOG_LEVEL=Debug SC_LOG_OP_FILTER="(something|somethingelse)" suricata -u

This example will show all lines (debug, info, and all other levels) that contain either something or something else.
Keep in mind the log level precedence: if you choose Info level, for instance, Suricata won't show messages from the
other levels.

Writing Unit Tests - C codebase

Suricata unit tests are somewhat different in C and in Rust. In C, they are comprised of a function with no arguments
and returning 0 for failure or 1 for success. Instead of explicitly returning a value, FAIL_* and PASS macros should
be used. For example:

void MyUnitTest(void)
{

int n = 1;
void *p = NULL;

FAIL_IF(n != 1);
FAIL_IF_NOT(n == 1);
FAIL_IF_NOT_NULL(p);
FAIL_IF_NULL(p);

PASS;
}

Each unit test needs to be registered with UtRegisterTest(). Example:

UtRegisterTest("MyUnitTest", MyUnitTest);

where the first argument is the name of the test, and the second argument is the function. Existing modules should
already have a function that registers its unit tests. Otherwise the unit tests will need to be registered. Look for a
module similar to your new module to see how best to register the unit tests or ask the development team for help.

Examples

From conf-yaml-loader.c:

/**
* Test that a configuration section is overridden but subsequent
* occurrences.
*/
static int
ConfYamlOverrideTest(void)
{

char config[] =
"%YAML 1.1\n"
"---\n"
"some-log-dir: /var/log\n"
"some-log-dir: /tmp\n"
"\n"

(continues on next page)

29.1. Working with the Codebase 651

https://docs.suricata.io/en/latest/manpages/suricata.html#id1

Suricata User Guide, Release 8.0.0

(continued from previous page)

"parent:\n"
" child0:\n"
" key: value\n"
"parent:\n"
" child1:\n"
" key: value\n"
;

const char *value;

SCConfCreateContextBackup();
SCConfInit();

FAIL_IF(SCConfYamlLoadString(config, strlen(config)) != 0);
FAIL_IF_NOT(SCConfGet("some-log-dir", &value));
FAIL_IF(strcmp(value, "/tmp") != 0);

/* Test that parent.child0 does not exist, but child1 does. */
FAIL_IF_NOT_NULL(SCConfGetNode("parent.child0"));
FAIL_IF_NOT(SCConfGet("parent.child1.key", &value));
FAIL_IF(strcmp(value, "value") != 0);

SCConfDeInit();
SCConfRestoreContextBackup();

PASS;
}

In detect-ike-chosen-sa.c, it is possible to see the freeing of resources (DetectIkeChosenSaFree) and the
function that should group all the UtRegisterTest calls:

#ifdef UNITTESTS
.
.
.
static int IKEChosenSaParserTest(void)
{

DetectIkeChosenSaData *de = NULL;
de = DetectIkeChosenSaParse("alg_hash=2");

FAIL_IF_NULL(de);
FAIL_IF(de->sa_value != 2);
FAIL_IF(strcmp(de->sa_type, "alg_hash") != 0);

DetectIkeChosenSaFree(NULL, de);
PASS;

}

#endif /* UNITTESTS */

void IKEChosenSaRegisterTests(void)
{
#ifdef UNITTESTS

(continues on next page)

652 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

(continued from previous page)

UtRegisterTest("IKEChosenSaParserTest", IKEChosenSaParserTest);
#endif /* UNITTESTS */

29.1.6 Unit tests - Rust

Rust tests with Cargo check

Rust offers a built-in tool for running unit and integration tests. To do so, one makes usage of:

cargo test [options][testname][-- test-options]

The Cargo Book explains all options in more detail.

For testing a specific Rust module from Suricata, it suffices to go to the rust directory and run the above command,
specifying the desired module (like http2).

cargo test http2

The line above will make rustc compile the Rust side of Suricata and run unit tests in the http2 rust module.

For running all Suricata unit tests from our Rust codebase, just run cargo test.

Adding unit tests

Note: If you want to understand when to use a unit test, please read the devguide section on Testing
Suricata.

In general, it is preferable to have the unit tests in the same file that they test. At the end of the file, after all other
functions. Add a tests module, if there isn't one yet, and add the #[test] attribute before the unit test function. It is
also necessary to import (use) the module to test, as well as any other modules used. As seen in the example below:

Example

From nfs > rpc_records.rs:

mod tests {
use crate::nfs::rpc_records::*;
use nom::Err::Incomplete;
use nom::Needed::Size;

#[test]
fn test_partial_input_ok() {

let buf: &[u8] = &[
0x80, 0x00, 0x00, 0x9c, // flags
0x8e, 0x28, 0x02, 0x7e, // xid
0x00, 0x00, 0x00, 0x01, // msgtype
0x00, 0x00, 0x00, 0x02, // rpcver
0x00, 0x00, 0x00, 0x03, // program
0x00, 0x00, 0x00, 0x04, // progver

(continues on next page)

29.1. Working with the Codebase 653

https://doc.rust-lang.org/cargo/commands/cargo-test.html

Suricata User Guide, Release 8.0.0

(continued from previous page)

0x00, 0x00, 0x00, 0x05, // procedure
];
let expected = RpcRequestPacketPartial {

hdr: RpcPacketHeader {
frag_is_last: true,
frag_len: 156,
xid: 2384986750,
msgtype: 1

},
rpcver: 2,
program: 3,
progver: 4,
procedure: 5

};
let r = parse_rpc_request_partial(buf);
match r {

Ok((rem, hdr)) => {
assert_eq!(rem.len(), 0);
assert_eq!(hdr, expected);

},
_ => { panic!("failed {:?}",r); }

}
}

}

Once that is done, Rust should recognize the new test. If you want to check a single test, run:

cargo test module::file_name::tests::test_name

Where tests refers to mod tests. If you know the test name is unique, you can even run:

cargo test test_name

Following the same idea, it is also possible to test specific modules or submodules. For instance:

cargo test nfs::rpc_records

29.2 Contributing

29.2.1 Contributing to Suricata

This guide describes what steps to take if you want to contribute a patch or patchset to Suricata.

Essentially, these are:

1. Agree to and sign our Contribution Agreement

2. Communicate early, and use the preferred channels

3. Claim (or open) a ticket

4. Fork from master

5. Follow our Coding Style

654 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

6. Use our Documentation Style

7. Stick to our commit guidelines

8. Add version numbers to your Pull Requests

9. Incorporate Feedback into new PRs

10. [Work merged] Wrap up!

The rest of this document will cover those in detail.

Note: Important!

Before contributing, please review and sign our Contribution Agreement.

Communication is Key!

To clarify questions, discuss or suggest new features, talk about bugs and optimizations, and/or ask for help, it is
important to communicate.

These are our main channels:

• Suricata's issue tracker

• Suricata's forum

• Suricata's Discord server

Claim (or open) a ticket

For features and bugs we need tickets. Tickets help us keep track of the work done, indicate when changes need
backports etc.

They are also important if you would like to see your new feature officially added to our tool: the ticket documents your
ideas so we can analyze how do they fit in our plans for Suricata, and, if the feature is accepted, we can properly track
progress etc.

The ticket should clearly reflect the intention as per the tracker. For example, if the ticket is a "Bug", the title should
only say what the bug is.

Good ticket title examples
1. Ticket: [Bug #00000] stream: segfault in case of increasing gaps

Why is it good? It shows subsystem affected and exactly what the bug is.

2. Ticket: [Bug #19999] dcerpc: memleak in case of invalid data

Why is it good? It talks about the bug itself as the Tracker indicates.

3. Ticket: [Bug #44444] stream: excess memuse in TcpTracking

Why is it good? Title is to the point and conveys what the issue is.

Note: The ticket titles are used to auto generate ChangeLog with each release. If the ticket titles are unclear, the
ChangeLog does not properly convey what issues were fixed with a release.

29.2. Contributing 655

https://suricata.io/contribution-agreements/
https://redmine.openinfosecfoundation.org/projects/suricata/issues
https://forum.suricata.io/c/developers/8
https://discord.com/invite/t3rV2x7MrG
https://redmine.openinfosecfoundation.org/projects/suricata/issues

Suricata User Guide, Release 8.0.0

Note: If you want to add new functionalities (e.g. a new application layer protocol), please ask us first whether we see
that being merged into Suricata or not. This helps both sides understand how the new feature will fit in our roadmap,
and prevents wasting time and motivation with contributions that we may not accept. Therefore, before starting any
code related to a new feature, do request comments from the team about it.

For really trivial fixes or cleanups we won't need that.

Once work on the issue has been agreed upon:

Assign the ticket to yourself. For this, you will need to have the "developer" role. You can ask for that directly on the
ticket you want to claim or mention that you are interested in working on ticket number on our Developer's channel on
Discord.

If a ticket is already assigned to someone, please reach out on the ticket or ask the person first.

You can reach out to other community members via Suricata's Discord server.

Expectations

If you submit a new feature that is not part of Suricata's core functionalities, it will have the community supported
status. This means we would expect some commitment from you, or the organization who is sponsoring your work,
before we could approve the new feature, as the Suricata development team is pretty lean (and many times overworked).

This means we expect that:

• the new contribution comes with a set of Suricata-verify tests (and possibly unit tests, where those apply), before
we can approve it;

• proof of compatibility with existing keywords/features is provided, when the contribution is for replacing an
existing feature;

• you would maintain the feature once it is approved - or some other community member would do that, in case
you cannot.

Note: Regardless of contribution size or complexity, we expect that you respect our guidelines and processes. We ap-
preciate community contributors: Suricata wouldn't be what it is without them; and the value of our tool and community
also comes from how seriously we take all this, so we ask that our contributors do the same!

What does "community supported" and "supporting a feature" mean?

If a feature is community supported, the Suricata team will try to spend minimal time on it - to be able to focus on the
core functionalities. If for any reason you're not willing or able to commit to supporting a feature, please indicate this.

The team and/or community members can then consider offering help. It is best to indicate this prior to doing the actual
work, because we will reject features if no one steps up.

It is also important to note that community supported features will be disabled by default, and if it brings in new
dependencies (libraries or Rust crates) those will also be optional and disabled by default.

Supporting a feature means to actually maintain it:

• fixing bugs

• writing documentation

• keeping it up to date

656 Chapter 29. Suricata Developer Guide

https://discord.com/channels/864648830553292840/888087709002891324
https://discord.com/channels/864648830553292840/888087709002891324
https://discord.com/invite/t3rV2x7MrG

Suricata User Guide, Release 8.0.0

• offering end-user support via forum and/or Discord chat

Stale tickets policy

We understand that people's availability and interested to volunteer their time to our project may change. Therefore,
to prevent tickets going stale (not worked on), and issues going unsolved for a long time, we have a policy to unclaim
tickets if there are no contribution updates within 6 months.

If you claim a ticket and later on find out that you won't be able to work on it, it is also appreciated if you inform that
to us in the ticket and unclaim it, so everyone knows that work is still open and waiting to be done.

What branch to work on

There are usually 2 or 3 active branches:

• master-x.x.x (e.g. master-6.0.x)

• main-x.x.x (e.g. main-7.0.x)

• master

The ones with version numbers are stable branches. master is the development branch.

The stable branch should only be worked on for important bug fixes or other needed backports. Those are mainly
expected from more experienced contributors.

Development of new features or large scale redesign is done in the development branch. New development and new
contributors should work with master except in very special cases - which should and would be discussed with us first.

If in doubt, please reach out to us via Redmine, Discord or forum.

Create your own branch

It's useful to create descriptive branch names. You're working on ticket 123 to improve GeoIP? Name your branch
"geoip-feature-123-v1". The "-v1" addition is for feedback. When incorporating feedback you will have to create a
new branch for each pull request. So, when you address the first feedback, you will work in "geoip-feature-123-v2" and
so on.

For more details check: Creating a branch to do your changes

Coding Style

We have a Coding Style that must be followed.

Documentation Style

For documenting code, please follow Rust documentation and/or Doxygen guidelines, according to what your contri-
bution is using (Rust or C). The rest of this section refers to the user and developer documentation.

The user and developer guide documentation (what you are reading now) is written in reStructuredText and rendered
with Sphinx. For a primer reStucturedText please see the reStrucutredText Primer.

When writing or updating documentation pages, please:

• wrap up lines at 79 (80 at most) characters;

• when adding diagrams or images, we prefer alternatives that can be generated automatically, if possible;

29.2. Contributing 657

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/GitHub_work_flow#Creating-a-branch-to-do-your-changes
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

Suricata User Guide, Release 8.0.0

• bear in mind that our documentation is published on Read the Docs and can also be built to pdf, so it is important
that it looks good in such formats.

Headings

reStructuredText allows for flexible header order, for consistency please use the following order:

• #: for h1

• *: for h2

• =: for h3

• -: for h4

• ~: for h5

• ^: for h6

For example, in a new documentation page:

Page Title
##########

Section

Sub-Section
===========

Rule examples

For rule documentation, we have a special container:

example-rule

This will present the rule in a box with an easier to read font size, and also allows highlighting specific elements in the
signature, as the names indicate - action, header, options, or emphasize custom portions:

• example-rule-action

• example-rule-header

• example-rule-options

• example-rule-emphasis

When using these, indicate the portion to be highlighted by surrounding it with ` . Before using them, one has to invoke
the specific role, like so:

.. role:: example-rule-role

It is only necessary to invoke the role once per document. One can see these being invoked in our introduction to the
rule language (see Rules intro).

A rule example like:

658 Chapter 29. Suricata Developer Guide

https://docs.suricata.io/en/latest/#suricata-user-guide
https://raw.githubusercontent.com/OISF/suricata/master/doc/userguide/rules/intro.rst

Suricata User Guide, Release 8.0.0

.. container:: example-rule

:example-rule-action:`alert` :example-rule-header:`http $HOME_NET any ->
$EXTERNAL_NET any` :example-rule-options:`(msg:"HTTP GET Request Containing
Rule in URI"; flow:established,to_server; http.method; content:"GET"; http.uri;
content:"rule"; fast_pattern; classtype:bad-unknown; sid:123; rev:1;)`

Results in:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Example - emphasis:

.. container:: example-rule

alert ssh any any -> any any (msg:"match SSH protocol version";
:example-rule-emphasis:`ssh.proto;` content:"2.0"; sid:1000010;)

Renders as:

alert ssh any any -> any any (msg:"match SSH protocol version"; ssh.proto; content:"2.0"; sid:1000010;)

Commit History matters

Please consider our Commit guidelines before submitting your PR.

Send a Pull Request

The pull request is used to request inclusion of your patches into the main repository. Before it is merged, it will be
reviewed and pushed through a QA process.

Please consider our Pull Requests Criteria when submitting.

We have 'GitHub-CI' integration enabled. This means some automated build check, suricata-verity and unit tests are
performed on the pull request. Generally, this is ready after a few minutes. If the test fails, the pull request won't be
considered. So please, when you submit something, keep an eye on the checks, and address any failures - if you do not
understand what they are, it is fine to ask about them on the failing PR itself.

Before merge, we also perform other integration tests in our private QA-lab. If those fail, we may request further
changes, even if the GitHub-CI has passed.

Feedback

You'll likely get some feedback. Even our most experienced devs do, so don't feel bad about it.

After discussing what needs to be changed (usually on the PR itself), it's time to go back to "Create your own branch"
and do it all again. This process can iterate quite a few times, as the contribution is refined.

29.2. Contributing 659

Suricata User Guide, Release 8.0.0

Wrapping up

Merged! Cleanup

Congrats! Your change has been merged into the main repository. Many thanks!

We strongly suggest cleaning up: delete your related branches, both locally and on GitHub - this helps you in keeping
things organized when you want to make new contributions.

Update ticket

You can now put the URL of the merged pull request in the Redmine ticket. Next, mark the ticket as "Closed" or
"Resolved".

Well done! You are all set now.

29.2.2 Code Submission Process

Commits

1. Commits need to be logically separated. Don't fix unrelated things in one commit.

2. Don't add unnecessary commits, if commit 2 fixes commit 1 merge them together (squash)

3. Commits need to have proper messages, explaining anything that is non-trivial

4. Commits should not, at the same time, change, rename and/or move code. Use separate commits for each of this,
e.g, a commit to rename files, then a commit to change the code.

5. If your code changes or adds new behavior, add the related documentation updates in their own commit, but make
sure to add the same ticket number to both commit messages.

6. Commit messages need to be properly formatted (check the example further below in this section).
• Meaningful and short (50 chars max) subject line followed by an empty line

• Naming convention: prefix message with sub-system ("rule parsing: fixing foobar"). If you're not
sure what to use, look at past commits to the file(s) in your PR.

• Description, wrapped at ~72 characters

7. Commits should be individually compilable, starting with the oldest commit. Make sure that each commit can
be built if it and the preceding commits in the PR are used.

8. Commits should be authored with the format: "FirstName LastName <name@example.com>"

We recommend that you use git commit message template with the following command: git config commit.
template /path/to/suricata/git-template/commit-template.txt The template lists items that help de-
scribe the context and include requisite information in the commit message. We reserve the right to strictly enforce the
template in the future:

Information that needs to be part of a commit (if applicable):

1. Ticket it fixes. E.g. "Fixes Bug #123."

2. Compiler warnings addressed.

3. Coverity Scan issues addressed.

4. Static analyzer error it fixes (cppcheck/scan-build/etc)

660 Chapter 29. Suricata Developer Guide

mailto:name@example.com

Suricata User Guide, Release 8.0.0

Note: When in doubt, check our git history for other messages or changes done to the same module your're working
on. This is a good example of a commit message:

pcap/file: normalize file timestamps

Normalize the timestamps that are too far in the past to epoch.

Bug: #6240.

Pull Requests

A github pull request is actually just a pointer to a branch in your tree. GitHub provides a review interface that we use.

1. A branch can only be used in for an individual PR.

2. A branch should not be updated after the pull request

3. A pull request always needs a good description (link to issue tracker if related to a ticket).

4. Incremental pull requests need to link to the prior iteration

5. Incremental pull requests need to describe changes since the last PR

6. Link to the ticket(s) that are addressed to it.

7. When fixing an issue, update the issue status to In Review after submitting the PR.

8. Pull requests are automatically tested using github actions (https://github.com/OISF/suricata/blob/master/
.github/workflows/builds.yml). Failing builds won't be considered and should be closed immediately.

9. Pull requests that change, or add a feature should include a documentation update commit

Tests and QA

As much as possible, new functionality should be easy to QA.

1. Add suricata-verify tests for verification. See https://github.com/OISF/suricata-verify

2. Add unittests if a suricata-verify test isn't possible.

3. Provide pcaps that reproduce the problem. Try to trim as much as possible to the pcap includes the minimal set
of packets that demonstrate the problem.

4. Provide example rules if the code added new keywords or new options to existing keywords

29.2.3 GitHub Pull Request Workflow

Draft Pull Requests

A Pull Request (PR) should be marked as draft if it is not intended to be merged as is, but is waiting for some sort of
feedback. The author of the PR should be explicit with what kind of feedback is expected (CI/QA run, discussion on
the code, etc...)

The GitHub filter is is:pr is:open draft:true sort:updated-asc.

A draft may be closed if it has not been updated in two months.

29.2. Contributing 661

https://github.com/OISF/suricata/commit/33fca4d4db112b75ffa22eb2e6f14f038cbcc1f9
https://github.com/OISF/suricata/blob/master/.github/workflows/builds.yml
https://github.com/OISF/suricata/blob/master/.github/workflows/builds.yml
https://github.com/OISF/suricata-verify

Suricata User Guide, Release 8.0.0

Mergeable Pull Requests

When a Pull Request is intended to be merged as is, the workflow is the following:
1. get reviewed, and either request changes or get approved

2. if approved, get staged in a next branch (with other PRs), wait for CI validation (and eventually request
changes if CI finds anything)

3. get merged and closed

Once submitted, we aim at providing a first PR review within two weeks and a month.

If either code, documentation wording or commit messages need re-work, the reviewer will set the PR state to
changes requested.

Note: It is expected that the author will create a new PR with a new version of the patch as described in Pull Requests
Criteria. A PR may be closed as stale if it has not been updated in two months after changes were requested.

A PR may be labeled decision-required if the reviewer thinks the team needs more time to analyze the best approach
to a proposed solution or discussion raised by the PR.

Once in approved state, the PRs are in the responsibility of the maintainer, along with the next branches/PRs.

Reviewers and Maintainers

A newly created PR should match the filter:

is:pr is:open draft:false review:none sort:updated-asc no:assignee

The whole team is responsible to assign a PR to someone precise within 2 weeks.

When someone gets assigned a PR, it should get a review status within 2 weeks: either changes requested, approved,
or assigned to someone else if more expertise is needed.

The GitHub filter for changes-requested PRs is:

is:pr is:open draft:false sort: updated-asc review:changes-requested

The command to get approved PRs is:

gh pr list --json number,reviewDecision --search "state:open type:pr -review:none" | jq
→˓'.[] | select(.reviewDecision=="")'

An approved PR should match the filter: is:open is:pr review:approved.

29.2.4 Suricata Backports Guide

This document describes the processes used to backport content to current stable Suricata releases. Most often, this
means security and/or bug fixes; however, in some cases, features may be backported to previous Suricata releases.

There are multiple versions of Suricata at any given time:
• Master

• Major stable release

• Old stable release

662 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

For example, at the moment, there are 3 releases based on these Suricata branches:
• master: 8.0.0-dev, current development branch

• main-7.0.x: major stable release (note we're changing our naming conventions)

• master-6.0.x: old stable release

For Suricata's release cadence and end of life policies, please check https://suricata.io/our-story/eol-policy/.

The next sections discuss when and what to backport, and some guidelines when doing so.

What should be backported?

Usually, when the team creates a ticket, we'll add the Needs backport related labels, so necessary backporting tickets will
be automatically created. If you are working on a ticket that doesn't have such labels, nor backporting tasks associated,
it probably doesn't need backporting. If you understand that the issue should be backported, please let us know in the
ticket or related PR. But sometimes we'll miss those.

The general principle used to determine what will be backported is:
• security fixes (please see our Security Policy)

• bug fixes

• in some cases, new features are backported if there are sufficient reasons to backport a new feature.

Note: Exceptions

There can be cases where backports may be "missed" -- some issues may not be labeled as needing backports and some
PRs may be merged without an issue.

This guide may be insufficient for some situations. When in doubt, please reach out to the team on the backport ticket
or PR.

Selection overview

All items considered for backports should be reviewed with the following:
• risk estimate: will the change introduce new bugs? Consider the scope and items affected by the change.

• behavioral change: how much will the behavior of the system be changed by the backport. For example,
a small change to decode additional encapsulation protocols may result in more traffic being presented to
Suricata.

• default settings: if the issue alters behavior, can it be made optional, and at what cost?

Creating backport tickets -- new issues

Redmine: for security and bug fixes, when creating a new Redmine issue, label the Redmine issue with "Needs backport
to x.0", where x.0 is a supported Suricata release, e.g, 7.0.x.

29.2. Contributing 663

https://suricata.io/our-story/eol-policy/
https://github.com/OISF/suricata/blob/master/SECURITY.md

Suricata User Guide, Release 8.0.0

Creating backports tickets -- existing issues/PRs

We want to minimize the occurrence of "missed backports" -- that is, work that should be backported but wasn't.
Sometimes this happens when there is no Redmine issue, or the Redmine issue wasn't labeled as needing a backport.

Therefore, we will be periodically reviewing:
• Redmine issues without backport labels, including recently closed issues, to see which require backport

labels.

• PRs without associated Redmine issues. Those requiring backports should be labeled with needs backport.

Then, also periodically, we will create backport issues from those items identified in the previous steps. When doing
so, we will evaluate what are the relevant target backport releases. Some issues reported against master or the current
Suricata release may not apply to older releases.

Git Backport Workflow

If you are working on a task that needs to be backported, only start the backporting process once the PR for master has
been merged. Then:

• Identify the commit(s) needed for the backport. Start with the PR that merged the commits into master and select
only the commits from the issue being backported.

• Bring each commit into the new branch, one at a time -- starting with the oldest commit. Use git cherry-pick
-x commit-hash, where commit-hash is the hash to the commit already in master or main-7.0x that is being
backported, as it maintains the linkage with said cherry-picked commit.

• Resolve conflicts: Some of the cherry-picked commits may contain merge conflicts. If the conflicts are small,
include the corrections in the cherry-picked commit.

• Add additional commits, if any are needed (e.g., to adjust cherry-picked code to old behavior).

Note: Commit hashes

We have a CI check that ensures the validity of the cherry-pick line.

Note: Exceptions

Sometimes, the fix for master will not work for the stable or old releases. In such cases, the backporting process won't
be through cherry-picking, but through actually implementing a fix for the specific version.

Create a PR:

Please indicate in the title that this is a backport PR, with something like (7.0.x-backport), and add the related milestone
label.

In the PR description, indicate the backport ticket.

664 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

QA

Add suricata-verify PRs when needed. Some existing suricata-verify tests may require version specification changes.

29.3 Suricata Internals

29.3.1 Packet Pipeline

29.3.2 Threading

29.3.3 Important Data Structures

Introduction

This section explains the most important Suricata Data structures.

For a complete overview, see the doxygen: https://doxygen.openinfosecfoundation.org

29.3.4 Engines

Flow

Stream

Defrag

Protocol detection

For each flow, Suricata will try to recognize the application layer protocol.

Protocol detection is run for TCP and UDP flows. Protocol detection is run (generally) independently for both directions
of the flow. A flow can change its app-layer protocol during its lifetime (TLS upgrade for example). Protocol detection
can, in the midstream case, reverse a flow direction. (If the first packet we see is a DNS over UDP response for example.)

Decision process

For each flow+direction, Suricata tries the following:

1. Multi pattern matching (port-independent)

Each app-layer protocol may register a set of patterns for each direction. (for example HTTP/1. for HTTP1 responses.)

As this is done by multi-pattern matching, this method scales, meaning that its CPU time cost is O(1) relative to the
number of protocols and patterns. This is why it is the first method being run.

Debug validation ensures that the same pattern is not registered for multiple protocols (as may have happened with SIP
and HTTP1).

An app-layer may also register a pattern with a probing parser, meaning that it will only recognise the protocol if: first
the pattern is found, and then the probing parser also matches.

2. Probing parser

29.3. Suricata Internals 665

https://doxygen.openinfosecfoundation.org

Suricata User Guide, Release 8.0.0

Each app-layer protocol may register arbitrary code to recognize a protocol. This code will only be run for some
configured ports.

The probing function returns one of the 3 values - ALPROTO_FAILED : this is definitely not the protocol - AL-
PROTO_UNKNOWN : needs more data to take a decision - ALPROTO_XYZ : if it is indeed protocol xyz

An application-layer protocol can have both a set of patterns registered, and a probing parser.

3. Expectations

This is used now only for FTP-DATA. A flow can set an expected flow between a source IP and a server IP+port.

Output

For each flow event, we have different fields that represent the application layer protocol:

• "app_proto": the final app-layer protocol detected and parsed by Suricata

• "app_proto_tc": the app-layer protocol detected by Suricata in the direction to client, only logged if different
than the app_proto

• "app_proto_ts": the app-layer protocol detected by Suricata in the direction to server, only logged if different
than the app_proto

• "app_proto_orig": the original app-layer protocol detected by Suricata if the flow changed its protocol

• "app_proto_expected": the expected app-layer protocol if the flow changed its protocol to an unexpected protocol

Note: For detection the keyword app-layer-protocol may be used for these different fields.

Suricata also emits anomalies about protocol detection (for which you can use rules with app-layer-event keyword):

• APPLAYER_DETECT_PROTOCOL_ONLY_ONE_DIRECTION : only one side was recognised, the other is
unknown

• APPLAYER_MISMATCH_PROTOCOL_BOTH_DIRECTIONS : the two sides were recognised but are differ-
ent

• APPLAYER_PROTO_DETECTION_SKIPPED : no side was recognised

• APPLAYER_UNEXPECTED_PROTOCOL : a protocol change was requested to a specific one, but this specific
protocol was not recognised

• APPLAYER_NO_TLS_AFTER_STARTTLS : same as above, but specialized for TLS

• APPLAYER_WRONG_DIRECTION_FIRST_DATA : the protocol recognised received the first data in the un-
expected side (like HTTP1 flow beginning by a response)

Suricata stats events also count the number of flows per app-layer protocol : .stats.app_layer.flow.xyz for xyz
protocol. For the app-layer protocols that can be recognised above both TCP and UDP, these counters are split in 2
fields like nfs_tcp and nfs_udp. These statistics are known to be not entirely consistent with the number of flows for
a certain app-layer protocol (because of protocol change for a known edge case).

666 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

29.4 Extending Suricata

29.4.1 Packet Capture

29.4.2 Packet Decoder

29.4.3 App-Layer

Application Layer Frame Support

Table of Contents

• Application Layer Frame Support

– Baseline

– General Concepts

– Adding Frame Support to a Parser

∗ Basic steps

∗ Implementation Examples & API Callbacks

· Rust

· C code

– Visual context

Baseline

• Suricata rules format

General Concepts

Frame support was introduced with Suricata 7.0. Up until 6.0.x, Suricata's architecture and state of parsers meant that
the network traffic available to the detection engine was just a stream of data, without detail about higher level parsers.

Note: For Suricata, Frame is a generic term that can represent any unit of network data we are interested in, which
could be comprised of one or several records of other, lower level protocol(s). Frames work as "stream annotations",
allowing Suricata to tell the detection engine what type of record exists at a specific offset in the stream.

The normal pipeline of detection in Suricata implied that:

• Certain rules could be quite costly performance-wise. This happened because the same stream could be inspected
several times for different rules, since for certain signatures the detection is done when Suricata is still inspecting
a lower level stream, not the application layer protocol (e.g., TCP traffic, in place of SMB one);

• Rules could be difficult and tedious to write (and read), requiring that writers went in byte-detail to express
matching on specific payload patterns.

29.4. Extending Suricata 667

https://docs.suricata.io/en/latest/rules/intro.html

Suricata User Guide, Release 8.0.0

What the Frame support offers is the ability to "point" to a specific portion of stream and identify what type of traffic
Suricata is looking at. Then, as the engine reassembles the stream, one can have "read access" to that portion of the
stream, aggregating concepts like what type of application layer protocol that is, and differentiating between header,
data or even protocol versions (SMB1, SMB2...).

The goal of the stream Frame is to expose application layer protocol PDUs and other such arbitrary elements to the
detection engine directly, instead of relying on Transactions. The main purpose is to bring TCP data processing times
down by specialising/ filtering down traffic detection.

Adding Frame Support to a Parser

The application layer parser exposes frames it supports to the detect engine, by tagging them as they're parsed. The
rest works automatically.

In order to allow the engine to identify frames for records of a given application layer parser, thought must be given as
to which frames make sense for the specific protocol you are handling. Some parsers may have clear header and data
fields that form its protocol data unit (pdu). For others, the distinction might be between request and response, only.
Whereas for others it may make sense to have specific types of data. This is better understood by seeing the different
types of frame keywords, which vary on a per-protocol basis.

It is also important to keep follow naming conventions when defining Frame Types. While a protocol may have strong
naming standards for certain structures, do compare those with what Suricata already has registered:

• hdr: used for the record header portion

• data: is used for the record data portion

• pdu: unless documented otherwise, means the whole record, comprising hdr and data

• request: a message from a client to a server

• response: a message from a server to a client

Basic steps

Once the frame types that make sense for a given protocol are defined, the basic steps for adding them are:

• create an enum with the frame types;

• identify the parsing function(s) where application layer records are parsed;

• identify the correct moment to register the frames;

• use the Frame API calls directly or build upon them and use your functions to register the frames;

• register the relevant frame callbacks when registering the parser.

Once these are done, you can enable frame eve-output to confirm that your frames are being properly registered. It is
important to notice that some hard coded limits could influence what you see on the logs (max size of log output; type
of logging for the payload, cf. https://redmine.openinfosecfoundation.org/issues/4988).

If all the steps are successfully followed, you should be able to write a rule using the frame keyword and the frame
types you have registered with the application layer parser.

Using the SMB parser as example, before frame support, a rule would look like:

alert tcp ... flow:to_server; content:"|ff|SMB"; content:"some smb 1 issue";

With frame support, one is able to do:

668 Chapter 29. Suricata Developer Guide

https://en.wikipedia.org/wiki/Protocol_data_unit
https://redmine.openinfosecfoundation.org/issues/4988

Suricata User Guide, Release 8.0.0

alert smb ... flow:to_server; frame:smb1.data; content:"some smb 1 issue";

Implementation Examples & API Callbacks

Though the steps are the same, there are a few differences when implementing frame support in Rust or in C. The
following sections elaborate on that, as well as on the process itself. (Note that the code snippets have omitted portions
of code that weren't so relevant to this document).

Rust

This section shows how Frame support is added in Rust, using examples from the SIP parser, and the telnet parser.

Define the frame types. The frame types are defined as an enum. In Rust, make sure to derive from the
AppLayerFrameType:

Listing 1: rust/src/sip/sip.rs

#[derive(AppLayerFrameType)]
pub enum SIPFrameType {

Pdu,
RequestLine,
ResponseLine,
RequestHeaders,
ResponseHeaders,
RequestBody,
ResponseBody,

}

Frame registering. Some understanding of the parser will be needed in order to find where the frames should be
registered. It makes sense that it will happen when the input stream is being parsed into records. See when some pdu
and request frames are created for SIP:

Listing 2: rust/src/sip/sip.rs

fn parse_request(&mut self, flow: *const Flow, stream_slice: StreamSlice) -> bool {
let input = stream_slice.as_slice();
let _pdu = Frame::new(

flow,
&stream_slice,
input,
input.len() as i64,
SIPFrameType::Pdu as u8,
None,

);
SCLogDebug!("ts: pdu {:?}", _pdu);

match parse_request(input) {
Ok((_, request)) => {

let mut tx = self.new_tx(Direction::ToServer);
sip_frames_ts(flow, &stream_slice, &request, tx.id);
tx.request = Some(request);

(continues on next page)

29.4. Extending Suricata 669

https://github.com/OISF/suricata/blob/master/rust/src/sip/sip.rs
https://github.com/OISF/suricata/blob/master/rust/src/telnet/telnet.rs

Suricata User Guide, Release 8.0.0

(continued from previous page)

if let Ok((_, req_line)) = sip_take_line(input) {
tx.request_line = req_line;

}
self.transactions.push_back(tx);
return true;

}

Note: when to create PDU frames

The standard approach we follow for frame registration is that a frame pdu will always be created, regardless of parser
status (in practice, before the parser is called). The other frames are then created when and if only the parser succeeds.

Use the Frame API or build upon them as needed. These are the frame registration functions highlighted above:

Listing 3: rust/src/sip/sip.rs

fn sip_frames_ts(flow: *const Flow, stream_slice: &StreamSlice, r: &Request, tx_id: u64)
→˓{
let oi = stream_slice.as_slice();
let _f = Frame::new(

flow,
stream_slice,
oi,
r.request_line_len as i64,
SIPFrameType::RequestLine as u8,
Some(tx_id),

);
SCLogDebug!("ts: request_line {:?}", _f);
let hi = &oi[r.request_line_len as usize..];
let _f = Frame::new(

flow,
stream_slice,
hi,
r.headers_len as i64,
SIPFrameType::RequestHeaders as u8,
Some(tx_id),

);
SCLogDebug!("ts: request_headers {:?}", _f);
if r.body_len > 0 {

let bi = &oi[r.body_offset as usize..];
let _f = Frame::new(

flow,
stream_slice,
bi,
r.body_len as i64,
SIPFrameType::RequestBody as u8,
Some(tx_id),

);
SCLogDebug!("ts: request_body {:?}", _f);

}
}

670 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

Register relevant frame callbacks. As these are inferred from the #[derive(AppLayerFrameType)] statement, all
that is needed is:

Listing 4: rust/src/sip/sip.rs

get_frame_id_by_name: Some(SIPFrameType::ffi_id_from_name),
get_frame_name_by_id: Some(SIPFrameType::ffi_name_from_id),

Note: on frame_len

For protocols which search for an end of frame char, like telnet, indicate unknown length by passing -1. Once the
length is known, it must be updated. For those where length is a field in the record (e.g. SIP), the frame is set to match
said length, even if that is bigger than the current input

The telnet parser has examples of using the Frame API directly for registering telnet frames, and also illustrates how
that is done when length is not yet known:

Listing 5: rust/src/telnet/telnet.rs

fn parse_request(
&mut self, flow: *const Flow, stream_slice: &StreamSlice, input: &[u8],

) -> AppLayerResult {
let mut start = input;
while !start.is_empty() {

if self.request_frame.is_none() {
self.request_frame = Frame::new(

flow,
stream_slice,
start,
-1_i64,
TelnetFrameType::Pdu as u8,
None,

);
}
if self.request_specific_frame.is_none() {

if let Ok((_, is_ctl)) = parser::peek_message_is_ctl(start) {
let f = if is_ctl {

Frame::new(
flow,
stream_slice,
start,
-1_i64,
TelnetFrameType::Ctl as u8,
None,

)
} else {

Frame::new(
flow,
stream_slice,
start,

We then update length later on (note especially lines 3 and 10):

29.4. Extending Suricata 671

Suricata User Guide, Release 8.0.0

Listing 6: rust/src/telnet/telnet.rs

1 match parser::parse_message(start) {
2 Ok((rem, request)) => {
3 let consumed = start.len() - rem.len();
4 if rem.len() == start.len() {
5 panic!("lockup");
6 }
7 start = rem;
8

9 if let Some(frame) = &self.request_frame {
10 frame.set_len(flow, consumed as i64);

The Frame API calls parameters represent:

• flow: dedicated data type, carries specific flow-related data

• stream_slice: dedicated data type, carries stream data, shown further bellow

• frame_start: a pointer to the start of the frame buffer in the stream (cur_i in the SMB code snippet)

• frame_len: what we expect the frame length to be (the engine may need to wait until it has enough data. See
what is done in the telnet snippet request frames registering)

• frame_type: type of frame it's being registering (defined in an enum, as shown further above)

• tx_id: an optional transaction id, if the frame belongs to a transaction. May be set later like frame_len

StreamSlice contains the input data to the parser, alongside other Stream-related data important in parsing context.
Definition is found in applayer.rs:

Listing 7: rust/src/applayer.rs

pub struct StreamSlice {
input: *const u8,
input_len: u32,
/// STREAM_* flags
flags: u8,
offset: u64,

}

C code

Implementing Frame support in C involves a bit more manual work, as one cannot make use of the Rust derives. Code
snippets from the HTTP parser:

Defining the frame types with the enum means:

Listing 8: src/app-layer-htp.c

enum HttpFrameTypes {
HTTP_FRAME_REQUEST,
HTTP_FRAME_RESPONSE,

};

SCEnumCharMap http_frame_table[] = {
(continues on next page)

672 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

(continued from previous page)

{
"request",
HTTP_FRAME_REQUEST,

},
{

"response",
HTTP_FRAME_RESPONSE,

},
{ NULL, -1 },

};

The HTTP parser uses the Frame registration functions from the C API (app-layer-frames.c) directly for registering
request Frames. Here we also don't know the length yet. The 0 indicates flow direction: toserver, and 1 would be
used for toclient:

Listing 9: src/app-layer-htp.c

Frame *frame = AppLayerFrameNewByAbsoluteOffset(
hstate->f, hstate->slice, consumed, -1, 0, HTTP_FRAME_REQUEST);

if (frame) {
SCLogDebug("frame %p/%" PRIi64, frame, frame->id);
hstate->request_frame_id = frame->id;
AppLayerFrameSetTxId(frame, HtpGetActiveRequestTxID(hstate));

}

Updating frame->len later:

Listing 10: src/app-layer-htp.c

if (hstate->request_frame_id > 0) {
Frame *frame = AppLayerFrameGetById(hstate->f, 0, hstate->request_frame_id);
if (frame) {

const uint64_t request_size = abs_right_edge - hstate->last_request_data_stamp;

SCLogDebug("HTTP request complete: data offset %" PRIu64 ", request_size %"␣
→˓PRIu64,

hstate->last_request_data_stamp, request_size);
SCLogDebug("frame %p/%" PRIi64 " setting len to %" PRIu64, frame, frame->id,

request_size);
frame->len = (int64_t)request_size;

Register relevant callbacks (note that the actual functions will also have to be written, for C):

29.4. Extending Suricata 673

Suricata User Guide, Release 8.0.0

Listing 11: src/app-layer-htp.c

AppLayerParserRegisterGetFrameFuncs(
IPPROTO_TCP, ALPROTO_HTTP1, HTTPGetFrameIdByName, HTTPGetFrameNameById);

Note: The GetFrameIdByName functions can be "probed", so they should not generate any output or that could be
misleading (for instance, Suricata generating a log message stating that a valid frame type is unknown).

Visual context

input and input_len are used to calculate the proper offset, for storing the frame. The stream buffer slides forward,
so frame offsets/frames have to be updated. The relative offset (rel_offset) reflects that:

Start:
[stream]
[frame]
rel_offset: 2
len: 19

Slide:
[stream]

[frame]
rel_offset: -10
len: 19

Slide:
[stream]

[frame]
rel_offset: -16
len: 19

The way the engine handles stream frames can be illustrated as follows:

674 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

Parsers

Callbacks

The API calls callbacks that are registered at the start of the program.

The function prototype is:

typedef AppLayerResult (*AppLayerParserFPtr)(Flow *f, void *protocol_state,
AppLayerParserState *pstate,
const uint8_t *buf, uint32_t buf_len,
void *local_storage, const uint8_t flags);

29.4. Extending Suricata 675

Suricata User Guide, Release 8.0.0

Examples

A C example:

static AppLayerResult HTPHandleRequestData(Flow *f, void *htp_state,
AppLayerParserState *pstate,
const uint8_t *input, uint32_t input_len,
void *local_data, const uint8_t flags);

In Rust, the callbacks are similar.

#[no_mangle]
pub extern "C" fn rs_dns_parse_response_tcp(_flow: *const core::Flow,

state: *mut std::os::raw::c_void,
_pstate: *mut AppLayerParserState,
input: *const u8,
input_len: u32,
_data: *const std::os::raw::c_void,
_flags: u8)

-> AppLayerResult

Return Types

Parsers return the type AppLayerResult.

There are 3 possible results:
• APP_LAYER_OK - parser consumed the data successfully

• APP_LAYER_ERROR - parser encountered a unrecoverable error

• APP_LAYER_INCOMPLETE(c,n) - parser consumed c bytes, and needs n more before being called again

Rust parsers follow the same logic, but can return
• AppLayerResult::ok()

• AppLayerResult::err()

• AppLayerResult::incomplete(c,n)

For i32 and bool, Rust parsers can also use .into().

APP_LAYER_OK / AppLayerResult::ok()

When a parser returns "OK", it signals to the API that all data has been consumed. The parser will be called again
when more data is available.

676 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

APP_LAYER_ERROR / AppLayerResult::err()

Returning "ERROR" from the parser indicates to the API that the parser encountered an unrecoverable error and the
processing of the protocol should stop for the rest of this flow.

Note: This should not be used for recoverable errors. For those events should be set.

APP_LAYER_INCOMPLETE / AppLayerResult::incomplete()

Using "INCOMPLETE" a parser can indicate how much more data is needed. Many protocols use records that have
the size as one of the first parameters. When the parser receives a partial record, it can read this value and then tell the
API to only call the parser again when enough data is available.

consumed is used how much of the current data has been processed needed is the number of bytes that the parser needs
on top of what was consumed.

Example:

[32 record 1][32 record 2][32 r..]
0 31 32 63 64 72

^ ^
consumed: 64 ---------------/ |
needed: 32 -------------------/

Note: "INCOMPLETE" is only supported for TCP

The parser will be called again when the needed data is available OR when the stream ends. In the latter case the data
will be incomplete. It's up to the parser to decide what to do with it in this case.

Supporting incomplete data

In some cases it may be preferable to actually support dealing with incomplete records. For example protocols like
SMB and NFS can use very large records during file transfers. Completely queuing these before processing could be a
waste of resources. In such cases the "INCOMPLETE" logic could be used for just the record header, while the record
data is streamed into the parser.

Transactions

Table of Contents

• Transactions

– General Concepts

– How the engine uses transactions

∗ Logging

∗ Rule Matching

29.4. Extending Suricata 677

Suricata User Guide, Release 8.0.0

– Progress Tracking

∗ In Summary - Transactions and State

– Examples

∗ Enums

∗ API Callbacks

∗ Sequence Diagrams

∗ Template Protocol

– Work In Progress changes

– Common words and abbreviations

General Concepts

For Suricata, transactions are an abstraction that help with detecting and logging. An example of a complete transaction
is a pair of messages in the form of a request (from client to server) and a response (from server to client) in HTTP.

In order to know when to log an event for a given protocol, the engine tracks the progress of each transaction - that is,
when is it complete, or when it reaches a key intermediate state. They aid during the detection phase, when dealing
with protocols that can have large PDUs (protocol data units), like TCP, in controlling state for partial rule matching --
in case of rules that mention more than one field.

Transactions are implemented and stored in the per-flow state. The engine interacts with them using a set of callbacks
the parser registers.

How the engine uses transactions

Logging

Suricata controls when logging should happen based on transaction completeness. For simpler protocols, such as dns
or ntp, that will most likely happen once per transaction, by the time of its completion. In other cases, like with HTTP,
this may happen at intermediary states.

In OutputTxLog, the engine will compare current state with the value defined for the logging to happen, per flow
direction (logger->tc_log_progress, logger->ts_log_progress). If state is less than that value, the engine
skips to the next logger. Code snippet from: suricata/src/output-tx.c:

static TmEcode OutputTxLog(ThreadVars *tv, Packet *p, void *thread_data)
{

.

.

.
if ((ts_eof && tc_eof) || last_pseudo) {

SCLogDebug("EOF, so log now");
} else {

if (logger->LogCondition) {
int r = logger->LogCondition(tv, p, alstate, tx, tx_id);
if (r == FALSE) {

SCLogDebug("conditions not met, not logging");
goto next_logger;

(continues on next page)

678 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

(continued from previous page)

}
} else {

if (tx_progress_tc < logger->tc_log_progress) {
SCLogDebug("progress not far enough, not logging");
goto next_logger;

}

if (tx_progress_ts < logger->ts_log_progress) {
SCLogDebug("progress not far enough, not logging");
goto next_logger;

}
}

}
.
.
.

}

Rule Matching

Transaction progress is also used for certain keywords to know what is the minimum state before we can expect a match:
until that, Suricata won't even try to look for the patterns.

As seen in DetectAppLayerMpmRegister that has int progress as parameter, and
DetectAppLayerInspectEngineRegister, which expects int tx_min_progress, for instance. In the code
snippet, HTTP2StateDataClient, HTTP2StateDataServer and 0 are the values passed to the functions - in the last
example, for FTPDATA, the existence of a transaction implies that a file is being transferred. Hence the 0 value.

void DetectFiledataRegister(void)
{

.

.
DetectAppLayerMpmRegister("file_data", SIG_FLAG_TOSERVER, 2,

PrefilterMpmFiledataRegister, NULL,
ALPROTO_HTTP2, HTTP2StateDataClient);

DetectAppLayerMpmRegister("file_data", SIG_FLAG_TOCLIENT, 2,
PrefilterMpmFiledataRegister, NULL,
ALPROTO_HTTP2, HTTP2StateDataServer);

.

.
DetectAppLayerInspectEngineRegister("file_data",

ALPROTO_HTTP2, SIG_FLAG_TOCLIENT, HTTP2StateDataServer,
DetectEngineInspectFiledata, NULL);

DetectAppLayerInspectEngineRegister(
"file_data", ALPROTO_FTPDATA, SIG_FLAG_TOSERVER, 0,␣

→˓DetectEngineInspectFiledata, NULL);
.
.

}

29.4. Extending Suricata 679

Suricata User Guide, Release 8.0.0

Progress Tracking

As a rule of thumb, transactions will follow a request-response model: if a transaction has had a request and a response,
it is complete.

But if a protocol has situations where a request or response won’t expect or generate a message from its counterpart,
it is also possible to have uni-directional transactions. In such cases, transaction is set to complete at the moment of
creation.

For example, DNS responses may be considered as completed transactions, because they also contain the request data,
so all information needed for logging and detection can be found in the response.

In addition, for file transfer protocols, or similar ones where there may be several messages before the file exchange is
completed (NFS, SMB), it is possible to create a level of abstraction to handle such complexity. This could be achieved
by adding phases to the model implemented by the protocol (e.g., protocol negotiation phase (SMB), request parsed
(HTTP), and so on).

This is controlled by implementing progress states. In Suricata, those will be enums that are incremented as the parsing
progresses. A state will start at 0. The higher its value, the closer the transaction would be to completion. Due to how
the engine tracks detection across states, there is an upper limit of 48 to the state progress (it must be < 48).

The engine interacts with transactions' state using a set of callbacks the parser registers. State is defined per flow
direction (STREAM_TOSERVER / STREAM_TOCLIENT).

In Summary - Transactions and State

• Initial State value: 0.

• Simpler scenarios: State is simply a bool. 1 represents transaction completion, per direction.

• Complex Transaction State in Suricata: enum (Rust: i32). Completion is indicated by the highest enum value
(some examples are: SSH, HTTP, HTTP2, DNS, SMB).

Examples

This section shares some examples from Suricata codebase, to help visualize how Transactions work and are handled
by the engine.

Enums

Code snippet from: rust/src/ssh/ssh.rs:

pub enum SSHConnectionState {
SshStateInProgress = 0,
SshStateBannerWaitEol = 1,
SshStateBannerDone = 2,
SshStateFinished = 3,

}

From src/app-layer-ftp.h:

enum {
FTP_STATE_IN_PROGRESS,
FTP_STATE_PORT_DONE,

(continues on next page)

680 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

(continued from previous page)

FTP_STATE_FINISHED,
};

From src/app-layer-ssl.h:

enum {
TLS_STATE_IN_PROGRESS = 0,
TLS_STATE_CERT_READY = 1,
TLS_HANDSHAKE_DONE = 2,
TLS_STATE_FINISHED = 3

};

API Callbacks

In Rust, this is done via the RustParser struct. As seen in rust/src/applayer.rs:

/// Rust parser declaration
pub struct RustParser {

.

.

.
/// Progress values at which the tx is considered complete in a direction
pub tx_comp_st_ts: c_int,
pub tx_comp_st_tc: c_int,
.
.
.

}

In C, the callback API is:

void AppLayerParserRegisterStateProgressCompletionStatus(
AppProto alproto, const int ts, const int tc)

Simple scenario described, in Rust:

rust/src/dhcp/dhcp.rs:

tx_comp_st_ts: 1,
tx_comp_st_tc: 1,

For SSH, this looks like this:

rust/src/ssh/ssh.rs:

tx_comp_st_ts: SSHConnectionState::SshStateFinished as i32,
tx_comp_st_tc: SSHConnectionState::SshStateFinished as i32,

In C, callback usage would be as follows:

src/app-layer-dcerpc.c:

AppLayerParserRegisterStateProgressCompletionStatus(ALPROTO_DCERPC, 1, 1);

29.4. Extending Suricata 681

Suricata User Guide, Release 8.0.0

src/app-layer-ftp.c:

AppLayerParserRegisterStateProgressCompletionStatus(
ALPROTO_FTP, FTP_STATE_FINISHED, FTP_STATE_FINISHED);

Sequence Diagrams

A DNS transaction in Suricata can be considered unidirectional:

An HTTP2 transaction is an example of a bidirectional transaction, in Suricata (note that, while HTTP2 may have
multiple streams, those are mapped to transactions in Suricata. They run in parallel, scenario not shown in this Sequence
Diagram - which shows one transaction, only):

A TLS Handshake is a more complex example, where several messages are exchanged before the transaction is consid-
ered completed:

682 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

Template Protocol

Suricata has a template protocol for educational purposes, which has simple bidirectional transactions.

A completed transaction for the template looks like this:

29.4. Extending Suricata 683

Suricata User Guide, Release 8.0.0

Following are the functions that check whether a transaction is considered completed, for the Template Protocol. Those
are called by the Suricata API. Similar functions exist for each protocol, and may present implementation differences,
based on what is considered a transaction for that given protocol.

In C:

static int TemplateGetStateProgress(void *txv, uint8_t direction)
{

TemplateTransaction *tx = txv;

SCLogNotice("Transaction progress requested for tx ID %"PRIu64
", direction=0x%02x", tx->tx_id, direction);

if (direction & STREAM_TOCLIENT && tx->response_done) {
return 1;

}
else if (direction & STREAM_TOSERVER) {

/* For the template, just the existence of the transaction means the
* request is done. */
return 1;

}

return 0;
}

And in Rust:

pub extern "C" fn rs_template_tx_get_alstate_progress(
tx: *mut std::os::raw::c_void,
_direction: u8,

) -> std::os::raw::c_int {
let tx = cast_pointer!(tx, TemplateTransaction);

// Transaction is done if we have a response.
if tx.response.is_some() {

return 1;
}
return 0;

}

684 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

Work In Progress changes

Currently we are working to have files be part of the transaction instead of the per-flow state, as seen in https://redmine.
openinfosecfoundation.org/issues/4444.

Another work in progress is to limit the number of transactions per flow, to prevent Denial of Service (DoS) by quadratic
complexity - a type of attack that may happen to protocols which can have multiple transactions at the same time - such
as HTTP2 so-called streams (see https://redmine.openinfosecfoundation.org/issues/4530).

Common words and abbreviations

• al, applayer: application layer

• alproto: application layer protocol

• alstate: application layer state

• engine: refers to Suricata core detection logic

• flow: a bidirectional flow of packets with the same 5-tuple elements (protocol, source ip, destination ip, source
port, destination port. Vlans can be added as well)

• PDU: Protocol Data Unit

• rs: rust

• tc: to client

• ts: to server

• tx: transaction

29.4.4 Detection

Rate Filter Callback

A callback can be registered for any signature hit whose action has been modified by the rate filter. This allows for the
user to modify the action, if needed using their own custom logic.

For an example, see examples/lib/custom/main.c in the Suricata source code.

The Callback

The callback function will be called with the packet, signature details (sid, gid, rev), original action, the new action,
and a user provided argument. It will only be called if the Suricata rate filter modified the action:

/**
* \brief Function type for rate filter callback.
*
* This function should return the new action to be applied. If no change to the
* action is to be made, the callback should return the current action provided
* in the new_action parameter.
*/
typedef uint8_t (*SCDetectRateFilterFunc)(const Packet *p, uint32_t sid, uint32_t gid,␣
→˓uint32_t rev,

uint8_t original_action, uint8_t new_action, void *arg);

29.4. Extending Suricata 685

https://redmine.openinfosecfoundation.org/issues/4444
https://redmine.openinfosecfoundation.org/issues/4444
https://redmine.openinfosecfoundation.org/issues/4530

Suricata User Guide, Release 8.0.0

Callback Registration

To register the rate filter callback, use the SCDetectEngineRegisterRateFilterCallback function with your call-
back and a user provided argument which will be provided to the callback.

/**
* \brief Register a callback when a rate_filter has been applied to
* an alert.
*
* This callback is added to the current detection engine and will be
* copied to all future detection engines over rule reloads.
*/
void SCDetectEngineRegisterRateFilterCallback(SCDetectRateFilterFunc cb, void *arg);

29.4.5 Output

Low Level Logging

Suricata's alert, protocol, and other types of output are built up from a set of low level loggers. These loggers include:

• Packet logging (alerts)

• Flow logging

• Transaction logging (application layer)

• File information logging

• File data logging (file extraction)

• Statistics

These low level logging facilities are used to build up Suricata's logging include EVE, but they can also be hooked into
by plugins or applications using Suricata as a library.

Note: At this time only a C API exists to hook into the low level logging functions.

The Suricata source code contains an example plugin demonstrating how to hook into some of these APIs. See https:
//github.com/OISF/suricata/blob/master/examples/plugins/c-custom-loggers/custom-logger.c.

Packet Logging

Packet loggers can be registered with the SCOutputRegisterPacketLogger function:

/** \brief Register a packet logger.
*
* \param logger_id An ID used to distinguish this logger from others
* while profiling.
* \param name An informational name for this logger. Used only for
* debugging.
* \param LogFunc A function that will be called to log each packet
* that passes the condition test.
* \param ConditionFunc A function to test if the packet should be passed to

(continues on next page)

686 Chapter 29. Suricata Developer Guide

https://github.com/OISF/suricata/blob/master/examples/plugins/c-custom-loggers/custom-logger.c
https://github.com/OISF/suricata/blob/master/examples/plugins/c-custom-loggers/custom-logger.c

Suricata User Guide, Release 8.0.0

(continued from previous page)

* the logging function.
* \param initdata Initialization data that will pass to the
* ThreadInitFunc.
* \param ThreadInitFunc Thread initialization function.
* \param ThreadDeinitFunc Thread de-initialization function.
*
* \retval 0 on success, -1 on failure.
*/
int SCOutputRegisterPacketLogger(LoggerId logger_id, const char *name, PacketLogger␣
→˓LogFunc,

PacketLogCondition ConditionFunc, void *initdata, ThreadInitFunc,␣
→˓ThreadDeinitFunc);

Flow Logging

Flow loggers can be registered with the SCOutputRegisterFlowLogger function:

/** \brief Register a flow logger.
*
* \param name An informational name for this logger. Used only for
* debugging.
* \param LogFunc A function that will be called to log each flow.
* \param initdata A pointer to initialization data that will be
* passed the ThreadInit.
* \param ThreadInit Thread initialization callback.
* \param ThreadDeinit Thread de-initialization callback.
*
* \retval 0 on success, -1 on failure.
*/
int SCOutputRegisterFlowLogger(const char *name, FlowLogger LogFunc, void *initdata,

ThreadInitFunc ThreadInit, ThreadDeinitFunc ThreadDeinit);

Transaction Logging

Transaction logger can be registered with the SCOutputRegisterTxLogger function:

Attention: Transaction loggers cannot be registered from a plugin at this time, see https://redmine.
openinfosecfoundation.org/issues/7236 for more information.

/** \brief Register a transaction logger.
*
* \param logger_id An ID used to distinguish this logger from others
* while profiling. For transaction logging this is only used for
* some internal state tracking.
*
* \param name An informational name for this logger. Used for
* debugging.

(continues on next page)

29.4. Extending Suricata 687

https://redmine.openinfosecfoundation.org/issues/7236
https://redmine.openinfosecfoundation.org/issues/7236

Suricata User Guide, Release 8.0.0

(continued from previous page)

*
* \param alproto The application layer protocol this logger is for,
* for example ALPROTO_DNS.
*
* \param LogFunc A pointer to the logging function.
*
* \param initdata Initialization data that will be provided to the
* ThreadInit callback.
*
* \param tc_log_progress The to_client progress state required for
* the log function to be called.
*
* \param ts_log_progress The to_server progress state required for
* the log function to be called.
*
* \param LogCondition A pointer to a function that will be called
* before the log function to test if the log function should be
* called.
*
* \param ThreadInitFunc Callback a thread initialization function,
* initdata will be provided.
*
* \param ThreadDeinitFunc Callback to a thread de-initialization
* function for cleanup.
*/
int SCOutputRegisterTxLogger(LoggerId id, const char *name, AppProto alproto, TxLogger␣
→˓LogFunc,

void *, int tc_log_progress, int ts_log_progress, TxLoggerCondition LogCondition,
ThreadInitFunc, ThreadDeinitFunc);

Stream Logging

Stream logging allows for the logging of streaming data such as TCP reassembled data and HTTP body data. The
provided log function will be called each time a new chunk of data is available.

Stream loggers can be registered with the SCOutputRegisterStreamingLogger function:

/** \brief Register a streaming logger.
*
* \param logger_id An ID to uniquely identify this logger.
*
* \param name An informational name for this logger.
*
* \param LogFunc Pointer to logging function.
*
* \param initdata Initialization data that will be passed the
* ThreadInit.
*
* \param stream_type Type of stream to log, see
* SCOutputStreamingType.
*

(continues on next page)

688 Chapter 29. Suricata Developer Guide

Suricata User Guide, Release 8.0.0

(continued from previous page)

* \param ThreadInit Pointer to thread initialization function.
*
* \param ThreadDeinit Pointer to thread de-initialization function.
*/
int SCOutputRegisterStreamingLogger(LoggerId logger_id, const char *name,␣
→˓SCStreamingLogger LogFunc,

void *initdata, enum SCOutputStreamingType stream_type, ThreadInitFunc␣
→˓ThreadInit,

ThreadDeinitFunc ThreadDeinit);

File Logging

File loggers can be registered with the SCOutputRegisterFileLogger function:

/** \brief Register a file logger.
*
* \param logger_id An ID used to distinguish this logger from others
* while profiling.
*
* \param name An informational name for this logger. Used only for
* debugging.
*
* \param LogFunc A function that will be called to log each file to be logged.
*
* \param initdata Initialization data that will pass to the
* ThreadInitFunc.
*
* \param ThreadInitFunc Thread initialization function.
*
* \param ThreadDeinitFunc Thread de-initialization function.
*
* \retval 0 on success, -1 on failure.
*/
int SCOutputRegisterFileLogger(LoggerId id, const char *name, SCFileLogger LogFunc, void␣
→˓*initdata,

ThreadInitFunc ThreadInit, ThreadDeinitFunc ThreadDeinit);

File-data Logging

File-data loggers can be registered with the SCOutputRegisterFileDataLogger function:

/** \brief Register a file-data logger.
*
* \param logger_id An ID used to distinguish this logger from others
* while profiling.
*
* \param name An informational name for this logger. Used only for
* debugging.
*

(continues on next page)

29.4. Extending Suricata 689

Suricata User Guide, Release 8.0.0

(continued from previous page)

* \param LogFunc A function that will be called to log each file-data.
*
* \param initdata Initialization data that will pass to the
* ThreadInitFunc.
*
* \param ThreadInitFunc Thread initialization function.
*
* \param ThreadDeinitFunc Thread de-initialization function.
*
* \retval 0 on success, -1 on failure.
*/
int SCOutputRegisterFiledataLogger(LoggerId id, const char *name, SCFiledataLogger␣
→˓LogFunc,

void *initdata, ThreadInitFunc ThreadInit, ThreadDeinitFunc ThreadDeinit);

29.5 LibSuricata and Plugins

29.5.1 Using Suricata as a Library

The ability to turn Suricata into a library that can be utilized in other tools is currently a work in progress, tracked by
Redmine Ticket #2693: https://redmine.openinfosecfoundation.org/issues/2693.

29.5.2 Plugins

A related work are Suricata plugins, also in progress and tracked by Redmine Ticket #4101: https://redmine.
openinfosecfoundation.org/issues/4101.

Plugins can be used by modifying the suricata.yaml plugins section to include the path of the dynamic library to load.

Plugins should export a SCPluginRegister function that will be the entry point used by Suricata.

Application-layer plugins

Application layer plugins can be added as demonstrated by example https://github.com/OISF/suricata/blob/master/
examples/plugins/altemplate/

The plugin code contains the same files as an application layer in the source tree:
• alname.rs : entry point of protocol with its registration

• detect.rs : signature keywords

• lib.rs : list the files in the rust module

• log.rs : logging to eve.json

• parser.rs : parsing functions

These files will have different use statements, targeting the suricata crate.

Attention: A plugin should not use rust structures from suricata crate if they are not repr(C), especially Json-
Builder.

690 Chapter 29. Suricata Developer Guide

https://redmine.openinfosecfoundation.org/issues/2693
https://redmine.openinfosecfoundation.org/issues/4101
https://redmine.openinfosecfoundation.org/issues/4101
https://github.com/OISF/suricata/blob/master/examples/plugins/altemplate/
https://github.com/OISF/suricata/blob/master/examples/plugins/altemplate/

Suricata User Guide, Release 8.0.0

This is because the rust compiler does not guarantee the structure layout unless you specify this representation. Thus,
the plugin may expect the JsonBuilder fields at different offsets than they are supplied by Suricata at runtime. The
solution is to go through the JsonBuilder C API which uses an opaque pointer.

And the plugin contains also additional files:
• plugin.rs : defines the entry point of the plugin -- SCPluginRegister

SCPluginRegister should register a callback that should then call SCPluginRegisterAppLayer passing a
SCAppLayerPlugin structure to Suricata. It should also call suricata::plugin::init(); to ensure the plugin
has initialized its value of the Suricata Context. This is a structure needed by rust, to call some C functions, that cannot
be found at compile time because of circular dependencies, and are therefore resolved at runtime.

The SCPlugin begins by a version number SC_API_VERSION for runtime compatibility between Suricata and the
plugin.

Known limitations are:

• Plugins can only use simple logging as defined by EveJsonSimpleTxLogFunc without suricata.yaml configu-
ration, see https://github.com/OISF/suricata/pull/11160

• Keywords cannot use validate callbacks, see https://redmine.openinfosecfoundation.org/issues/5634

Attention: A pure rust plugin needs to be compiled with RUSTFLAGS=-Clink-args=-Wl,-undefined,
dynamic_lookup

This is because the plugin will link dynamically at runtime the functions defined in Suricata runtime. You can define
this rust flag in a .cargo/config.toml file.

29.6 Upgrading

29.6.1 Upgrading 7.0 to 8.0

EVE File Types

• The ThreadInit function will now be called when in threaded and non-threaded modes. This simplifies the
initialization for EVE filetypes as they can use the same flow of execution for both modes. To upgrade, either
remove the call to ThreadInit from Init, or move per-thread setup code from Init to ThreadInit.

• Many of the function arguments to the callbacks have been made const where it made sense.

Please see the latest example EVE filetype plugin for an up to date example.

29.6. Upgrading 691

https://github.com/OISF/suricata/pull/11160
https://redmine.openinfosecfoundation.org/issues/5634

Suricata User Guide, Release 8.0.0

692 Chapter 29. Suricata Developer Guide

CHAPTER

THIRTY

VERIFYING SURICATA SOURCE DISTRIBUTION FILES

Once the Suricata release distribution file has been downloaded, the PGP signature should be verified. This can be
done using the GPG application and is usually available on Linux/BSD systems without having to manually install any
additional packages. For Mac or Windows systems installation packages can be found at https://gnupg.org/.

30.1 Verification Steps

These verification steps are for general guidance, the exact process and commands may vary between operating systems.

30.1.1 Downloading the Signature File

The signature file needs to be downloaded as well as the distribution file. Both files can be found at https://suricata.io/
download/.

30.1.2 Importing the OISF Signing Key

Once both the signature file and Suricata distribution files are obtained, the OISF signing key should be imported to
the local gpg keyring. This can be done by running the following command:

$ gpg --receive-keys 2BA9C98CCDF1E93A

The above command should produce output similar to the following:

gpg: key 2BA9C98CCDF1E93A: public key "Open Information Security Foundation
(OISF) <releases@openinfosecfoundation.org>" imported
gpg: Total number processed: 1
gpg: imported: 1

30.1.3 Verifying the Suricata Distribution File

To verify the contents of the Suricata distribution file the following command could be ran on the Suricata 7.0.5 distri-
bution file:

$ gpg --verify suricata-7.0.5.tar.gz.sig suricata-7.0.5.tar.gz

Depending on the trust level assigned to the OISF signing keys, something similar to the following output should be
seen:

693

https://gnupg.org/
https://suricata.io/download/
https://suricata.io/download/

Suricata User Guide, Release 8.0.0

$ gpg --verify suricata-7.0.5.tar.gz.sig suricata-7.0.5.tar.gz
gpg: Signature made Tue 23 Apr 2024 11:58:56 AM UTC
gpg: using RSA key B36FDAF2607E10E8FFA89E5E2BA9C98CCDF1E93A
gpg: checking the trustdb
gpg: marginals needed: 3 completes needed: 1 trust model: pgp
gpg: depth: 0 valid: 1 signed: 0 trust: 0-, 0q, 0n, 0m, 0f, 1u
gpg: next trustdb check due at 2025-08-06
gpg: Good signature from "Open Information Security Foundation (OISF)
<releases@openinfosecfoundation.org>" [ultimate]

This indicates a valid signature and that the signing key is trusted.

Note: If output from the --verify command is similar to the following:

gpg: Signature made Tue 23 Apr 2024 11:58:56 AM UTC
gpg: using RSA key B36FDAF2607E10E8FFA89E5E2BA9C98CCDF1E93A
gpg: Can't check signature: No public key

This indicates that the OISF signing key was not imported to the local GPG keyring.

Note: If output from the --verify command is similar to the following:

gpg: Signature made Tue 23 Apr 2024 11:58:56 AM UTC
gpg: using RSA key B36FDAF2607E10E8FFA89E5E2BA9C98CCDF1E93A
gpg: Good signature from "Open Information Security Foundation (OISF)
<releases@openinfosecfoundation.org>" [unknown]
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: B36F DAF2 607E 10E8 FFA8 9E5E 2BA9 C98C CDF1 E93A

This indicates that the OISF signing key was imported and the signatures are valid, but either the keys have not been
marked as trusted OR the keys are possibly a forgery.

If there are questions regarding the validity of the downloaded file, the OISF team can be reached at security @ oisf.net
(remove the spaces between the @ before sending).

694 Chapter 30. Verifying Suricata Source Distribution Files

CHAPTER

THIRTYONE

APPENDIX

31.1 EVE JSON Schema

The Suricata source distribution contains a JSON schema for the EVE log files. This schema follows the JSON Schema
specification and can be found in etc/schema.json. If your distribution does not contain this file, it can be viewed
online at https://github.com/OISF/suricata/blob/master/etc/schema.json, but note that it is version-specific and may
change between major versions of Suricata.

This schema attempts to log all possible fields that may be seen in Suricata's EVE output, including their datatype. It
also includes extensions to help map log fields to related detection keywords.

31.1.1 Suricata Schema Extensions

We have extended JSON schema with a suricata object to add extra Suricata context such as detection keywords
related to a log field, for example:

"rrname": {
"type": "string",
"suricata": {

"keywords": [
"dns.answers.rrname",
"dns.response.rrname"

]
}

}

The above shows that a field named rrname has 2 keywords that are related. Please refer to the keyword documentation
to see precisely how they are used and related to the field being logged.

Extension Reference

The suricata extension object is valid on objects inside the properties object. The suricata object may accept
the following fields:

695

https://json-schema.org/
https://github.com/OISF/suricata/blob/master/etc/schema.json

Suricata User Guide, Release 8.0.0

keywords

Type: array or boolean

• When an array: Contains keyword names that are related to this JSON property. Each keyword in the array
represents a detection rule keyword that can be used to match against the corresponding field value.

• When ``false``: Indicates that this JSON property has no applicable keyword. This is used for metadata fields
that don't correspond to actual network data. For example, the version field inside a DNS object denotes the
version of the log format and is unrelated to any aspect of a DNS message, therefore no keyword is applicable.

Note: As of Suricata 8.0, mapping log fields to detection keywords is a work in progress. Any field that does not have
a suricata.keywords value still needs to be evaluated.

31.1.2 Schema Tooling

• Suricata-Verify: Our own tool for verifying every Suricata pull request, validates all EVE logs generated against
the schema.

• ./scripts/eve-parity.py: Found inside the Suricata source code when checked out with git, is a tool to
provide information on how log fields map to keywords, or how keywords map to log entries.

• ./scripts/evedoc.py: Generate documentation from the schema, such as the EVE Index included in this
documentation.

31.2 EVE Index

31.2.1 Top Level (object)

Name Type Description
alert object
anomaly object
app_proto string Application layer protocol of the flow
app_proto_expected string In case of a protocol change to a specific protocol,

and this specific protocol was not recognised, this
field will have the value of the expected protocol

app_proto_orig string Original application layer protocol of the flow after
a protocol change

app_proto_tc string Application layer protocol detected to client in
case of mismatch

app_proto_ts string Application layer protocol detected to server in
case of mismatch

arp object
bittorrent_dht object
capture_file string
community_id string
dcerpc object
dest_ip string
dest_port integer

continues on next page

696 Chapter 31. Appendix

https://github.com/OISF/suricata-verify

Suricata User Guide, Release 8.0.0

Table 1 – continued from previous page
Name Type Description
dhcp object
direction string
dnp3 object
dns object
drop object
email object
engine object
enip object
ether object
event_type string
fileinfo object
files array of objects
flow object
flow_id integer
frame object
ftp object
ftp_data object
host string the sensor-name, if configured
http object
icmp_code integer
icmp_type integer
ike object
in_iface string
ip_v integer IP version of the packet or flow
krb5 object
ldap object
log_level string
mdns object mDNS requests and responses
metadata object
modbus object
mqtt object
ndpi object nDPI plugin, contents provided by 3rd party li-

brary
netflow object
nfs object
packet string
packet_info object
parent_id integer
payload string
payload_length integer
payload_printable string
pcap_cnt integer
pcap_filename string
pgsql object
pkt_src string
pop3 object
proto string
quic object
rdp object

continues on next page

31.2. EVE Index 697

Suricata User Guide, Release 8.0.0

Table 1 – continued from previous page
Name Type Description
response_icmp_code integer
response_icmp_type integer
rfb object
rpc object
sip object
smb object
smtp object
snmp object
spi integer
src_ip string
src_port integer
ssh object
stats object
stream integer
stream_tcp object
suricata_version string
tc_progress string
tcp object
template object
tftp object
timestamp string
tls object
traffic object
ts_progress string
tunnel object
tx_guessed boolean the signature that triggered this alert didn't tie to

a transaction, so the transaction (and metadata)
logged is a forced estimation and may not be the
one you expect

tx_id integer
verdict object
vlan array of numbers
websocket object

31.2.2 websocket (object)

Name Type Description
fin boolean
mask integer
opcode string
payload_base64 string
payload_printable string

698 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.3 verdict (object)

Name Type Description
action string
reject array of strings
reject-target string

31.2.4 tunnel (object)

Name Type Description
depth integer
dest_ip string
dest_port integer
pcap_cnt integer
pkt_src string
proto string
src_ip string
src_port integer

31.2.5 traffic (object)

Name Type Description
id array of strings
label array of strings

31.2. EVE Index 699

Suricata User Guide, Release 8.0.0

31.2.6 tls (object)

Name Type Description
certificate string
chain array of strings
client object
client_alpns array of strings TLS client ALPN field(s)
client_handshake object
fingerprint string
from_proto string
issuerdn string
ja3 object
ja3s object
ja4 string
notafter string
notbefore string
serial string
server_alpns array of strings TLS server ALPN field(s)
server_handshake object
session_resumed boolean
sni string
subject string
subjectaltname array of strings TLS Subject Alternative Name field
version string

31.2.7 tls.server_handshake (object)

Name Type Description
cipher integer TLS server's chosen cipher
exts array of integers TLS server extension(s)
version string TLS version in server hello

31.2.8 tls.ja3s (object)

Name Type Description
hash string
string string

700 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.9 tls.ja3 (object)

Name Type Description
hash string
string string

31.2.10 tls.client_handshake (object)

Name Type Description
ciphers array of integers TLS client cipher(s)
exts array of integers TLS client extension(s)
sig_algs array of integers TLS client signature algorithm(s)
version string TLS version in client hello

31.2.11 tls.client (object)

Name Type Description
certificate string
chain array of strings
fingerprint string
issuerdn string
notafter string
notbefore string
serial string
subject string
subjectaltname array of strings TLS Subject Alternative Name field

31.2.12 tftp (object)

Name Type Description
file string
mode string
packet string

31.2.13 template (object)

Name Type Description
request string
response string

31.2. EVE Index 701

Suricata User Guide, Release 8.0.0

31.2.14 tcp (object)

Name Type Description
ack boolean
cwr boolean
ecn boolean
fin boolean
psh boolean
rst boolean
state string
syn boolean
tc_gap boolean
tc_max_regions integer
tc_urgent_oob_data integer Number of Out-of-Band bytes sent by server using

TCP urgent packets
tcp_flags string
tcp_flags_tc string
tcp_flags_ts string
ts_gap boolean
ts_max_regions integer
ts_urgent_oob_data integer Number of Out-of-Band bytes sent by client using

TCP urgent packets
urg boolean

31.2.15 stats (object)

Name Type Description
app_layer object
capture object
decoder object
defrag object
detect object
exception_policy object
file_store object
flow object
flow_bypassed object
flow_mgr object
ftp object
host object
http object
ippair object
ips object
memcap object
pcap_log object
tcp object
uptime integer Suricata engine's uptime

702 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.16 stats.tcp (object)

Name Type Description
ack_unseen_data integer
active_sessions integer
insert_data_normal_fail integer
insert_data_overlap_fail integer
insert_list_fail integer
invalid_checksum integer
memuse integer
midstream_pickups integer
no_flow integer
overlap integer
overlap_diff_data integer
pkt_on_wrong_thread integer
pseudo integer
reassembly_gap integer
reassembly_memuse integer
rst integer
segment_from_cache integer
segment_from_pool integer
segment_memcap_drop integer
sessions integer
ssn_from_cache integer
ssn_from_pool integer
ssn_memcap_drop integer
stream_depth_reached integer
syn integer
synack integer
urg integer Number of TCP packets with the urgent flag set
urgent_oob_data integer Number of OOB bytes tracked in TCP urgent han-

dling

31.2.17 stats.pcap_log (object)

Name Type Description
filtered_bpf integer Number of packets filtered out by bpf (not written)
written integer Number of packets written

31.2.18 stats.memcap (object)

Name Type Description
pressure integer Percentage of memcaps used by flow, stream,

stream-reassembly and app-layer-http
pressure_max integer Maximum pressure seen by the engine

31.2. EVE Index 703

Suricata User Guide, Release 8.0.0

31.2.19 stats.ips (object)

Name Type Description
accepted integer Number of accepted packets
blocked integer Number of blocked packets
drop_reason object Number of dropped packets, grouped by drop rea-

son
rejected integer Number of rejected packets
replaced integer Number of replaced packets

31.2.20 stats.ips.drop_reason (object)

Name Type Description
applayer_error integer Number of packets dropped due to app-layer error

exception policy
applayer_memcap integer Number of packets dropped due to applayer mem-

cap
decode_error integer Number of packets dropped due to decoding errors
default_app_policy integer Number of packets dropped due to default app pol-

icy
default_packet_policy integer Number of packets dropped due to default packet

policy
defrag_error integer Number of packets dropped due to defragmenta-

tion errors
defrag_memcap integer Number of packets dropped due to defrag memcap

exception policy
flow_drop integer Number of packets dropped due to dropped flows
flow_memcap integer Number of packets dropped due to flow memcap

exception policy
nfq_error integer Number of packets dropped due to no NFQ verdict
pre_flow_hook integer Number of packets dropped in the pre_flow hook
pre_stream_hook integer Number of packets dropped in the pre_stream

hook
rules integer Number of packets dropped due to rule actions
stream_error integer Number of packets dropped due to invalid TCP

stream
stream_memcap integer Number of packets dropped due to stream memcap

exception policy
stream_midstream integer Number of packets dropped due to stream mid-

stream exception policy
stream_reassembly integer Number of packets dropped due to stream re-

assembly exception policy
stream_urgent integer Number of packets dropped due to TCP urgent flag
threshold_detection_filter integer Number of packets dropped due to threshold de-

tection filter
tunnel_packet_drop integer Number of packets dropped due to inner tunnel

packet being dropped

704 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.21 stats.ippair (object)

Name Type Description
memcap integer
memuse integer

31.2.22 stats.http (object)

Name Type Description
byterange object
memcap integer
memuse integer

31.2.23 stats.http.byterange (object)

Name Type Description
memcap integer
memuse integer

31.2.24 stats.host (object)

Name Type Description
memcap integer
memuse integer

31.2.25 stats.ftp (object)

Name Type Description
memcap integer
memuse integer

31.2. EVE Index 705

Suricata User Guide, Release 8.0.0

31.2.26 stats.flow_mgr (object)

Name Type Description
bypassed_pruned integer
closed_pruned integer
est_pruned integer
flows_checked integer
flows_notimeout integer
flows_removed integer
flows_timeout integer
new_pruned integer
rows_busy integer
rows_checked integer
rows_empty integer
rows_maxlen integer
rows_skipped integer

31.2.27 stats.flow_bypassed (object)

Name Type Description
bytes integer
closed integer
local_bytes integer
local_capture_bytes integer
local_capture_pkts integer
local_pkts integer
pkts integer

706 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.28 stats.flow (object)

Name Type Description
active integer Number of currently active flows
elephant integer Total number of elephant flows
emerg_mode_entered integer Number of times emergency mode was entered
emerg_mode_over integer Number of times recovery was made from emer-

gency mode
end object
get_used integer Number of reused flows from the hash table in case

memcap was reached and spare pool was empty
get_used_eval integer Number of attempts at getting a flow directly from

the hash
get_used_eval_busy integer Number of times a flow was found in the hash but

the lock for hash bucket could not be obtained
get_used_eval_reject integer Number of flows that were evaluated but rejected

from reuse as they were still alive/active
get_used_failed integer Number of times retrieval of flow from hash was

attempted but was unsuccessful
icmpv4 integer Number of ICMPv4 flows
icmpv6 integer Number of ICMPv6 flows
memcap integer Number of times memcap was reached for flows
memuse integer Memory currently in use by the flows
mgr object
recycler object
spare integer Number of flows in the spare pool
tcp integer Number of TCP flows
tcp_reuse integer Number of TCP flows that were reused as they

seemed to share the same flow tuple
total integer Total number of flows
udp integer Number of UDP flows
wrk object

31.2.29 stats.flow.wrk (object)

Name Type Description
flows_evicted integer
flows_evicted_needs_work integer
flows_evicted_pkt_inject integer
flows_injected integer
flows_injected_max integer
spare_sync integer
spare_sync_avg integer
spare_sync_empty integer
spare_sync_incomplete integer

31.2. EVE Index 707

Suricata User Guide, Release 8.0.0

31.2.30 stats.flow.recycler (object)

Name Type Description
queue_avg integer average number of recycled flows per queue
queue_max integer maximum number of recycled flows per queue
recycled integer number of recycled flows

31.2.31 stats.flow.mgr (object)

Name Type Description
flows_checked integer number of flows checked for timeout in the last

pass
flows_evicted integer number of flows that were evicted
flows_evicted_needs_work integer number of TCP flows that were returned to the

workers in case reassembly, detection, logging still
needs work

flows_notimeout integer number of flows that did not time out
flows_timeout integer number of flows that reached the time out
full_hash_pass integer number of times a full pass of the hash table was

done
rows_maxlen integer size of the biggest row in the hash table
rows_per_sec integer number of rows to be scanned every second by a

worker

31.2.32 stats.flow.end (object)

Name Type Description
state object
tcp_liberal integer
tcp_state object

31.2.33 stats.flow.end.tcp_state (object)

Name Type Description
close_wait integer
closed integer
closing integer
established integer
fin_wait1 integer
fin_wait2 integer
last_ack integer
none integer
syn_recv integer
syn_sent integer
time_wait integer

708 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.34 stats.flow.end.state (object)

Name Type Description
capture_bypassed integer
closed integer
established integer
local_bypassed integer
new integer

31.2.35 stats.file_store (object)

Name Type Description
fs_errors integer
open_files integer
open_files_max_hit integer

31.2.36 stats.exception_policy (object)

Name Type Description
app_layer object
defrag object
flow object
tcp object

31.2.37 stats.detect (object)

Name Type Description
alert integer
alert_queue_overflow integer
alerts_suppressed integer
engines array of objects
fnonmpm_list integer
lua object
match_list integer
mpm_list integer
nonmpm_list integer

31.2. EVE Index 709

Suricata User Guide, Release 8.0.0

31.2.38 stats.detect.lua (object)

Name Type Description
blocked_function_errors integer Counter for Lua scripts failing due to blocked

functions being called
errors integer Errors encountered while running Lua scripts
instruction_limit_errors integer Count of Lua rules exceeding the instruction limit
memory_limit_errors integer Count of Lua rules exceeding the memory limit

31.2.39 stats.detect.engines (array of objects)

Name Type Description
id integer
last_reload string
rules_failed integer
rules_loaded integer
rules_skipped integer

31.2.40 stats.defrag (object)

Name Type Description
ipv4 object
ipv6 object
max_frags_reached integer How many times a fragment wasn't stored due to

max-frags limit being reached
max_trackers_reached integer How many times a packet wasn't reassembled due

to max-trackers limit being reached
memuse integer Current memory use.
mgr object
tracker_hard_reuse integer Active tracker force closed before completion and

reused for new tracker
tracker_soft_reuse integer Finished tracker re-used from hash table before be-

ing moved to spare pool
wrk object

31.2.41 stats.defrag.wrk (object)

Name Type Description
tracker_timeout integer

710 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.42 stats.defrag.mgr (object)

Name Type Description
tracker_timeout integer

31.2.43 stats.defrag.ipv6 (object)

Name Type Description
fragments integer
reassembled integer
timeouts integer

31.2.44 stats.defrag.ipv4 (object)

Name Type Description
fragments integer
reassembled integer
timeouts integer

31.2.45 stats.decoder (object)

Name Type Description
arp integer
avg_pkt_size integer
bytes integer
chdlc integer
erspan integer
esp integer
ethernet integer
event object
geneve integer
gre integer
icmpv4 integer
icmpv6 integer
ieee8021ah integer
invalid integer
ipv4 integer
ipv4_in_ipv4 integer
ipv4_in_ipv6 integer
ipv6 integer
ipv6_in_ipv4 integer
ipv6_in_ipv6 integer
max_mac_addrs_dst integer
max_mac_addrs_src integer
max_pkt_size integer

continues on next page

31.2. EVE Index 711

Suricata User Guide, Release 8.0.0

Table 2 – continued from previous page
Name Type Description
mpls integer
nsh integer
null integer
pkts integer
ppp integer
pppoe integer
raw integer
sctp integer
sll integer
sll2 integer The number of SLL2 frames encountered
tcp integer
teredo integer
too_many_layers integer
udp integer
unknown_ethertype integer
vlan integer
vlan_qinq integer
vlan_qinqinq integer
vntag integer
vxlan integer

712 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.46 stats.decoder.event (object)

Name Type Description
afpacket object
arp object
chdlc object
dce object
erspan object
esp object
ethernet object
geneve object
gre object
icmpv4 object
icmpv6 object
ieee8021ah object
ipraw object
ipv4 object
ipv6 object
ltnull object
mpls object
nsh object
ppp object
pppoe object
sctp object
sll object
sll2 object The number of times the SLL2 header was too

small to be valid
tcp object
udp object
vlan object
vntag object
vxlan object

31.2.47 stats.decoder.event.vxlan (object)

Name Type Description
unknown_payload_type integer

31.2.48 stats.decoder.event.vntag (object)

Name Type Description
header_too_small integer
unknown_type integer

31.2. EVE Index 713

Suricata User Guide, Release 8.0.0

31.2.49 stats.decoder.event.vlan (object)

Name Type Description
header_too_small integer
too_many_layers integer
unknown_type integer

31.2.50 stats.decoder.event.udp (object)

Name Type Description
hlen_invalid integer
hlen_too_small integer
len_invalid integer
pkt_too_small integer

31.2.51 stats.decoder.event.tcp (object)

Name Type Description
hlen_too_small integer
invalid_optlen integer
opt_duplicate integer
opt_invalid_len integer
pkt_too_small integer

31.2.52 stats.decoder.event.sll2 (object)

Name Type Description
pkt_too_small integer

31.2.53 stats.decoder.event.sll (object)

Name Type Description
pkt_too_small integer

31.2.54 stats.decoder.event.sctp (object)

Name Type Description
pkt_too_small integer

714 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.55 stats.decoder.event.pppoe (object)

Name Type Description
malformed_tags integer
pkt_too_small integer
wrong_code integer

31.2.56 stats.decoder.event.ppp (object)

Name Type Description
ip4_pkt_too_small integer
ip6_pkt_too_small integer
pkt_too_small integer
unsup_proto integer
vju_pkt_too_small integer
wrong_type integer

31.2.57 stats.decoder.event.nsh (object)

Name Type Description
bad_header_length integer
header_too_small integer
reserved_type integer
unknown_payload integer
unsupported_type integer
unsupported_version integer

31.2.58 stats.decoder.event.mpls (object)

Name Type Description
bad_label_implicit_null integer
bad_label_reserved integer
bad_label_router_alert integer
header_too_small integer
pkt_too_small integer
unknown_payload_type integer

31.2. EVE Index 715

Suricata User Guide, Release 8.0.0

31.2.59 stats.decoder.event.ltnull (object)

Name Type Description
pkt_too_small integer
unsupported_type integer

31.2.60 stats.decoder.event.ipv6 (object)

Name Type Description
data_after_none_header integer
dstopts_only_padding integer
dstopts_unknown_opt integer
exthdr_ah_res_not_null integer
exthdr_dupl_ah integer
exthdr_dupl_dh integer
exthdr_dupl_eh integer
exthdr_dupl_fh integer
exthdr_dupl_hh integer
exthdr_dupl_rh integer
exthdr_invalid_optlen integer
exthdr_useless_fh integer
fh_non_zero_reserved_field integer
frag_ignored integer
frag_invalid_length integer
frag_overlap integer
frag_pkt_too_large integer
hopopts_only_padding integer
hopopts_unknown_opt integer
icmpv4 integer
ipv4_in_ipv6_too_small integer
ipv4_in_ipv6_wrong_version integer
ipv6_in_ipv6_too_small integer
ipv6_in_ipv6_wrong_version integer
pkt_too_small integer
rh_type_0 integer
trunc_exthdr integer
trunc_pkt integer
unknown_next_header integer
wrong_ip_version integer
zero_len_padn integer

716 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.61 stats.decoder.event.ipv4 (object)

Name Type Description
frag_ignored integer
frag_overlap integer
frag_pkt_too_large integer
hlen_too_small integer
icmpv6 integer
iplen_smaller_than_hlen integer
opt_duplicate integer
opt_eol_required integer
opt_invalid integer
opt_invalid_len integer
opt_malformed integer
opt_pad_required integer
opt_unknown integer
pkt_too_small integer
trunc_pkt integer
wrong_ip_version integer

31.2.62 stats.decoder.event.ipraw (object)

Name Type Description
invalid_ip_version integer

31.2.63 stats.decoder.event.ieee8021ah (object)

Name Type Description
header_too_small integer

31.2.64 stats.decoder.event.icmpv6 (object)

Name Type Description
experimentation_type integer
ipv6_trunc_pkt integer
ipv6_unknown_version integer
mld_message_with_invalid_hl integer
pkt_too_small integer
unassigned_type integer
unknown_code integer
unknown_type integer

31.2. EVE Index 717

Suricata User Guide, Release 8.0.0

31.2.65 stats.decoder.event.icmpv4 (object)

Name Type Description
ipv4_trunc_pkt integer
ipv4_unknown_ver integer
pkt_too_small integer
unknown_code integer
unknown_type integer

31.2.66 stats.decoder.event.gre (object)

Name Type Description
pkt_too_small integer
version0_flags integer
version0_hdr_too_big integer
version0_malformed_sre_hdr integer
version0_recur integer
version1_chksum integer
version1_flags integer
version1_hdr_too_big integer
version1_malformed_sre_hdr integer
version1_no_key integer
version1_recur integer
version1_route integer
version1_ssr integer
version1_wrong_protocol integer
wrong_version integer

31.2.67 stats.decoder.event.geneve (object)

Name Type Description
unknown_payload_type integer

31.2.68 stats.decoder.event.ethernet (object)

Name Type Description
pkt_too_small integer
unknown_ethertype integer

718 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.69 stats.decoder.event.esp (object)

Name Type Description
pkt_too_small integer

31.2.70 stats.decoder.event.erspan (object)

Name Type Description
header_too_small integer
too_many_vlan_layers integer
unsupported_version integer

31.2.71 stats.decoder.event.dce (object)

Name Type Description
pkt_too_small integer

31.2.72 stats.decoder.event.chdlc (object)

Name Type Description
pkt_too_small integer

31.2.73 stats.decoder.event.arp (object)

Name Type Description
invalid_hardware_size integer
invalid_protocol_size integer
pkt_too_small integer
unsupported_hardware integer
unsupported_opcode integer
unsupported_pkt integer
unsupported_protocol integer

31.2.74 stats.decoder.event.afpacket (object)

Name Type Description
trunc_pkt integer Number of packets truncated by AF_PACKET

31.2. EVE Index 719

Suricata User Guide, Release 8.0.0

31.2.75 stats.capture (object)

Name Type Description
kernel_drops integer
kernel_ifdrops integer
kernel_packets integer

31.2.76 stats.app_layer (object)

Name Type Description
error object
expectations integer Expectation (dynamic parallel flow) counter
flow object
tx object

31.2.77 stats.app_layer.tx (object)

Name Type Description
bittorrent-dht integer Number of transactions for BitTorrent DHT proto-

col
dcerpc_tcp integer Number of transactions for DCERPC/TCP proto-

col
dcerpc_udp integer Number of transactions for DCERPC/UDP proto-

col
dhcp integer Number of transactions for DHCP
dnp3 integer Number of transactions for DNP3
dns_tcp integer Number of transactions for DNS/TCP protocol
dns_udp integer Number of transactions for DNS/UDP protocol
doh2 integer
enip_tcp integer Number of transactions for ENIP/TCP
enip_udp integer Number of transactions for ENIP/UDP
ftp integer Number of transactions for FTP
ftp-data integer Number of transactions for FTP data protocol
http integer Number of transactions for HTTP
http2 integer Number of transactions for HTTP/2
ike integer Number of transactions for IKE protocol
ikev2 integer Number of transactions for IKE v2 protocol
imap integer Number of transactions for IMAP
krb5_tcp integer Number of transactions for Kerberos v5/TCP pro-

tocol
krb5_udp integer Number of transactions for Kerberos v5/UDP pro-

tocol
ldap_tcp integer Number of transactions for LDAP/TCP protocol
ldap_udp integer Number of transactions for LDAP/UDP protocol
mdns integer Number of transactions for mDNS
modbus integer Number of transactions for Modbus protocol
mqtt integer Number of transactions for MQTT protocol

continues on next page

720 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

Table 4 – continued from previous page
Name Type Description
nfs_tcp integer Number of transactions for NFS/TCP protocol
nfs_udp integer Number of transactions for NFS/UDP protocol
ntp integer Number of transactions for NTP
pgsql integer Number of transactions for PostgreSQL protocol
pop3 integer
quic integer Number of transactions for QUIC protocol
rdp integer Number of transactions for RDP
rfb integer Number of transactions for RFB protocol
sip_tcp integer Number of transactions for SIP/TCP protocol
sip_udp integer Number of transactions for SIP/UDP protocol
smb integer Number of transactions for SMB protocol
smtp integer Number of transactions for SMTP
snmp integer Number of transactions for SNMP
ssh integer Number of transactions for SSH protocol
telnet integer Number of transactions for Telnet protocol
tftp integer Number of transactions for TFTP
tls integer Number of transactions for TLS protocol
websocket integer

31.2.78 stats.app_layer.flow (object)

Name Type Description
bittorrent-dht integer Number of flows for BitTorrent DHT protocol
dcerpc_tcp integer Number of flows for DCERPC/TCP protocol
dcerpc_udp integer Number of flows for DCERPC/UDP protocol
dhcp integer Number of flows for DHCP
dnp3 integer Number of flows for DNP3
dns_tcp integer Number of flows for DNS/TCP protocol
dns_udp integer Number of flows for DNS/UDP protocol
doh2 integer
enip_tcp integer Number of flows for ENIP/TCP
enip_udp integer Number of flows for ENIP/UDP
failed_tcp integer Number of failed flows for TCP
failed_udp integer Number of failed flows for UDP
ftp integer Number of flows for FTP
ftp-data integer Number of flows for FTP data protocol
http integer Number of flows for HTTP
http2 integer Number of flows for HTTP/2
ike integer Number of flows for IKE protocol
ikev2 integer Number of flows for IKE v2 protocol
imap integer Number of flows for IMAP
krb5_tcp integer Number of flows for Kerberos v5/TCP protocol
krb5_udp integer Number of flows for Kerberos v5/UDP protocol
ldap_tcp integer Number of flows for LDAP/TCP protocol
ldap_udp integer Number of flows LDAP/UDP protocol
mdns integer Number of flows for mDNS
modbus integer Number of flows for Modbus protocol

continues on next page

31.2. EVE Index 721

Suricata User Guide, Release 8.0.0

Table 5 – continued from previous page
Name Type Description
mqtt integer Number of flows for MQTT protocol
nfs_tcp integer Number of flows for NFS/TCP protocol
nfs_udp integer Number of flows for NFS/UDP protocol
ntp integer Number of flows for NTP
pgsql integer Number of flows for PostgreSQL protocol
pop3 integer
quic integer Number of flows for QUIC protocol
rdp integer Number of flows for RDP
rfb integer Number of flows for RFB protocol
sip_tcp integer Number of flows for SIP/TCP protocol
sip_udp integer Number of flows for SIP/UDP protocol
smb integer Number of flows for SMB protocol
smtp integer Number of flows for SMTP
snmp integer Number of flows for SNMP
ssh integer Number of flows for SSH protocol
telnet integer Number of flows for Telnet protocol
tftp integer Number of flows for TFTP
tls integer Number of flows for TLS protocol
websocket integer

31.2.79 stats.app_layer.error (object)

Name Type Description
bittorrent-dht object
dcerpc_tcp object
dcerpc_udp object
dhcp object
dnp3 object
dns_tcp object
dns_udp object
doh2 object
enip_tcp object
enip_udp object
failed_tcp object
ftp object
ftp-data object
http object
http2 object
ike object
imap object
krb5_tcp object
krb5_udp object
ldap_tcp object
ldap_udp object
mdns object
modbus object
mqtt object

continues on next page

722 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

Table 6 – continued from previous page
Name Type Description
nfs_tcp object
nfs_udp object
ntp object
pgsql object
pop3 object
quic object
rdp object
rfb object
sip_tcp object
sip_udp object
smb object
smtp object
snmp object
ssh object
telnet object
tftp object
tls object
websocket object

31.2.80 stats.app_layer.error.websocket (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.81 stats.app_layer.error.websocket.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2. EVE Index 723

Suricata User Guide, Release 8.0.0

31.2.82 stats.app_layer.error.tls (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.83 stats.app_layer.error.tls.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.84 stats.app_layer.error.tftp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.85 stats.app_layer.error.tftp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

724 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.86 stats.app_layer.error.telnet (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.87 stats.app_layer.error.telnet.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.88 stats.app_layer.error.ssh (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.89 stats.app_layer.error.ssh.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2. EVE Index 725

Suricata User Guide, Release 8.0.0

31.2.90 stats.app_layer.error.snmp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.91 stats.app_layer.error.snmp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.92 stats.app_layer.error.smtp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.93 stats.app_layer.error.smtp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

726 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.94 stats.app_layer.error.smb (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.95 stats.app_layer.error.smb.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.96 stats.app_layer.error.sip_udp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.97 stats.app_layer.error.sip_udp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2. EVE Index 727

Suricata User Guide, Release 8.0.0

31.2.98 stats.app_layer.error.sip_tcp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.99 stats.app_layer.error.sip_tcp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.100 stats.app_layer.error.rfb (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.101 stats.app_layer.error.rfb.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

728 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.102 stats.app_layer.error.rdp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.103 stats.app_layer.error.rdp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.104 stats.app_layer.error.quic (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.105 stats.app_layer.error.quic.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2. EVE Index 729

Suricata User Guide, Release 8.0.0

31.2.106 stats.app_layer.error.pop3 (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.107 stats.app_layer.error.pop3.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.108 stats.app_layer.error.pgsql (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.109 stats.app_layer.error.pgsql.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

730 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.110 stats.app_layer.error.ntp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.111 stats.app_layer.error.ntp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.112 stats.app_layer.error.nfs_udp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.113 stats.app_layer.error.nfs_udp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2. EVE Index 731

Suricata User Guide, Release 8.0.0

31.2.114 stats.app_layer.error.nfs_tcp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.115 stats.app_layer.error.nfs_tcp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.116 stats.app_layer.error.mqtt (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.117 stats.app_layer.error.mqtt.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

732 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.118 stats.app_layer.error.modbus (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.119 stats.app_layer.error.modbus.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.120 stats.app_layer.error.mdns (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.121 stats.app_layer.error.mdns.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2. EVE Index 733

Suricata User Guide, Release 8.0.0

31.2.122 stats.app_layer.error.ldap_udp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.123 stats.app_layer.error.ldap_udp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.124 stats.app_layer.error.ldap_tcp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.125 stats.app_layer.error.ldap_tcp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

734 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.126 stats.app_layer.error.krb5_udp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.127 stats.app_layer.error.krb5_udp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.128 stats.app_layer.error.krb5_tcp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.129 stats.app_layer.error.krb5_tcp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2. EVE Index 735

Suricata User Guide, Release 8.0.0

31.2.130 stats.app_layer.error.imap (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.131 stats.app_layer.error.imap.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.132 stats.app_layer.error.ike (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.133 stats.app_layer.error.ike.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

736 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.134 stats.app_layer.error.http2 (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.135 stats.app_layer.error.http2.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.136 stats.app_layer.error.http (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.137 stats.app_layer.error.http.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2. EVE Index 737

Suricata User Guide, Release 8.0.0

31.2.138 stats.app_layer.error.ftp-data (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.139 stats.app_layer.error.ftp-data.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.140 stats.app_layer.error.ftp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.141 stats.app_layer.error.ftp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

738 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.142 stats.app_layer.error.failed_tcp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.143 stats.app_layer.error.failed_tcp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.144 stats.app_layer.error.enip_udp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.145 stats.app_layer.error.enip_udp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2. EVE Index 739

Suricata User Guide, Release 8.0.0

31.2.146 stats.app_layer.error.enip_tcp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.147 stats.app_layer.error.enip_tcp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.148 stats.app_layer.error.doh2 (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.149 stats.app_layer.error.doh2.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

740 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.150 stats.app_layer.error.dns_udp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.151 stats.app_layer.error.dns_udp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.152 stats.app_layer.error.dns_tcp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.153 stats.app_layer.error.dns_tcp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2. EVE Index 741

Suricata User Guide, Release 8.0.0

31.2.154 stats.app_layer.error.dnp3 (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.155 stats.app_layer.error.dnp3.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.156 stats.app_layer.error.dhcp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.157 stats.app_layer.error.dhcp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

742 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.158 stats.app_layer.error.dcerpc_udp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.159 stats.app_layer.error.dcerpc_udp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.160 stats.app_layer.error.dcerpc_tcp (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.161 stats.app_layer.error.dcerpc_tcp.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2. EVE Index 743

Suricata User Guide, Release 8.0.0

31.2.162 stats.app_layer.error.bittorrent-dht (object)

Name Type Description
alloc integer Number of errors allocating memory
exception_policy object
gap integer Number of errors processing gaps
internal integer Number of internal parser errors
parser integer Number of errors reported by parser

31.2.163 stats.app_layer.error.bittorrent-dht.exception_policy (object)

Name Type Description
bypass integer
drop_flow integer
drop_packet integer
pass_flow integer
pass_packet integer
reject integer

31.2.164 ssh (object)

Name Type Description
client object
server object

31.2.165 ssh.server (object)

Name Type Description
hassh object
proto_version string
software_version string

31.2.166 ssh.server.hassh (object)

Name Type Description
hash string
string string

744 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.167 ssh.client (object)

Name Type Description
hassh object
proto_version string
software_version string

31.2.168 ssh.client.hassh (object)

Name Type Description
hash string
string string

31.2.169 snmp (object)

Name Type Description
community string
pdu_type string
usm string
vars array of strings
version integer

31.2.170 smtp (object)

Name Type Description
helo string
mail_from string
rcpt_to array of strings

31.2.171 smb (object)

Name Type Description
access string
accessed integer
changed integer
client_dialects array of strings
client_guid string
command string
created integer
dcerpc object
dialect string
directory string
disposition string
filename string

continues on next page

31.2. EVE Index 745

Suricata User Guide, Release 8.0.0

Table 7 – continued from previous page
Name Type Description
fuid string
function string
id integer
kerberos object
level_of_interest string
max_read_size integer
max_write_size integer
modified integer
named_pipe string
ntlmssp object
rename object
request object
request_done boolean
response object
response_done boolean
server_guid string
service object
session_id integer
set_info object
share string
share_type string
size integer
status string
status_code string
subcmd string
tree_id integer

31.2.172 smb.set_info (object)

Name Type Description
class string
info_level string

31.2.173 smb.service (object)

Name Type Description
request string
response string

746 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.174 smb.response (object)

Name Type Description
native_lm string
native_os string

31.2.175 smb.request (object)

Name Type Description
native_lm string
native_os string

31.2.176 smb.rename (object)

Name Type Description
from string
to string

31.2.177 smb.ntlmssp (object)

Name Type Description
domain string
host string
user string
version string
warning boolean

31.2.178 smb.kerberos (object)

Name Type Description
realm string
snames array of strings

31.2.179 smb.dcerpc (object)

Name Type Description
call_id integer
interfaces array of objects
opnum integer
req object
request string
res object
response string

31.2. EVE Index 747

Suricata User Guide, Release 8.0.0

31.2.180 smb.dcerpc.res (object)

Name Type Description
frag_cnt integer
stub_data_size integer

31.2.181 smb.dcerpc.req (object)

Name Type Description
frag_cnt integer
stub_data_size integer

31.2.182 smb.dcerpc.interfaces (array of objects)

Name Type Description
ack_reason integer
ack_result integer
uuid string
version string

31.2.183 sip (object)

Name Type Description
code string
method string
reason string
request_line string
response_line string
sdp object SDP message body
uri string
version string

748 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.184 sip.sdp (object)

Name Type Description
attributes array of strings A list of attributes to extend SDP
bandwidths array of strings Proposed bandwidths to be used by the session or

media
connection_data string Connection data
email string Email address for the person responsible for the

conference
encryption_key string Field used to convey encryption keys if SDP is

used over a secure channel
media_descriptions array of objects A list of media descriptions for a session
origin string Owner of the session
phone_number string Phone number for the person responsible for the

conference
session_info string Textual information about the session
session_name string Session name
time_descriptions array of objects A list of time descriptions for a session
timezone string Timezone to specify adjustments for times and off-

sets from the base time
uri string A pointer to additional information about the ses-

sion
version integer SDP protocol version

31.2.185 sip.sdp.time_descriptions (array of objects)

Name Type Description
repeat_time string Specify repeat times for a session
time string Start and stop times for a session

31.2.186 sip.sdp.media_descriptions (array of objects)

Name Type Description
attributes array of strings A list of attributes specified for a media description
bandwidths array of strings A list of bandwidth proposed for a media
connection_data string Connection data per media description
encryption_key string Field used to convey encryption keys if SDP is

used over a secure channel
media string Media description
media_info string Media information primarily intended for la-

belling media streams

31.2. EVE Index 749

Suricata User Guide, Release 8.0.0

31.2.187 rpc (object)

Name Type Description
auth_type string
creds object
status string
xid integer

31.2.188 rpc.creds (object)

Name Type Description
gid integer
machine_name string
uid integer

31.2.189 rfb (object)

Name Type Description
authentication object
client_protocol_version object
framebuffer object
screen_shared boolean
server_protocol_version object

31.2.190 rfb.server_protocol_version (object)

Name Type Description
major string
minor string

31.2.191 rfb.framebuffer (object)

Name Type Description
height integer
name string
pixel_format object
width integer

750 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.192 rfb.framebuffer.pixel_format (object)

Name Type Description
big_endian boolean
bits_per_pixel integer
blue_max integer
blue_shift integer
depth integer
green_max integer
green_shift integer
red_max integer
red_shift integer
true_color boolean

31.2.193 rfb.client_protocol_version (object)

Name Type Description
major string
minor string

31.2.194 rfb.authentication (object)

Name Type Description
security_result string
security_type integer
vnc object

31.2.195 rfb.authentication.vnc (object)

Name Type Description
challenge string
response string

31.2.196 rdp (object)

Name Type Description
channels array of strings
client object
cookie string
event_type string
tx_id integer

31.2. EVE Index 751

Suricata User Guide, Release 8.0.0

31.2.197 rdp.client (object)

Name Type Description
build string
capabilities array of strings
client_name string
color_depth integer
desktop_height integer
desktop_width integer
function_keys integer
id string
keyboard_layout string
keyboard_type string
product_id integer
version string

31.2.198 quic (object)

Name Type Description
cyu array of objects ja3-like fingerprint for versions of QUIC before

standardization
extensions array of objects list of extensions in hello
ja3 object ja3 from client, as in TLS
ja3s object ja3 from server, as in TLS
ja4 string
sni string Server Name Indication
ua string User Agent for versions of QUIC before standard-

ization
version string Quic protocol version

31.2.199 quic.ja3s (object)

Name Type Description
hash string ja3s hex representation
string string ja3s string representation

31.2.200 quic.ja3 (object)

Name Type Description
hash string ja3 hex representation
string string ja3 string representation

752 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.201 quic.extensions (array of objects)

Name Type Description
name string human-friendly name of the extension
type integer integer identifier of the extension
values array of strings extension values

31.2.202 quic.cyu (array of objects)

Name Type Description
hash string cyu hash hex representation
string string cyu hash string representation

31.2.203 pop3 (object)

Name Type Description
request object
response object

31.2.204 pop3.response (object)

Name Type Description
data array of strings
header string first line of response
status string
success boolean response indicated positive status ie +OK

31.2.205 pop3.request (object)

Name Type Description
args array of strings pop3 request arguments
command string a pop3 command, for example USER or STAT

31.2.206 pgsql (object)

Name Type Description
request object
response object
tx_id integer

31.2. EVE Index 753

Suricata User Guide, Release 8.0.0

31.2.207 pgsql.response (object)

Name Type Description
authentication_md5_password string
authentication_sasl_final string
code string
command_completed string
copy_data_out object CopyData message from CopyOut mode
copy_in_response object Backend/server response accepting CopyIn mode
copy_out_response object Backend/server response accepting CopyOut

mode
data_rows integer
data_size integer
field_count integer
file string
line string
message string
parameter_status array of objects
process_id integer
routine string
secret_key integer
severity_localizable string
severity_non_localizable string
ssl_accepted boolean

31.2.208 pgsql.response.parameter_status (array of objects)

Name Type Description
application_name string
client_encoding string
date_style string
integer_datetimes string
interval_style string
is_superuser string
server_encoding string
server_version string
session_authorization string
standard_conforming_strings string
time_zone string

754 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.209 pgsql.response.copy_out_response (object)

Name Type Description
columns integer Number of columns that will be copied in the

CopyData message

31.2.210 pgsql.response.copy_in_response (object)

Name Type Description
columns integer Number of columns that will be copied in the

CopyData message

31.2.211 pgsql.response.copy_data_out (object)

Name Type Description
data_size integer Accumulated data size of all CopyData messages

sent
row_count integer Number of rows sent in CopyData messages

31.2.212 pgsql.request (object)

Name Type Description
copy_data_in object CopyData message from CopyIn mode
message string
password string
password_redacted boolean indicates if a password message was received but

not logged due to Suricata settings
process_id integer
protocol_version string
sasl_authentication_mechanism string
sasl_param string
sasl_response string
secret_key integer
simple_query string
startup_parameters object

31.2.213 pgsql.request.startup_parameters (object)

Name Type Description
optional_parameters array of objects
user string

31.2. EVE Index 755

Suricata User Guide, Release 8.0.0

31.2.214 pgsql.request.startup_parameters.optional_parameters (array of objects)

Name Type Description
application_name string
client_encoding string
database string
datestyle string
extra_float_digits string
options string
replication string

31.2.215 pgsql.request.copy_data_in (object)

Name Type Description
data_size integer Accumulated data size of all CopyData messages

sent
msg_count integer How many CopyData messages were sent (does

not necessarily match number of rows from the
query)

31.2.216 packet_info (object)

Name Type Description
linktype integer
linktype_name string the descriptive name of the linktype

31.2.217 nfs (object)

Name Type Description
file_tx boolean
filename string
hhash string
id integer
procedure string
read object
rename object
status string
type string
version integer
write object

756 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.218 nfs.write (object)

Name Type Description
chunks integer
first boolean
last boolean
last_xid integer

31.2.219 nfs.rename (object)

Name Type Description
from string
to string

31.2.220 nfs.read (object)

Name Type Description
chunks integer
first boolean
last boolean
last_xid integer

31.2.221 netflow (object)

Name Type Description
age integer
bytes integer
end string
max_ttl integer
min_ttl integer
pkts integer
start string
tx_cnt integer

31.2. EVE Index 757

Suricata User Guide, Release 8.0.0

31.2.222 mqtt (object)

Name Type Description
connack object
connect object
disconnect object
pingreq object
pingresp object
puback object
pubcomp object
publish object
pubrec object
pubrel object
suback object
subscribe object
unsuback object
unsubscribe object

31.2.223 mqtt.unsubscribe (object)

Name Type Description
dup boolean
message_id integer
qos integer
retain boolean
topics array of strings

31.2.224 mqtt.unsuback (object)

Name Type Description
dup boolean
message_id integer
qos integer
reason_codes array of integers
retain boolean

31.2.225 mqtt.subscribe (object)

Name Type Description
dup boolean
message_id integer
qos integer
retain boolean
topics array of objects

758 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.226 mqtt.subscribe.topics (array of objects)

Name Type Description
qos integer
topic string

31.2.227 mqtt.suback (object)

Name Type Description
dup boolean
message_id integer
qos integer
qos_granted array of integers
retain boolean

31.2.228 mqtt.pubrel (object)

Name Type Description
dup boolean
message_id integer
qos integer
reason_code integer
retain boolean

31.2.229 mqtt.pubrec (object)

Name Type Description
dup boolean
message_id integer
qos integer
reason_code integer
retain boolean

31.2.230 mqtt.publish (object)

Name Type Description
dup boolean
message string
message_id integer
properties object
qos integer
retain boolean
skipped_length integer
topic string
truncated boolean

31.2. EVE Index 759

Suricata User Guide, Release 8.0.0

31.2.231 mqtt.pubcomp (object)

Name Type Description
dup boolean
message_id integer
qos integer
reason_code integer
retain boolean

31.2.232 mqtt.puback (object)

Name Type Description
dup boolean
message_id integer
qos integer
reason_code integer
retain boolean

31.2.233 mqtt.pingresp (object)

Name Type Description
dup boolean
qos integer
retain boolean

31.2.234 mqtt.pingreq (object)

Name Type Description
dup boolean
qos integer
retain boolean

31.2.235 mqtt.disconnect (object)

Name Type Description
dup boolean
properties object
qos integer
reason_code integer
retain boolean

760 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.236 mqtt.connect (object)

Name Type Description
client_id string
dup boolean
flags object
password string
properties object
protocol_string string
protocol_version integer
qos integer
retain boolean
username string
will object

31.2.237 mqtt.connect.will (object)

Name Type Description
message string
properties object
topic string

31.2.238 mqtt.connect.flags (object)

Name Type Description
clean_session boolean
password boolean
username boolean
will boolean
will_retain boolean

31.2.239 mqtt.connack (object)

Name Type Description
dup boolean
properties object
qos integer
retain boolean
return_code integer
session_present boolean

31.2. EVE Index 761

Suricata User Guide, Release 8.0.0

31.2.240 modbus (object)

Name Type Description
id integer
request object
response object

31.2.241 modbus.response (object)

Name Type Description
access_type string
category string
data string
diagnostic object
error_flags string
exception object
function_code string
function_raw integer
protocol_id integer
read object
transaction_id integer
unit_id integer
write object

31.2.242 modbus.response.write (object)

Name Type Description
address integer
data integer

31.2.243 modbus.response.read (object)

Name Type Description
data string

31.2.244 modbus.response.exception (object)

Name Type Description
code string
raw integer

762 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.245 modbus.response.diagnostic (object)

Name Type Description
code string
data string
raw integer

31.2.246 modbus.request (object)

Name Type Description
access_type string
category string
data string
diagnostic object
error_flags string
function_code string
function_raw integer
mei object
protocol_id integer
read object
transaction_id integer
unit_id integer
write object

31.2.247 modbus.request.write (object)

Name Type Description
address integer
data integer

31.2.248 modbus.request.read (object)

Name Type Description
address integer
quantity integer

31.2.249 modbus.request.mei (object)

Name Type Description
code string
data string
raw integer

31.2. EVE Index 763

Suricata User Guide, Release 8.0.0

31.2.250 modbus.request.diagnostic (object)

Name Type Description
code string
data string
raw integer

31.2.251 metadata (object)

Name Type Description
entropy object
flowbits array of strings
flowints object
flowvars array of objects
pktvars array of objects

31.2.252 metadata.pktvars (array of objects)

Name Type Description
uid string
username string

31.2.253 metadata.flowvars (array of objects)

Name Type Description
gid string
key string
value string

31.2.254 mdns (object)

Name Type Description
additionals array of objects mDNS additional records
answers array of objects mDNS answer records
authorities array of objects mDNS authority records
flags array of unknowns mDNS message flags
id integer mDNS transaction ID
opcode integer mDNS opcode value
queries array of objects mDNS query records
rcode integer mDNS reply (error) code
type string Type of message, either a request or response

764 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.255 mdns.queries (array of objects)

Name Type Description
rrname string Resource name being requested
rrname_truncated boolean Name was truncated by Suricata due to length
rrtype string Type of resource being requested

31.2.256 mdns.authorities (array of objects)

Name Type Description
rrname string Resource name of the record being returned
rrname_truncated boolean Name was truncated by Suricata due to length

31.2.257 mdns.answers (array of objects)

Name Type Description
ptr string Value of the requested PTR record
rrname string Resource name of the record being returned
rrname_truncated boolean Name was truncated by Suricata due to length
txt array of strings Value of the requested TXT record

31.2.258 mdns.additionals (array of objects)

Name Type Description
ptr string Value of the requested PTR record
rrname string Resource name of the record being returned
rrname_truncated boolean Name was truncated by Suricata due to length
txt array of strings Value of the requested TXT record

31.2.259 ldap (object)

Name Type Description
request object
responses array of objects

31.2. EVE Index 765

Suricata User Guide, Release 8.0.0

31.2.260 ldap.responses (array of objects)

Name Type Description
add_response object
bind_response object
compare_response object
del_response object
extended_response object
intermediate_response object
mod_dn_response object
modify_response object
search_result_done object

31.2.261 ldap.responses.search_result_done (object)

Name Type Description
matched_dn string
message string
result_code string

31.2.262 ldap.responses.modify_response (object)

Name Type Description
matched_dn string
message string
result_code string

31.2.263 ldap.responses.mod_dn_response (object)

Name Type Description
matched_dn string
message string
result_code string

31.2.264 ldap.responses.intermediate_response (object)

Name Type Description
name string
value string

766 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.265 ldap.responses.extended_response (object)

Name Type Description
matched_dn string
message string
name string
result_code string
value string

31.2.266 ldap.responses.del_response (object)

Name Type Description
matched_dn string
message string
result_code string

31.2.267 ldap.responses.compare_response (object)

Name Type Description
matched_dn string
message string
result_code string

31.2.268 ldap.responses.bind_response (object)

Name Type Description
matched_dn string
message string
result_code string
server_sasl_creds string

31.2.269 ldap.responses.add_response (object)

Name Type Description
matched_dn string
message string
result_code string

31.2. EVE Index 767

Suricata User Guide, Release 8.0.0

31.2.270 ldap.request (object)

Name Type Description
abandon_request object
add_request object
bind_request object
compare_request object
del_request object
extended_request object
message_id integer
mod_dn_request object
modify_request object
operation string
search_request object

31.2.271 ldap.request.search_request (object)

Name Type Description
attributes array of strings
base_object string
deref_alias integer
scope integer
size_limit integer
time_limit integer
types_online boolean

31.2.272 ldap.request.modify_request (object)

Name Type Description
changes array of objects
object string

31.2.273 ldap.request.modify_request.changes (array of objects)

Name Type Description
modification object
operation string

768 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.274 ldap.request.modify_request.changes.modification (object)

Name Type Description
attribute_type string
attribute_values array of strings

31.2.275 ldap.request.mod_dn_request (object)

Name Type Description
delete_old_rdn boolean
entry string
new_rdn string
new_superior string

31.2.276 ldap.request.extended_request (object)

Name Type Description
name string
value string

31.2.277 ldap.request.del_request (object)

Name Type Description
dn string

31.2.278 ldap.request.compare_request (object)

Name Type Description
attribute_value_assertion object
entry string

31.2.279 ldap.request.compare_request.attribute_value_assertion (object)

Name Type Description
description string
value string

31.2. EVE Index 769

Suricata User Guide, Release 8.0.0

31.2.280 ldap.request.bind_request (object)

Name Type Description
name string
sasl object
version integer

31.2.281 ldap.request.bind_request.sasl (object)

Name Type Description
credentials string
mechanism string

31.2.282 ldap.request.add_request (object)

Name Type Description
attributes array of objects
entry string

31.2.283 ldap.request.add_request.attributes (array of objects)

Name Type Description
name string
values array of strings

31.2.284 ldap.request.abandon_request (object)

Name Type Description
message_id integer

770 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.285 krb5 (object)

Name Type Description
cname string The client PrincipalName
encryption string Encryption used (only in AS-REP and TGS-REP)
error_code string Error code, if request has failed
failed_request string The request type for which the response had an er-

ror_code
msg_type string The message type: AS-REQ, AS-REP, etc...
realm string The server Realm
sname string The server PrincipalName
ticket_encryption string Encryption used for ticket
ticket_weak_encryption boolean Whether the encryption used for ticket is a weak

cipher
weak_encryption boolean Whether the encryption used in AS-REP or TGS-

REP is a weak cipher

31.2.286 ike (object)

Name Type Description
alg_auth string
alg_auth_raw integer
alg_dh string
alg_dh_raw integer
alg_enc string
alg_enc_raw integer
alg_hash string
alg_hash_raw integer
exchange_type integer
exchange_type_verbose string
ikev1 object
ikev2 object
init_spi string
message_id integer
payload array of strings
resp_spi string
role string
sa_key_length string
sa_key_length_raw integer
sa_life_duration string
sa_life_duration_raw integer
sa_life_type string
sa_life_type_raw integer
version_major integer
version_minor integer

31.2. EVE Index 771

Suricata User Guide, Release 8.0.0

31.2.287 ike.ikev2 (object)

Name Type Description
errors integer
notify array of unknowns

31.2.288 ike.ikev1 (object)

Name Type Description
client object
doi integer
encrypted_payloads boolean
server object
vendor_ids array of strings

31.2.289 ike.ikev1.server (object)

Name Type Description
key_exchange_payload string
key_exchange_payload_length integer
nonce_payload string
nonce_payload_length integer

31.2.290 ike.ikev1.client (object)

Name Type Description
key_exchange_payload string
key_exchange_payload_length integer
nonce_payload string
nonce_payload_length integer
proposals array of objects

772 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.291 ike.ikev1.client.proposals (array of objects)

Name Type Description
alg_auth string
alg_auth_raw integer
alg_dh string
alg_dh_raw integer
alg_enc string
alg_enc_raw integer
alg_hash string
alg_hash_raw integer
sa_key_length string
sa_key_length_raw integer
sa_life_duration string
sa_life_duration_raw integer
sa_life_type string
sa_life_type_raw integer

31.2.292 http (object)

Name Type Description
content_range object
hostname string
http2 object
http_content_type string
http_method string
http_port integer
http_refer string
http_response_body string
http_response_body_printable string
http_user_agent string
length integer
org_src_ip string
protocol string
redirect string
request_headers array of objects
response_headers array of objects
status integer
status_string string status string when it is not a valid integer (like

2XX)
true_client_ip string
url string
version string
x_bluecoat_via string
xff string

31.2. EVE Index 773

Suricata User Guide, Release 8.0.0

31.2.293 http.response_headers (array of objects)

Name Type Description
name string
table_size_update integer
value string

31.2.294 http.request_headers (array of objects)

Name Type Description
name string
table_size_update integer
value string

31.2.295 http.http2 (object)

Name Type Description
request object
response object
stream_id integer

31.2.296 http.http2.response (object)

Name Type Description
error_code string
has_multiple string
settings array of objects

31.2.297 http.http2.response.settings (array of objects)

Name Type Description
settings_id string
settings_value integer

31.2.298 http.http2.request (object)

Name Type Description
error_code string
has_multiple string
priority integer
settings array of objects

774 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.299 http.http2.request.settings (array of objects)

Name Type Description
settings_id string
settings_value integer

31.2.300 http.content_range (object)

Name Type Description
end integer
raw string
size integer
start integer

31.2.301 ftp_data (object)

Name Type Description
command string
filename string

31.2.302 ftp (object)

Name Type Description
command string
command_data string
command_truncated boolean
completion_code array of strings
dynamic_port integer
mode string
reply array of strings
reply_received string
reply_truncated boolean

31.2.303 frame (object)

Name Type Description
complete boolean
direction string
id integer
length integer
payload string
payload_printable string
stream_offset integer
tx_id integer
type string

31.2. EVE Index 775

Suricata User Guide, Release 8.0.0

31.2.304 flow (object)

Name Type Description
action string
age integer
alerted boolean
bypass string
bypassed object
bytes_toclient integer
bytes_toserver integer
dest_ip string
dest_port integer
elephant boolean
emergency boolean
end string
exception_policy array of unknowns The exception policy(ies) triggered by the flow.

Not logged if none was triggered
pkts_toclient integer
pkts_toserver integer
reason string
src_ip string
src_port integer
start string
state string
tx_cnt integer
wrong_thread boolean

31.2.305 flow.bypassed (object)

Name Type Description
bytes_toclient integer
bytes_toserver integer
pkts_toclient integer
pkts_toserver integer

776 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.306 files (array of objects)

Name Type Description
end integer
file_id integer
filename string
gaps boolean
magic string
md5 string
sha1 string
sha256 string
sid array of integers
size integer
start integer
state string
stored boolean
storing boolean the file is set to be stored when completed
tx_id integer

31.2.307 fileinfo (object)

Name Type Description
end integer
file_id integer
filename string
gaps boolean
magic string
md5 string
sha1 string
sha256 string
sid array of integers
size integer
start integer
state string
stored boolean
storing boolean the file is set to be stored when completed
tx_id integer

31.2.308 ether (object)

Name Type Description
dest_mac string
dest_macs array of strings
ether_type integer Ethernet type value
src_mac string
src_macs array of strings

31.2. EVE Index 777

Suricata User Guide, Release 8.0.0

31.2.309 enip (object)

Name Type Description
request object
response object

31.2.310 enip.response (object)

Name Type Description
cip object
command string
identity object
list_services object
register_session object
status string

31.2.311 enip.response.register_session (object)

Name Type Description
options integer
protocol_version integer

31.2.312 enip.response.list_services (object)

Name Type Description
capabilities integer
protocol_version integer
service_name string

31.2.313 enip.response.identity (object)

Name Type Description
device_type string
product_code integer
product_name string
protocol_version integer
revision string
serial integer
state integer
status integer
vendor_id string

778 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.314 enip.response.cip (object)

Name Type Description
multiple array of objects
service string
status string
status_extended string
status_extended_meaning string

31.2.315 enip.response.cip.multiple (array of objects)

Name Type Description
service string
status string
status_extended string
status_extended_meaning string

31.2.316 enip.request (object)

Name Type Description
cip object
command string
register_session object
status string

31.2.317 enip.request.register_session (object)

Name Type Description
options integer
protocol_version integer

31.2.318 enip.request.cip (object)

Name Type Description
class_name string
multiple array of objects
path array of objects
service string

31.2. EVE Index 779

Suricata User Guide, Release 8.0.0

31.2.319 enip.request.cip.path (array of objects)

Name Type Description
segment_type string
value integer

31.2.320 enip.request.cip.multiple (array of objects)

Name Type Description
class_name string
path array of objects
service string

31.2.321 enip.request.cip.multiple.path (array of objects)

Name Type Description
segment_type string
value integer

31.2.322 engine (object)

Name Type Description
error string
error_code integer
message string
module string
thread_name string

780 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.323 email (object)

Name Type Description
attachment array of strings
body_md5 string
cc array of strings
date string
from string
has_exe_url boolean
has_ipv4_url boolean
has_ipv6_url boolean
message_id string
received array of strings
status string
subject string
subject_md5 string
to array of strings
url array of strings
x_mailer string

31.2.324 drop (object)

Name Type Description
ack boolean
fin boolean
flowlbl integer
hoplimit integer
icmp_id integer
icmp_seq integer
ipid integer
len integer
psh boolean
reason string
rst boolean
syn boolean
tc integer
tcpack integer
tcpres integer
tcpseq integer
tcpurgp integer
tcpwin integer
tos integer
ttl integer
udplen integer
urg boolean
verdict object

31.2. EVE Index 781

Suricata User Guide, Release 8.0.0

31.2.325 drop.verdict (object)

Name Type Description
action string
reject array of strings
reject-target string

31.2.326 dns (object)

Name Type Description
aa boolean
additionals array of objects
answer object
answers array of objects
authorities array of objects
flags string
grouped object
id integer
opcode integer DNS opcode as an integer
qr boolean
queries array of objects
query array of objects
ra boolean
rcode string
rd boolean
rrname string
rrtype string
tc boolean DNS truncation flag
tx_id integer
type string
version integer The version of this EVE DNS event
z boolean

31.2.327 dns.query (array of objects)

Name Type Description
id integer
opcode integer DNS opcode as an integer
rrname string
rrtype string
tx_id integer
type string
z boolean

782 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.328 dns.queries (array of objects)

Name Type Description
id integer
opcode integer DNS opcode as an integer
rrname string
rrname_truncated boolean Set to true if the rrname was too long and truncated

by Suricata
rrtype string
tx_id integer
type string
z boolean

31.2.329 dns.grouped (object)

Name Type Description
A array of strings
AAAA array of strings
CNAME array of strings
MX array of strings
NS array of strings
NULL array of strings
PTR array of strings
SOA array of unknowns
SRV array of objects
SSHFP array of objects A Secure Shell fingerprint is used to verify the sys-

tem’s authenticity
TXT array of strings

31.2.330 dns.grouped.SSHFP (array of objects)

Name Type Description
algo integer
fingerprint string
type integer

31.2.331 dns.grouped.SRV (array of objects)

Name Type Description
name string
port integer
priority integer
weight integer

31.2. EVE Index 783

Suricata User Guide, Release 8.0.0

31.2.332 dns.authorities (array of objects)

Name Type Description
rdata string
rdata_truncated boolean Set to true if the rdata was too long and truncated

by Suricata
rrname string
rrname_truncated boolean Set to true if the rrname was too long and truncated

by Suricata
rrtype string
soa object
ttl integer

31.2.333 dns.authorities.soa (object)

Name Type Description
expire integer
minimum integer
mname string
mname_truncated boolean Set to true if the mname was too long and truncated

by Suricata
refresh integer
retry integer
rname string
serial integer

31.2.334 dns.answers (array of objects)

Name Type Description
rdata string
rrname string
rrtype string
soa object
srv object
sshfp object A Secure Shell fingerprint, used to verify the sys-

tem’s authenticity
ttl integer

784 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.335 dns.answers.sshfp (object)

Name Type Description
algo integer
fingerprint string
type integer

31.2.336 dns.answers.srv (object)

Name Type Description
name string
port integer
priority integer
weight integer

31.2.337 dns.answers.soa (object)

Name Type Description
expire integer
minimum integer
mname string
mname_truncated boolean Set to true if the mname was too long and truncated

by Suricata
refresh integer
retry integer
rname string
serial integer

31.2.338 dns.answer (object)

Name Type Description
additionals array of objects
authorities array of objects
flags string
id integer
opcode integer DNS opcode as an integer
qr boolean
ra boolean
rcode string
rd boolean
rrname string
rrtype string
type string
version integer

31.2. EVE Index 785

Suricata User Guide, Release 8.0.0

31.2.339 dns.answer.authorities (array of objects)

Name Type Description
rdata string
rdata_truncated boolean Set to true if the rdata was too long and truncated

by Suricata
rrname string
rrname_truncated boolean Set to true if the rrname was too long and truncated

by Suricata
rrtype string
soa object
ttl integer

31.2.340 dns.answer.authorities.soa (object)

Name Type Description
expire integer
minimum integer
mname string
mname_truncated boolean Set to true if the mname was too long and truncated

by Suricata
refresh integer
retry integer
rname string
serial integer

31.2.341 dns.answer.additionals (array of objects)

Name Type Description
opt array of objects
rdata string
rrname string
rrtype string
ttl integer

31.2.342 dns.answer.additionals.opt (array of objects)

Name Type Description
code integer
data string

786 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.343 dns.additionals (array of objects)

Name Type Description
opt array of objects
rdata string
rrname string
rrtype string
ttl integer

31.2.344 dns.additionals.opt (array of objects)

Name Type Description
code integer
data string

31.2.345 dnp3 (object)

Name Type Description
application object
control object
dst integer
iin object
request object
response object
src integer
type string

31.2.346 dnp3.response (object)

Name Type Description
application object
control object
dst integer
iin object
src integer
type string

31.2. EVE Index 787

Suricata User Guide, Release 8.0.0

31.2.347 dnp3.response.iin (object)

Name Type Description
indicators array of strings

31.2.348 dnp3.response.control (object)

Name Type Description
dir boolean
fcb boolean
fcv boolean
function_code integer
pri boolean

31.2.349 dnp3.response.application (object)

Name Type Description
complete boolean
control object
function_code integer
objects array of objects

31.2.350 dnp3.response.application.objects (array of objects)

Name Type Description
count integer
group integer
points array of objects
prefix_code integer
qualifier integer
range_code integer
start integer
stop integer
variation integer

31.2.351 dnp3.response.application.control (object)

Name Type Description
con boolean
fin boolean
fir boolean
sequence integer
uns boolean

788 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.352 dnp3.request (object)

Name Type Description
application object
control object
dst integer
src integer
type string

31.2.353 dnp3.request.control (object)

Name Type Description
dir boolean
fcb boolean
fcv boolean
function_code integer
pri boolean

31.2.354 dnp3.request.application (object)

Name Type Description
complete boolean
control object
function_code integer
objects array of objects

31.2.355 dnp3.request.application.objects (array of objects)

Name Type Description
count integer
group integer
points array of objects
prefix_code integer
qualifier integer
range_code integer
start integer
stop integer
variation integer

31.2. EVE Index 789

Suricata User Guide, Release 8.0.0

31.2.356 dnp3.request.application.control (object)

Name Type Description
con boolean
fin boolean
fir boolean
sequence integer
uns boolean

31.2.357 dnp3.iin (object)

Name Type Description
indicators array of strings

31.2.358 dnp3.control (object)

Name Type Description
dir boolean
fcb boolean
fcv boolean
function_code integer
pri boolean

31.2.359 dnp3.application (object)

Name Type Description
complete boolean
control object
function_code integer
objects array of objects

31.2.360 dnp3.application.objects (array of objects)

Name Type Description
count integer
group integer
points array of objects
prefix_code integer
qualifier integer
range_code integer
start integer
stop integer
variation integer

790 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.361 dnp3.application.control (object)

Name Type Description
con boolean
fin boolean
fir boolean
sequence integer
uns boolean

31.2.362 dhcp (object)

Name Type Description
assigned_ip string
client_id string
client_ip string
client_mac string
dhcp_type string
dns_servers array of strings
hostname string
id integer
lease_time integer
next_server_ip string
params array of strings
rebinding_time integer
relay_ip string
renewal_time integer
requested_ip string
routers array of strings
subnet_mask string
type string
vendor_class_identifier string

31.2.363 dcerpc (object)

Name Type Description
activityuuid string
call_id integer
interfaces array of objects
req object
request string
res object
response string
rpc_version string
seqnum integer

31.2. EVE Index 791

Suricata User Guide, Release 8.0.0

31.2.364 dcerpc.res (object)

Name Type Description
frag_cnt integer
stub_data_size integer

31.2.365 dcerpc.req (object)

Name Type Description
frag_cnt integer
opnum integer
stub_data_size integer

31.2.366 dcerpc.interfaces (array of objects)

Name Type Description
ack_result integer
uuid string
version string

31.2.367 bittorrent_dht (object)

Name Type Description
client_version string
error object
request object
request_type string
response object
transaction_id string

31.2.368 bittorrent_dht.response (object)

Name Type Description
id string
nodes array of objects
nodes6 array of objects
token string
values array of objects

792 Chapter 31. Appendix

Suricata User Guide, Release 8.0.0

31.2.369 bittorrent_dht.response.nodes6 (array of objects)

Name Type Description
id string
ip string
port number

31.2.370 bittorrent_dht.request (object)

Name Type Description
id string
implied_port integer
info_hash string
port integer
target string
token string

31.2.371 bittorrent_dht.error (object)

Name Type Description
msg string
num integer

31.2.372 arp (object)

Name Type Description
dest_ip string Logical address of the intended receiver
dest_mac string Physical address of the intended receiver
hw_type string Network link protocol type
opcode string Specifies the operation that the sender is perform-

ing
proto_type string Internetwork protocol for which the ARP request

is intended
src_ip string Logical address of the sender
src_mac string Physical address of the sender

31.2.373 anomaly (object)

Name Type Description
app_proto string
code integer
event string
layer string
type string

31.2. EVE Index 793

Suricata User Guide, Release 8.0.0

31.2.374 alert (object)

Name Type Description
action string
category string
context object Extra context data created by keywords such as

dataset with JSON
gid integer
metadata object
references array of strings
rev integer
rule string
severity integer
signature string
signature_id integer
source object
target object
xff string

31.2.375 alert.target (object)

Name Type Description
ip string
port integer

31.2.376 alert.source (object)

Name Type Description
ip string
port integer

31.2.377 alert.metadata (object)

Name Type Description
affected_product array of strings
attack_target array of strings
created_at array of strings
deployment array of strings
former_category array of strings
malware_family array of strings
policy array of strings
signature_severity array of strings
tag array of strings
updated_at array of strings

794 Chapter 31. Appendix

BIBLIOGRAPHY

[llvm] Default LLVM clang-format Style

[clang9] Requires clang 9

[clang10] Requires clang 10

[clang11] Requires clang 11

[breakbeforebraces] BreakBeforeBraces: Mozilla is closest, but does not split empty functions/structs

795

Suricata User Guide, Release 8.0.0

796 Bibliography

INDEX

Symbols
-D

command line option, 34, 607
-F

command line option, 35, 607
-S

command line option, 34, 607
-T

command line option, 33, 606
-U

command line option, 37, 609
-V

command line option, 33, 605
--af-packet

command line option, 34, 606
--af-xdp

command line option, 34, 606
--build-info

command line option, 35, 608
--dag

command line option, 36, 609
--disable-detection

command line option, 35, 608
--disable-gccmarch-native

command line option, 9
--disable-hashing

command line option, 35, 608
--dump-config

command line option, 35, 608
--dump-features

command line option, 35, 608
--enable-dpdk

command line option, 10
--enable-geoip

command line option, 10
--enable-lua

command line option, 9
--engine-analysis

command line option, 36, 608
--erf-in

command line option, 37, 609
--fatal-unittests

command line option, 37, 609
--group

command line option, 35, 607
--include

command line option, 33, 605
--init-errors-fatal

command line option, 35, 607
--list-app-layer-protos

command line option, 35, 608
--list-keywords

command line option, 36, 608
--list-runmodes

command line option, 36, 608
--list-unittests

command line option, 37, 609
--localstatedir

command line option, 9
--napatech

command line option, 37, 609
--netmap

command line option, 36, 609
--pcap

command line option, 34, 606
--pcap-buffer-size

command line option, 36, 609
--pcap-file-buffer-size

command line option, 34, 606
--pcap-file-continuous

command line option, 33, 606
--pcap-file-delete

command line option, 34, 606
--pcap-file-recursive

command line option, 34, 606
--pfring

command line option, 36, 609
--pfring-cluster-id

command line option, 36, 609
--pfring-cluster-type

command line option, 36, 609
--pidfile

command line option, 35, 607
--prefix

797

Suricata User Guide, Release 8.0.0

command line option, 9
--reject-dev

command line option, 36, 608
--runmode

command line option, 34, 607
--set

command line option, 36, 608
--simulate-ips

command line option, 37, 609
--strict-rule-keywords

command line option, 35, 607
--sysconfdir

command line option, 9
--unittest-filter

command line option, 37, 609
--unittests-coverage

command line option, 37, 609
--unix-socket

command line option, 36, 608
--user

command line option, 35, 607
-c

command line option, 33, 605
-d

command line option, 36, 609
-h

command line option, 33, 605, 613, 614
-i

command line option, 34, 606
-k

command line option, 35, 607
-l

command line option, 34, 607
-q

command line option, 34, 606
-r

command line option, 33, 606
-s

command line option, 34, 607
-u

command line option, 37, 609
-v

command line option, 33, 606

B
built-in function

bytevars.get(), 505
bytevars.map(), 505
thread_info(), 540

bytevars.get()
built-in function, 505

bytevars.map()
built-in function, 505

C
command line option

-D, 34, 607
-F, 35, 607
-S, 34, 607
-T, 33, 606
-U, 37, 609
-V, 33, 605
--af-packet, 34, 606
--af-xdp, 34, 606
--build-info, 35, 608
--dag, 36, 609
--disable-detection, 35, 608
--disable-gccmarch-native, 9
--disable-hashing, 35, 608
--dump-config, 35, 608
--dump-features, 35, 608
--enable-dpdk, 10
--enable-geoip, 10
--enable-lua, 9
--engine-analysis, 36, 608
--erf-in, 37, 609
--fatal-unittests, 37, 609
--group, 35, 607
--include, 33, 605
--init-errors-fatal, 35, 607
--list-app-layer-protos, 35, 608
--list-keywords, 36, 608
--list-runmodes, 36, 608
--list-unittests, 37, 609
--localstatedir, 9
--napatech, 37, 609
--netmap, 36, 609
--pcap, 34, 606
--pcap-buffer-size, 36, 609
--pcap-file-buffer-size, 34, 606
--pcap-file-continuous, 33, 606
--pcap-file-delete, 34, 606
--pcap-file-recursive, 34, 606
--pfring, 36, 609
--pfring-cluster-id, 36, 609
--pfring-cluster-type, 36, 609
--pidfile, 35, 607
--prefix, 9
--reject-dev, 36, 608
--runmode, 34, 607
--set, 36, 608
--simulate-ips, 37, 609
--strict-rule-keywords, 35, 607
--sysconfdir, 9
--unittest-filter, 37, 609
--unittests-coverage, 37, 609
--unix-socket, 36, 608
--user, 35, 607

798 Index

Suricata User Guide, Release 8.0.0

-c, 33, 605
-d, 36, 609
-h, 33, 605, 613, 614
-i, 34, 606
-k, 35, 607
-l, 34, 607
-q, 34, 606
-r, 33, 606
-s, 34, 607
-u, 37, 609
-v, 33, 606

T
thread_info()

built-in function, 540

Index 799

	What is Suricata
	About the Open Information Security Foundation
	License

	Quickstart guide
	Installation
	Basic setup
	Signatures
	Running Suricata
	Alerting
	EVE Json

	Installation
	Source
	Common configure options
	Dependencies and compilation
	Ubuntu/Debian
	CentOS, AlmaLinux, RockyLinux, Fedora, etc
	Windows
	Compilation
	Rust support

	Auto-Setup

	Binary packages
	Ubuntu Package Installation
	Upgrading
	Remove
	Getting Debug or Pre-release Versions
	Daily Releases
	After Installation

	Debian Package Installation
	After Installation

	RPM Installation
	Installing From Package Repositories
	Enterprise Linux and Rebuilds
	Fedora

	Additional Notes for RPM Installations
	Starting Suricata On-Boot

	After Installation

	Other Package Installations
	Arch Based
	After Installation

	Advanced Installation

	Upgrading
	General instructions
	Configuration Updates

	Upgrading 7.0 to 8.0
	Major changes
	Removals
	Deprecations
	Keyword changes
	Logging changes
	Other Changes

	Upgrading 6.0 to 7.0
	Major changes
	Security changes
	Removals
	Logging changes
	Deprecations
	Other changes

	Upgrading 5.0 to 6.0
	Major changes
	Removals
	Performance

	Upgrading 4.1 to 5.0
	Major changes
	Removals

	Security Considerations
	Running as a User Other Than Root
	Create User
	File System Permissions
	Configure Suricata to Run as Suricata
	Starting Suricata
	Other Commands: Suricata-Update, SuricataSC

	Containers
	Capabilities
	Podman

	Support Status
	Levels of Support
	Tier 1
	Tier 2
	Community
	Vendor
	Unmaintained

	Distributions
	Tier 1
	Tier 2

	Architecture Support
	Tier 1
	Tier 2
	Community
	High Level Features
	Capture support
	Tier 1
	Tier 2
	Community
	Vendor
	Unmaintained

	Operation modes
	Tier 1
	Tier 2

	Command Line Options
	Unit Tests

	Suricata Rules
	Rules Format
	Action
	Protocol
	Source and destination
	Ports (source and destination)
	Direction
	Transactional rules

	Rule options
	Disabling Alerts
	Modifier Keywords
	Normalized Buffers

	Meta Keywords
	msg (message)
	sid (signature ID)
	rev (revision)
	gid (group ID)
	classtype
	reference
	priority
	metadata
	target
	requires

	IP Keywords
	ttl
	ipopts
	sameip
	ip_proto
	ipv4.hdr
	ipv6.hdr
	id
	geoip
	fragbits (IP fragmentation)
	fragoffset
	tos

	TCP keywords
	tcp.flags
	seq
	ack
	window
	tcp.mss
	tcp.wscale
	tcp.hdr

	UDP keywords
	udp.hdr

	ICMP keywords
	itype
	icode
	icmp_id
	icmp_seq
	icmpv4.hdr
	icmpv6.hdr
	icmpv6.mtu

	Payload Keywords
	content
	nocase
	depth
	startswith
	endswith
	offset
	distance
	within
	rawbytes
	isdataat
	absent
	bsize
	dsize
	byte_test
	byte_math
	byte_jump
	byte_extract
	entropy
	Logging

	rpc
	replace
	pcre (Perl Compatible Regular Expressions)
	PCRE extraction
	Suricata's modifiers
	Changes from PCRE1 to PCRE2

	Integer Keywords
	Comparison modes
	Enumerations
	Bitmasks

	Transformations
	dotprefix
	domain
	tld
	strip_whitespace
	compress_whitespace
	to_lowercase
	to_md5
	to_uppercase
	to_sha1
	to_sha256
	pcrexform
	url_decode
	xor
	header_lowercase
	strip_pseudo_headers
	from_base64
	luaxform

	Prefiltering Keywords
	fast_pattern
	Suricata Fast Pattern Determination Explained
	Appendices
	Appendix A - Pattern Strength Algorithm

	fast_pattern:only
	fast_pattern:'chop'

	prefilter

	Flow Keywords
	flowbits
	flow
	flowint
	stream_size
	flow.age
	flow.pkts
	flow.bytes

	Bypass Keyword
	bypass

	HTTP Keywords
	HTTP Primer
	Normalization
	Duplicate Header Names

	file.name
	http.accept
	http.accept_enc
	http.accept_lang
	http.host
	http.host.raw
	http.method
	http.referer
	http.request_body
	http.request_header
	http.request_line
	http.uri
	http.uri.raw
	http.user_agent
	urilen
	http.location
	http.response_body
	http.response_header
	http.response_line
	http.server
	http.stat_code
	http.stat_msg
	file.data
	http.connection
	http.content_len
	http.content_type
	http.cookie
	http.header
	http.header.raw
	http.header_names
	http.protocol
	http.start

	File Keywords
	file.data
	file.name
	fileext
	file.magic
	filestore
	filemd5
	filesha1
	filesha256
	filesize

	DNS Keywords
	dns.opcode
	Syntax
	Examples

	dns.rcode
	Syntax
	Examples

	dns.rrtype
	Syntax
	Examples

	dns.query
	Normalized Buffer

	dns.queries.rrname
	dns.answers.rrname
	dns.authorities.rrname
	dns.additionals.rrname
	dns.response.rrname

	mDNS Keywords
	mdns.queries.rrname
	mdns.answers.rrname
	mdns.authorities.rrname
	mdns.additionals.rrname
	mdns.response.rrname

	SSL/TLS Keywords
	tls.cert_subject
	tls.subject

	tls.cert_issuer
	tls.issuerdn

	tls.cert_serial
	tls.cert_fingerprint
	tls.sni
	tls.subjectaltname
	tls_cert_notbefore
	tls_cert_notafter
	tls_cert_expired
	tls_cert_valid
	tls.certs
	tls.version
	ssl_version
	tls.fingerprint
	tls.store
	ssl_state
	tls.random
	tls.random_time
	tls.random_bytes
	tls.cert_chain_len
	tls.alpn

	SSH Keywords
	Hooks
	Frames
	ssh.proto
	ssh.software
	ssh.hassh
	ssh.hassh.string
	ssh.hassh.server
	ssh.hassh.server.string

	JA3/JA4 Keywords
	ja3.hash
	ja3.string
	ja3s.hash
	ja3s.string
	ja4.hash

	Modbus Keyword
	DCERPC Keywords
	dcerpc.iface
	dcerpc.opnum
	dcerpc.stub_data
	Additional information

	DHCP keywords
	dhcp.leasetime
	dhcp.rebinding_time
	dhcp.renewal_time

	DNP3 Keywords
	dnp3_func
	Syntax

	dnp3_ind
	Syntax
	Examples

	dnp3_obj
	Syntax

	dnp3_data
	Syntax
	Example

	ENIP/CIP Keywords
	enip_command
	cip_service
	enip.status
	enip.protocol_version
	enip.cip_attribute
	enip.cip_instance
	enip.cip_class
	enip.cip_extendedstatus
	enip.revision
	enip.identity_status
	enip.state
	enip.serial
	enip.product_code
	enip.device_type
	enip.vendor_id
	enip.product_name
	enip.service_name
	enip.capabilities
	enip.cip_status

	FTP/FTP-DATA Keywords
	ftpdata_command
	ftpbounce
	file.name
	ftp.command
	ftp.command_data
	ftp.completion_code
	ftp.dynamic_port
	ftp.mode
	ftp.reply
	ftp.reply_received

	Kerberos Keywords
	krb5_msg_type
	krb5_cname
	krb5_sname
	krb5_err_code
	krb5.weak_encryption (event)
	krb5.malformed_data (event)
	krb5.ticket_encryption

	SMB Keywords
	smb.named_pipe
	smb.share
	smb.ntlmssp_user
	smb.ntlmssp_domain
	smb.version
	Matching in transition from SMBv1 to SMBv2
	Will smb.version match SMBv3 traffic?

	file.name

	SNMP keywords
	snmp.version
	snmp.community
	snmp.usm
	snmp.pdu_type

	Base64 keywords
	base64_decode
	base64_data
	Example

	SIP Keywords
	sip.method
	Syntax
	Examples

	sip.uri
	Syntax
	Examples

	sip.request_line
	Syntax
	Examples

	sip.stat_code
	Syntax
	Examples

	sip.stat_msg
	Syntax
	Examples

	sip.response_line
	Syntax
	Examples

	sip.protocol
	Syntax
	Example

	sip.from
	Syntax
	Example

	sip.to
	Syntax
	Example

	sip.via
	Syntax
	Example

	sip.user_agent
	Syntax
	Example

	sip.content_type
	Syntax
	Example

	sip.content_length
	Syntax
	Example

	SDP Keywords
	sdp.origin
	Syntax
	Examples

	sdp.session_name
	Syntax
	Examples

	sdp.session_info
	Syntax
	Examples

	sdp.uri
	Syntax
	Examples

	sdp.email
	Syntax
	Examples

	sdp.phone_number
	Syntax
	Examples

	sdp.connection_data
	Syntax
	Examples

	sdp.bandwidth
	Syntax
	Example

	sdp.time
	Syntax
	Example

	sdp.repeat_time
	Syntax
	Example

	sdp.timezone
	Syntax
	Example

	sdp.encryption_key
	Syntax
	Example

	sdp.attribute
	Syntax
	Example

	sdp.media.media
	Syntax
	Example

	sdp.media.session_info
	Syntax
	Example

	sdp.media.connection_data
	Syntax
	Example

	sdp.media.encryption_key
	Syntax
	Example

	RFB Keywords
	rfb.name
	rfb.secresult
	rfb.sectype
	Additional information

	MQTT Keywords
	mqtt.protocol_version
	mqtt.type
	mqtt.flags
	mqtt.qos
	mqtt.reason_code
	mqtt.connack.session_present
	mqtt.connect.clientid
	mqtt.connect.flags
	mqtt.connect.password
	mqtt.connect.protocol_string
	mqtt.connect.username
	mqtt.connect.willmessage
	mqtt.connect.willtopic
	mqtt.publish.message
	mqtt.publish.topic
	mqtt.subscribe.topic
	mqtt.unsubscribe.topic
	Additional information

	IKE Keywords
	ike.init_spi, ike.resp_spi
	ike.chosen_sa_attribute
	ike.exchtype
	ike.vendor
	ike.key_exchange_payload
	ike.key_exchange_payload_length
	ike.nonce_payload
	ike.nonce_payload_length
	Additional information

	HTTP2 Keywords
	Frames
	http2.frametype
	http2.errorcode
	http2.priority
	http2.window
	http2.size_update
	http2.settings
	http2.header_name
	Additional information

	Quic Keywords
	quic.cyu.hash
	quic.cyu.string
	quic.version
	Additional information

	NFS Keywords
	file.name

	SMTP Keywords
	file.name
	smtp.helo
	smtp.mail_from
	smtp.rcpt_to
	Frames
	smtp.command_line
	smtp.response_line
	smtp.data
	smtp.stream

	WebSocket Keywords
	websocket.payload
	websocket.flags
	websocket.mask
	websocket.opcode

	Generic App Layer Keywords
	app-layer-protocol
	Bail out conditions

	app-layer-event
	Protocol Detection
	applayer_mismatch_protocol_both_directions
	applayer_wrong_direction_first_data
	applayer_detect_protocol_only_one_direction
	applayer_proto_detection_skipped

	app-layer-state

	Generic Decode Layer Keywords
	decode-event
	Decode Events
	ethernet.unknown_ethertype

	Xbits Keyword
	Notes
	YAML settings
	Threading
	Unix Socket
	Examples
	Creating a SSH blacklist

	Alert Keywords
	noalert
	alert

	Thresholding Keywords
	threshold
	type "threshold"
	type "limit"
	type "both"
	type "backoff"
	track

	detection_filter

	IP Reputation Keyword
	iprep
	isset and isnotset
	Compatibility with IP-only

	IP Addresses Match
	ip.src
	ip.dst

	Config Rules
	Keyword
	Action

	Datasets
	Global config (optional)
	Rule keywords
	dataset
	datarep
	dataset with JSON

	Rule Reloads
	Unix Socket
	dataset-add
	dataset-remove
	dataset-clear
	dataset-lookup
	dataset-dump
	dataset-add-json

	File formats
	data types
	dataset
	datarep
	dataset with JSON enrichment

	File Locations
	Security

	Lua Scripting for Detection
	Lua Rule Keyword
	Init function
	Match function

	Lua Transform: luaxform
	Lua Sandbox and Available functions

	Differences From Snort
	Automatic Protocol Detection
	urilen Keyword
	http_uri Buffer
	http_header Buffer
	http_cookie Buffer
	New HTTP keywords
	byte_extract Keyword
	byte_jump Keyword
	byte_math Keyword
	byte_test Keyword
	isdataat Keyword
	Relative PCRE
	tls* Keywords
	dns_query Keyword
	IP Reputation and iprep Keyword
	Flowbits
	flowbits:noalert;
	Negated Content Match Special Case
	File Extraction
	Lua Scripting
	Fast Pattern
	Don't Cross The Streams
	Alerts
	Buffer Reference Chart

	Multiple Buffer Matching
	Tag
	Syntax
	Examples
	How to Use Tags
	EVE
	Conditional PCAP Logging

	Tracking by Host/Flow

	VLAN Keywords
	vlan.id
	Examples

	vlan.layers
	Examples

	LDAP Keywords
	LDAP Request and Response operations
	ldap.request.operation
	Examples

	ldap.responses.operation
	Examples

	ldap.responses.count
	Examples

	ldap.request.dn
	Example

	ldap.responses.dn
	Example

	ldap.responses.result_code
	Examples

	ldap.responses.message
	Example

	ldap.request.attribute_type
	Example

	ldap.responses.attribute_type
	Example

	PGSQL Keywords
	pgsql.query
	Examples

	Rule Types and Categorization
	Signature Properties
	Signature: Require Real Packet

	Signature Types and Variable-like Keywords
	Flowbits: isset

	Signatures per Type
	Decoder Events Only
	Example
	Engine-Analysis Report

	Packet
	Examples
	Engine-Analysis Report

	IP Only
	Examples
	Engine-Analysis Report

	IP Only (contains negated address)
	Examples
	Engine-Analysis Report

	Protocol Detection Only
	Examples
	Engine-Analysis Report

	Packet-Stream
	Examples
	Engine-Analysis Report

	Stream
	Examples
	Engine-Analysis Report

	Application Layer Protocol
	Examples
	Engine-Analysis Report

	Application Layer Protocol Transactions
	Examples
	Engine-Analysis Report

	Detailed Flowcharts
	IP Only and IP Only with negated addresses
	Protocol Detection Only
	Application Layer Protocol, Transaction, Packet, Stream and Stream-Packet rules

	Email Keywords
	email.from
	Example

	email.subject
	Example

	email.to
	Example

	email.cc
	Example

	email.date
	Example

	email.message_id
	Example

	email.x_mailer
	Example

	email.url
	Example

	email.received
	Example

	Rule Management
	Rule Management with Suricata-Update
	Updating your rules
	Using other rulesets
	Controlling which rules are used
	Further reading

	Adding Your Own Rules
	Rule Reloads
	Rules Profiling

	Making sense out of Alerts
	Performance
	Runmodes
	Different runmodes
	Load balancing

	Packet Capture
	Load balancing
	RSS
	Offloading
	Recommendations

	Tuning Considerations
	max-pending-packets: <number>
	mpm-algo: <ac|hs|ac-bs|ac-ks>
	detect.profile: <low|medium|high|custom>
	detect.sgh-mpm-context: <auto|single|full>
	af-packet
	ring-size
	stream.bypass

	Hyperscan
	Introduction
	Basic Installation (Package)
	Advanced Installation (Source)
	Using Hyperscan
	Hyperscan caching

	High Performance Configuration
	NIC
	CPU affinity and NUMA
	Intel based systems
	AMD based systems
	Other considerations

	Statistics
	stats.log file
	Detecting packet loss

	Kernel drops
	Tools to plot graphs

	Ignoring Traffic
	Capture Filters (BPF)
	BPF and IPS

	pass rules
	suppress
	Encrypted Traffic
	Bypassing Traffic

	Packet Profiling
	Rule Profiling
	Tcmalloc
	Installation
	Usage

	Performance Analysis
	System Load
	Logfiles
	Suricata Load
	Traffic
	Basics
	Advanced
	Elephant Flows

	Rules

	Configuration
	Suricata.yaml
	Max-pending-packets
	Runmodes
	Default-packet-size
	User and group
	PID File
	Action-order
	Packet alert queue settings
	Impact on engine behavior
	Packet alert queue overflow

	Discarded and Suppressed Alerts Stats

	Splitting configuration in multiple files
	Event output
	Default logging directory
	Stats
	Outputs
	Line based alerts log (fast.log)
	Eve (Extensible Event Format)
	TLS parameters and certificates logging (tls.log)
	A line based log of HTTP requests (http.log)
	Packet log (pcap-log)
	Verbose Alerts Log (alert-debug.log)
	Stats
	Syslog
	File-store (File Extraction)

	Detection engine
	Inspection configuration
	Prefilter Engines
	Thresholding Settings
	Pattern matcher settings

	Threading
	Relevant cpu-affinity settings for IDS mode
	Relevant cpu-affinity settings for IPS mode
	Interface-specific CPU affinity settings
	Automatic NUMA-aware CPU core pinning

	IP Defrag
	Flow and Stream handling
	Flow Settings
	Flow Time-Outs
	Stream-engine
	TCP Urgent Handling
	Observables

	Host Tracking
	Settings

	Application Layer Parsers
	Asn1_max_frames
	FTP
	Configure HTTP (libhtp)
	decompression-time-limit

	Configure SMB
	Resource limits
	Cache limits

	Configure HTTP2
	SSL/TLS
	Encrypted traffic

	Modbus
	MQTT
	SMTP
	Maximum transactions

	Engine Logging
	Default Configuration Example
	Default Log Level
	Default Log Format
	Output Filter
	Logging Outputs

	Packet Acquisition
	Data Plane Development Kit (DPDK)
	Pf-ring
	NFQ
	Ipfw

	Rules
	Rule Files
	Threshold-file
	Classifications
	Rule-vars
	Host-os-policy

	Engine analysis and profiling
	Engine-analysis
	Rule and Packet Profiling settings
	Packet Profiling

	Decoder
	Teredo
	Recursion Level

	Advanced Options
	stacktrace

	Configuration hardening
	Lua

	Global-Thresholds
	Threshold Config
	threshold/event_filter
	rate_filter
	gen_id
	sig_id
	track
	count
	seconds
	new_action
	timeout
	Example

	suppress

	Global thresholds vs rule thresholds
	Suppress
	Threshold/event_filter
	Rate_filter

	Exception Policies
	Master Switch
	Auto

	Specific settings
	Exception Policies and Midstream Pick-up Sessions
	Log Output
	Flow Event
	Available Stats
	Command-line Options for Simulating Exceptions
	Glossary
	Common abbreviations

	Snort.conf to Suricata.yaml
	Variables
	Decoder alerts
	Checksum handling
	Various configs
	Active response
	Dropping privileges
	Snaplen
	Bpf

	Log directory
	Packet acquisition
	Rules

	Multi Tenancy
	Introduction
	YAML
	vlan-id
	device

	Per tenant settings
	Unix Socket
	Registration
	Unix socket runmode (pcap processing)
	Live traffic mode
	Registration
	Reloads

	Eve JSON output

	Dropping Privileges After Startup
	Using Landlock LSM
	systemd notification
	Introduction
	Example
	Requirements
	Additional Information

	Includes
	Including a Single File
	Including Multiple Files
	Include Inside a Mapping

	Reputation
	IP Reputation
	IP Reputation Config
	reputation-categories-file
	default-reputation-path
	reputation-files
	Hosts
	Reloads
	File format

	IP Reputation Format
	Categories file
	Reputation file

	Init Scripts
	Setting up IPS/inline for Linux
	Setting up IPS with Netfilter
	Iptables configuration
	NFtables configuration
	NFQUEUE advanced options

	Setting up IPS at Layer 2
	AF_PACKET IPS mode
	DPDK IPS mode
	Netmap IPS mode
	Netmap Host Stack Mode

	Setting up IPS/inline for Windows
	Output
	EVE
	Eve JSON Output
	Output Buffering
	Output types
	Alerts
	Anomaly
	HTTP
	DNS
	TLS
	ARP
	MQTT
	Drops
	Stats
	Zero-valued Counters

	Date modifiers in filename
	Threaded file output
	Rotate log file
	Multiple Logger Instances
	File permissions
	JSON flags
	Community Flow ID
	Options
	Multi Tenancy

	Eve JSON Format
	Common Section
	Field: flow_id
	Event types
	PCAP fields

	Event type: Alert
	Action field
	Verdict
	Pcap Field

	Event type: Anomaly
	Fields
	Examples

	Event type: HTTP
	Fields
	Examples

	Event type: DNS
	Fields
	Examples

	Event type: FTP
	Fields
	Examples

	Event type: FTP_DATA
	Fields
	Examples

	Event type: TLS
	Fields
	Examples

	Event type: TFTP
	Fields

	Event type: KRB5
	KRB5 Fields

	Event type: SMB
	SMB Fields
	DCERPC fields
	NTLMSSP fields
	Kerberos fields

	Event type: BITTORRENT-DHT
	Common fields:
	Extra fields:
	Examples:

	Event type: SSH
	Fields

	Event type: Flow
	Fields

	Event type: RDP
	RDP type: Initial Request
	RDP type: Initial Response
	RDP type: Connect Request
	RDP type: Connect Response
	RDP type: TLS Handshake
	Examples

	Event type: RFB
	Fields
	Examples

	Event type: MQTT
	Transactions
	Common fields
	MQTT CONNECT fields
	MQTT CONNACK fields
	MQTT PUBLISH fields
	MQTT PUBACK/PUBREL/PUBREC/PUBCOMP fields
	MQTT SUBSCRIBE fields
	MQTT SUBACK fields
	MQTT UNSUBSCRIBE fields
	MQTT UNSUBACK fields
	MQTT AUTH fields (MQTT 5.0)
	MQTT DISCONNECT fields
	Truncated MQTT data

	Event type: HTTP2
	Fields
	Examples

	Event type: PGSQL
	Fields
	Request Messages
	Response Messages
	Examples
	Field Reference
	Top Level (object)
	response (object)
	response.parameter_status (array of objects)
	response.copy_out_response (object)
	response.copy_in_response (object)
	response.copy_data_out (object)
	request (object)
	request.startup_parameters (object)
	request.startup_parameters.optional_parameters (array of objects)
	request.copy_data_in (object)

	Event type: IKE
	Fields
	Examples

	Event type: Modbus
	Common fields
	Request/Response fields
	Exception fields
	Diagnostic fields
	MEI fields
	Read Request fields
	Read Response fields
	Multiple Write Request fields
	Mask Write fields
	Other Write fields
	Generic Data fields
	Example

	Event type: QUIC
	Fields
	Examples
	Output Reference
	Top Level (object)
	ja3s (object)
	ja3 (object)
	extensions (array of objects)
	cyu (array of objects)

	Event type: DHCP
	Fields
	Examples

	Event type: ARP
	Fields
	Examples

	Event type: POP3
	Fields

	Eve JSON 'jq' Examples
	Colorize output
	DNS NXDOMAIN
	Unique HTTP User Agents
	Data use for a host
	Monitor part of the stats
	Inspect Alert Data
	Top 10 Destination Ports

	Lua Output
	Script structure
	YAML
	Developing lua output script

	Syslog Alerting Compatibility
	Popular syslog daemons
	Finding what syslog daemon you are using
	Example

	Custom http logging
	Custom tls logging
	Log Rotation

	Lua support
	Lua usage in Suricata
	Lua output
	Lua detection
	Lua transform

	Lua functions
	Differences between output and detect:
	packet
	flow
	http
	Streaming Data

	Lua Libraries
	Base64
	Functions
	encode(string)
	decode(string)
	encode_nopad(string)
	decode_nopad(string)
	decode_padopt(string)
	decode_rfc2045(string)
	decode_rfc4648(string)

	Implementation Details

	Bytevar
	Setup
	Module Functions
	Byte Variable Object Methods

	Config Library
	Functions
	log_path()

	DNS
	Setup
	Transaction
	Transaction Methods

	answers()
	authorities()
	queries()
	rcode()
	rcode_string()
	recursion_desired()
	rrname()
	txid()

	File
	Setup
	API
	File Object
	File Methods
	file_id()
	tx_id()
	name()
	size()
	magic()
	md5()
	sha1()
	sha256()
	get_state()
	is_stored()

	Flow
	Initialization
	get

	Time
	timestamps
	timestring_legacy
	timestring_iso8601

	Ports and Addresses
	tuple
	App Layer Protocols
	app_layer_proto

	Misc
	has_alerts
	id
	stats

	Example

	Flowint Library
	Initialization
	Flow Integer Methods
	decr()
	incr()
	value()
	set(value)

	Flowvar
	Initialization
	Flow Variable Methods
	value()
	set(value, len)

	Example

	Hashing
	SHA-256
	sha256_digest(string)
	sha256_hex_digest(string)
	sha256()

	SHA-1
	sha1_digest(string)
	sha1_hex_digest(string)
	sha1()

	MD5
	md5_digest(string)
	md5_hex_digest(string)
	md5()

	HTTP
	Setup
	Transaction
	Transaction Methods

	request_header()
	response_header()
	request_line
	response_line
	request_headers_raw()
	response_headers_raw()
	request_uri_raw()
	request_uri_normalized()
	request_headers()
	response_headers()
	request_body()
	response_body()
	request_host()

	Log
	Setup
	Functions
	info
	notice
	warning
	error
	debug
	config
	perf

	Packet
	Initialization
	get

	Time
	timestamp
	timestring_legacy
	timestring_iso8601

	Ports and Addresses
	tuple
	sp
	dp

	Data
	payload
	packet

	Misc
	pcap_cnt

	Example

	Rule
	Rule Setup
	Output Setup
	Getting a Rule Instance
	Rule Methods
	action()
	class_description()
	gid()
	rev()
	msg()
	priority
	sid()

	SMTP
	Setup
	API
	Transaction
	Transaction Methods
	get_mime_field(name)
	get_mime_list()
	get_mail_from()
	get_rcpt_list()

	SSH
	Setup
	Transaction
	Transaction Methods

	server_proto()
	client_proto()
	server_software()
	client_software()
	client_hassh()
	client_hassh_string()
	server_hassh()
	server_hassh_string()

	TLS
	Setup
	API
	Transaction
	Client Methods
	get_client_version
	get_client_cert_chain
	get_client_cert_info
	get_client_cert_not_after
	get_client_cert_not_before
	get_client_serial
	get_client_sni

	Server Methods
	get_server_cert_info
	get_server_cert_chain
	get_server_cert_not_after
	get_server_cert_not_before
	get_server_serial

	JA3
	Transaction
	Transaction Methods
	ja3_get_hash()
	ja3_get_string()
	ja3s_get_hash()
	ja3s_get_string()

	Util
	Setup
	Functions

	File Extraction
	Architecture
	Settings
	Output
	File-Store and Eve Fileinfo

	Rules
	MD5
	Storing MD5s checksums
	Configuration
	Testing
	Log all MD5s without any rules

	Public SHA1 MD5 data sets

	Updating Filestore Configuration
	Update File-store v1 Configuration to V2

	Public Data Sets
	Using Capture Hardware
	Endace DAG
	Napatech
	Contents
	Introduction
	Package Installation
	Suricata Installation
	Suricata configuration
	Example Configuration - Auto-config without cpu-affinity:
	Example Configuration - Auto-config with cpu-affinity:
	Example Configuration - Manual Configuration
	Bypassing Flows
	Inline Operation
	Counters
	Napatech configuration options:
	Support

	Myricom
	Debug Info
	Additional Info

	eBPF and XDP
	Introduction
	XDP

	Requirements
	Prerequisites
	Disable irqbalance
	Kernel
	Clang and dependencies
	libbpf

	Compile and install Suricata
	Setup bypass
	Setup eBPF filter
	Setup eBPF bypass
	Setup eBPF load balancing
	Setup XDP bypass
	Intel NIC setup
	Disable any NIC offloading
	Balance as much as you can
	The XDP CPU redirect case
	Start Suricata with XDP

	Pinned maps usage
	XDP and pinned-maps
	Pinned maps and eBPF filter

	Hardware bypass with Netronome
	Getting live info about bypass

	Netmap
	Compiling Suricata
	FreeBSD
	Linux

	Starting Suricata
	IDS
	IPS

	Advanced setups
	lb (load balance)
	FreeBSD 11
	Single NIC
	VALE switches

	Inline IDS

	AF_XDP
	Compiling Suricata
	Linux

	Starting Suricata
	IDS

	AF_XDP Configuration
	Advanced setup
	force-xdp-mode
	force-bind-mode
	mem-unaligned
	enable-busy-poll
	busy-poll-time
	busy-poll-budget
	Linux tunables

	Hardware setup
	Intel NIC setup
	Disable any NIC offloading
	Balance as much as you can

	DPDK
	Introduction
	Hugepage analysis
	Bond interface
	Interrupt (power-saving) mode
	Automatic interface configuration
	Link State Change timeout
	Encapsulation stripping

	PCAP File Reading
	Configuration
	Buffer Size
	Directory-related options
	Other options

	Interacting via Unix Socket
	Introduction
	Commands in standard running mode
	Commands on the cmd prompt
	PCAP processing mode
	Build your own client

	Plugins
	nDPI
	Installation
	Keywords
	ndpi-protocol
	ndpi-risk

	Firewall Mode
	Firewall Mode Design
	Concepts
	Actions and Action Scopes
	accept
	drop
	Explicit rule hook (states)
	general
	http
	tls
	ssh

	Firewall pipeline
	Pass rules with Firewall mode

	Firewall Ruleset Examples
	HTTP
	TLS SNI with complex TCP rules

	3rd Party Integration
	Symantec SSL Visibility (BlueCoat)
	Appliance Software Version
	Magic Markers
	TCP handling
	TLS matching in Suricata
	IPS

	Man Pages
	Suricata
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	OPTIONS FOR DEVELOPERS
	SIGNALS
	FILES AND DIRECTORIES
	EXAMPLES
	BUGS
	NOTES

	Suricata Socket Control
	SYNOPSIS
	DESCRIPTION
	COMMANDS
	PCAP MODE COMMANDS
	BUGS
	NOTES

	Suricata Control
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	COMMANDS
	BUGS
	NOTES

	Suricata Control Filestore
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	COMMANDS
	BUGS
	NOTES

	Acknowledgements
	Licenses
	GNU General Public License
	Preamble
	TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	NO WARRANTY
	How to Apply These Terms to Your New Programs

	Creative Commons Attribution-NonCommercial 4.0 International Public License
	Section 1 – Definitions.
	Section 2 – Scope.
	Section 3 – License Conditions.
	Section 4 – Sui Generis Database Rights.
	Section 5 – Disclaimer of Warranties and Limitation of Liability.
	Section 6 – Term and Termination.
	Section 7 – Other Terms and Conditions.
	Section 8 – Interpretation.

	Suricata Source Code
	Suricata Documentation

	Suricata Developer Guide
	Working with the Codebase
	Installation from GIT
	Ubuntu Installation from GIT
	Pre-installation requirements
	Suricata
	Auto-setup
	Post installation

	Coding Style
	Formatting
	clang-format
	Format your Changes
	Formatting the most recent commit only
	Formatting code in staging
	Formatting your branch's commits
	Check formatting
	Formatting a whole file
	Disabling clang-format
	Installing clang-format and git-clang-format

	Line length
	Indent
	Braces

	Flow
	Alignment
	Pointers
	Declarations and Comments

	Functions
	parameter names
	Function names
	static vs non-static
	inline

	Variables
	Names
	Scope

	Macros
	Comments
	Function comments
	General comments

	File names
	Enums
	Structures and typedefs
	switch statements
	const
	goto
	Includes
	Unittests
	Banned functions
	Rust
	Pure Rust Code
	FFI

	Fuzz Testing
	Running the Fuzzers
	Reproducing issues

	Extending Coverage
	Adding Fuzz Targets
	Oss-Fuzz

	Testing Suricata
	General Concepts
	Unit tests
	Code Examples

	Suricata-Verify
	Generating Input
	Using real traffic
	Crafting input samples with Scapy
	Other examples from our Suricata-Verify tests:
	Finding Capture Samples

	Unit Tests - C
	Writing Unit Tests - C codebase
	Examples

	Unit tests - Rust
	Rust tests with Cargo check
	Adding unit tests
	Example

	Contributing
	Contributing to Suricata
	Communication is Key!
	Claim (or open) a ticket
	Expectations
	What does "community supported" and "supporting a feature" mean?

	Stale tickets policy
	What branch to work on
	Create your own branch
	Coding Style
	Documentation Style
	Headings
	Rule examples

	Commit History matters
	Send a Pull Request
	Feedback
	Wrapping up
	Merged! Cleanup
	Update ticket

	Code Submission Process
	Commits
	Pull Requests
	Tests and QA

	GitHub Pull Request Workflow
	Draft Pull Requests
	Mergeable Pull Requests
	Reviewers and Maintainers

	Suricata Backports Guide
	What should be backported?
	Selection overview
	Creating backport tickets -- new issues
	Creating backports tickets -- existing issues/PRs

	Git Backport Workflow
	Create a PR:

	QA

	Suricata Internals
	Packet Pipeline
	Threading
	Important Data Structures
	Introduction

	Engines
	Flow
	Stream
	Defrag
	Protocol detection
	Decision process
	Output

	Extending Suricata
	Packet Capture
	Packet Decoder
	App-Layer
	Application Layer Frame Support
	Baseline
	General Concepts
	Adding Frame Support to a Parser
	Basic steps
	Implementation Examples & API Callbacks
	Rust
	C code

	Visual context

	Parsers
	Callbacks
	Examples

	Return Types
	APP_LAYER_OK / AppLayerResult::ok()
	APP_LAYER_ERROR / AppLayerResult::err()
	APP_LAYER_INCOMPLETE / AppLayerResult::incomplete()
	Supporting incomplete data

	Transactions
	General Concepts
	How the engine uses transactions
	Logging
	Rule Matching

	Progress Tracking
	In Summary - Transactions and State

	Examples
	Enums
	API Callbacks
	Sequence Diagrams
	Template Protocol

	Work In Progress changes
	Common words and abbreviations

	Detection
	Rate Filter Callback
	The Callback
	Callback Registration

	Output
	Low Level Logging
	Packet Logging
	Flow Logging
	Transaction Logging
	Stream Logging
	File Logging
	File-data Logging

	LibSuricata and Plugins
	Using Suricata as a Library
	Plugins
	Application-layer plugins

	Upgrading
	Upgrading 7.0 to 8.0
	EVE File Types

	Verifying Suricata Source Distribution Files
	Verification Steps
	Downloading the Signature File
	Importing the OISF Signing Key
	Verifying the Suricata Distribution File

	Appendix
	EVE JSON Schema
	Suricata Schema Extensions
	Extension Reference
	keywords

	Schema Tooling

	EVE Index
	Top Level (object)
	websocket (object)
	verdict (object)
	tunnel (object)
	traffic (object)
	tls (object)
	tls.server_handshake (object)
	tls.ja3s (object)
	tls.ja3 (object)
	tls.client_handshake (object)
	tls.client (object)
	tftp (object)
	template (object)
	tcp (object)
	stats (object)
	stats.tcp (object)
	stats.pcap_log (object)
	stats.memcap (object)
	stats.ips (object)
	stats.ips.drop_reason (object)
	stats.ippair (object)
	stats.http (object)
	stats.http.byterange (object)
	stats.host (object)
	stats.ftp (object)
	stats.flow_mgr (object)
	stats.flow_bypassed (object)
	stats.flow (object)
	stats.flow.wrk (object)
	stats.flow.recycler (object)
	stats.flow.mgr (object)
	stats.flow.end (object)
	stats.flow.end.tcp_state (object)
	stats.flow.end.state (object)
	stats.file_store (object)
	stats.exception_policy (object)
	stats.detect (object)
	stats.detect.lua (object)
	stats.detect.engines (array of objects)
	stats.defrag (object)
	stats.defrag.wrk (object)
	stats.defrag.mgr (object)
	stats.defrag.ipv6 (object)
	stats.defrag.ipv4 (object)
	stats.decoder (object)
	stats.decoder.event (object)
	stats.decoder.event.vxlan (object)
	stats.decoder.event.vntag (object)
	stats.decoder.event.vlan (object)
	stats.decoder.event.udp (object)
	stats.decoder.event.tcp (object)
	stats.decoder.event.sll2 (object)
	stats.decoder.event.sll (object)
	stats.decoder.event.sctp (object)
	stats.decoder.event.pppoe (object)
	stats.decoder.event.ppp (object)
	stats.decoder.event.nsh (object)
	stats.decoder.event.mpls (object)
	stats.decoder.event.ltnull (object)
	stats.decoder.event.ipv6 (object)
	stats.decoder.event.ipv4 (object)
	stats.decoder.event.ipraw (object)
	stats.decoder.event.ieee8021ah (object)
	stats.decoder.event.icmpv6 (object)
	stats.decoder.event.icmpv4 (object)
	stats.decoder.event.gre (object)
	stats.decoder.event.geneve (object)
	stats.decoder.event.ethernet (object)
	stats.decoder.event.esp (object)
	stats.decoder.event.erspan (object)
	stats.decoder.event.dce (object)
	stats.decoder.event.chdlc (object)
	stats.decoder.event.arp (object)
	stats.decoder.event.afpacket (object)
	stats.capture (object)
	stats.app_layer (object)
	stats.app_layer.tx (object)
	stats.app_layer.flow (object)
	stats.app_layer.error (object)
	stats.app_layer.error.websocket (object)
	stats.app_layer.error.websocket.exception_policy (object)
	stats.app_layer.error.tls (object)
	stats.app_layer.error.tls.exception_policy (object)
	stats.app_layer.error.tftp (object)
	stats.app_layer.error.tftp.exception_policy (object)
	stats.app_layer.error.telnet (object)
	stats.app_layer.error.telnet.exception_policy (object)
	stats.app_layer.error.ssh (object)
	stats.app_layer.error.ssh.exception_policy (object)
	stats.app_layer.error.snmp (object)
	stats.app_layer.error.snmp.exception_policy (object)
	stats.app_layer.error.smtp (object)
	stats.app_layer.error.smtp.exception_policy (object)
	stats.app_layer.error.smb (object)
	stats.app_layer.error.smb.exception_policy (object)
	stats.app_layer.error.sip_udp (object)
	stats.app_layer.error.sip_udp.exception_policy (object)
	stats.app_layer.error.sip_tcp (object)
	stats.app_layer.error.sip_tcp.exception_policy (object)
	stats.app_layer.error.rfb (object)
	stats.app_layer.error.rfb.exception_policy (object)
	stats.app_layer.error.rdp (object)
	stats.app_layer.error.rdp.exception_policy (object)
	stats.app_layer.error.quic (object)
	stats.app_layer.error.quic.exception_policy (object)
	stats.app_layer.error.pop3 (object)
	stats.app_layer.error.pop3.exception_policy (object)
	stats.app_layer.error.pgsql (object)
	stats.app_layer.error.pgsql.exception_policy (object)
	stats.app_layer.error.ntp (object)
	stats.app_layer.error.ntp.exception_policy (object)
	stats.app_layer.error.nfs_udp (object)
	stats.app_layer.error.nfs_udp.exception_policy (object)
	stats.app_layer.error.nfs_tcp (object)
	stats.app_layer.error.nfs_tcp.exception_policy (object)
	stats.app_layer.error.mqtt (object)
	stats.app_layer.error.mqtt.exception_policy (object)
	stats.app_layer.error.modbus (object)
	stats.app_layer.error.modbus.exception_policy (object)
	stats.app_layer.error.mdns (object)
	stats.app_layer.error.mdns.exception_policy (object)
	stats.app_layer.error.ldap_udp (object)
	stats.app_layer.error.ldap_udp.exception_policy (object)
	stats.app_layer.error.ldap_tcp (object)
	stats.app_layer.error.ldap_tcp.exception_policy (object)
	stats.app_layer.error.krb5_udp (object)
	stats.app_layer.error.krb5_udp.exception_policy (object)
	stats.app_layer.error.krb5_tcp (object)
	stats.app_layer.error.krb5_tcp.exception_policy (object)
	stats.app_layer.error.imap (object)
	stats.app_layer.error.imap.exception_policy (object)
	stats.app_layer.error.ike (object)
	stats.app_layer.error.ike.exception_policy (object)
	stats.app_layer.error.http2 (object)
	stats.app_layer.error.http2.exception_policy (object)
	stats.app_layer.error.http (object)
	stats.app_layer.error.http.exception_policy (object)
	stats.app_layer.error.ftp-data (object)
	stats.app_layer.error.ftp-data.exception_policy (object)
	stats.app_layer.error.ftp (object)
	stats.app_layer.error.ftp.exception_policy (object)
	stats.app_layer.error.failed_tcp (object)
	stats.app_layer.error.failed_tcp.exception_policy (object)
	stats.app_layer.error.enip_udp (object)
	stats.app_layer.error.enip_udp.exception_policy (object)
	stats.app_layer.error.enip_tcp (object)
	stats.app_layer.error.enip_tcp.exception_policy (object)
	stats.app_layer.error.doh2 (object)
	stats.app_layer.error.doh2.exception_policy (object)
	stats.app_layer.error.dns_udp (object)
	stats.app_layer.error.dns_udp.exception_policy (object)
	stats.app_layer.error.dns_tcp (object)
	stats.app_layer.error.dns_tcp.exception_policy (object)
	stats.app_layer.error.dnp3 (object)
	stats.app_layer.error.dnp3.exception_policy (object)
	stats.app_layer.error.dhcp (object)
	stats.app_layer.error.dhcp.exception_policy (object)
	stats.app_layer.error.dcerpc_udp (object)
	stats.app_layer.error.dcerpc_udp.exception_policy (object)
	stats.app_layer.error.dcerpc_tcp (object)
	stats.app_layer.error.dcerpc_tcp.exception_policy (object)
	stats.app_layer.error.bittorrent-dht (object)
	stats.app_layer.error.bittorrent-dht.exception_policy (object)
	ssh (object)
	ssh.server (object)
	ssh.server.hassh (object)
	ssh.client (object)
	ssh.client.hassh (object)
	snmp (object)
	smtp (object)
	smb (object)
	smb.set_info (object)
	smb.service (object)
	smb.response (object)
	smb.request (object)
	smb.rename (object)
	smb.ntlmssp (object)
	smb.kerberos (object)
	smb.dcerpc (object)
	smb.dcerpc.res (object)
	smb.dcerpc.req (object)
	smb.dcerpc.interfaces (array of objects)
	sip (object)
	sip.sdp (object)
	sip.sdp.time_descriptions (array of objects)
	sip.sdp.media_descriptions (array of objects)
	rpc (object)
	rpc.creds (object)
	rfb (object)
	rfb.server_protocol_version (object)
	rfb.framebuffer (object)
	rfb.framebuffer.pixel_format (object)
	rfb.client_protocol_version (object)
	rfb.authentication (object)
	rfb.authentication.vnc (object)
	rdp (object)
	rdp.client (object)
	quic (object)
	quic.ja3s (object)
	quic.ja3 (object)
	quic.extensions (array of objects)
	quic.cyu (array of objects)
	pop3 (object)
	pop3.response (object)
	pop3.request (object)
	pgsql (object)
	pgsql.response (object)
	pgsql.response.parameter_status (array of objects)
	pgsql.response.copy_out_response (object)
	pgsql.response.copy_in_response (object)
	pgsql.response.copy_data_out (object)
	pgsql.request (object)
	pgsql.request.startup_parameters (object)
	pgsql.request.startup_parameters.optional_parameters (array of objects)
	pgsql.request.copy_data_in (object)
	packet_info (object)
	nfs (object)
	nfs.write (object)
	nfs.rename (object)
	nfs.read (object)
	netflow (object)
	mqtt (object)
	mqtt.unsubscribe (object)
	mqtt.unsuback (object)
	mqtt.subscribe (object)
	mqtt.subscribe.topics (array of objects)
	mqtt.suback (object)
	mqtt.pubrel (object)
	mqtt.pubrec (object)
	mqtt.publish (object)
	mqtt.pubcomp (object)
	mqtt.puback (object)
	mqtt.pingresp (object)
	mqtt.pingreq (object)
	mqtt.disconnect (object)
	mqtt.connect (object)
	mqtt.connect.will (object)
	mqtt.connect.flags (object)
	mqtt.connack (object)
	modbus (object)
	modbus.response (object)
	modbus.response.write (object)
	modbus.response.read (object)
	modbus.response.exception (object)
	modbus.response.diagnostic (object)
	modbus.request (object)
	modbus.request.write (object)
	modbus.request.read (object)
	modbus.request.mei (object)
	modbus.request.diagnostic (object)
	metadata (object)
	metadata.pktvars (array of objects)
	metadata.flowvars (array of objects)
	mdns (object)
	mdns.queries (array of objects)
	mdns.authorities (array of objects)
	mdns.answers (array of objects)
	mdns.additionals (array of objects)
	ldap (object)
	ldap.responses (array of objects)
	ldap.responses.search_result_done (object)
	ldap.responses.modify_response (object)
	ldap.responses.mod_dn_response (object)
	ldap.responses.intermediate_response (object)
	ldap.responses.extended_response (object)
	ldap.responses.del_response (object)
	ldap.responses.compare_response (object)
	ldap.responses.bind_response (object)
	ldap.responses.add_response (object)
	ldap.request (object)
	ldap.request.search_request (object)
	ldap.request.modify_request (object)
	ldap.request.modify_request.changes (array of objects)
	ldap.request.modify_request.changes.modification (object)
	ldap.request.mod_dn_request (object)
	ldap.request.extended_request (object)
	ldap.request.del_request (object)
	ldap.request.compare_request (object)
	ldap.request.compare_request.attribute_value_assertion (object)
	ldap.request.bind_request (object)
	ldap.request.bind_request.sasl (object)
	ldap.request.add_request (object)
	ldap.request.add_request.attributes (array of objects)
	ldap.request.abandon_request (object)
	krb5 (object)
	ike (object)
	ike.ikev2 (object)
	ike.ikev1 (object)
	ike.ikev1.server (object)
	ike.ikev1.client (object)
	ike.ikev1.client.proposals (array of objects)
	http (object)
	http.response_headers (array of objects)
	http.request_headers (array of objects)
	http.http2 (object)
	http.http2.response (object)
	http.http2.response.settings (array of objects)
	http.http2.request (object)
	http.http2.request.settings (array of objects)
	http.content_range (object)
	ftp_data (object)
	ftp (object)
	frame (object)
	flow (object)
	flow.bypassed (object)
	files (array of objects)
	fileinfo (object)
	ether (object)
	enip (object)
	enip.response (object)
	enip.response.register_session (object)
	enip.response.list_services (object)
	enip.response.identity (object)
	enip.response.cip (object)
	enip.response.cip.multiple (array of objects)
	enip.request (object)
	enip.request.register_session (object)
	enip.request.cip (object)
	enip.request.cip.path (array of objects)
	enip.request.cip.multiple (array of objects)
	enip.request.cip.multiple.path (array of objects)
	engine (object)
	email (object)
	drop (object)
	drop.verdict (object)
	dns (object)
	dns.query (array of objects)
	dns.queries (array of objects)
	dns.grouped (object)
	dns.grouped.SSHFP (array of objects)
	dns.grouped.SRV (array of objects)
	dns.authorities (array of objects)
	dns.authorities.soa (object)
	dns.answers (array of objects)
	dns.answers.sshfp (object)
	dns.answers.srv (object)
	dns.answers.soa (object)
	dns.answer (object)
	dns.answer.authorities (array of objects)
	dns.answer.authorities.soa (object)
	dns.answer.additionals (array of objects)
	dns.answer.additionals.opt (array of objects)
	dns.additionals (array of objects)
	dns.additionals.opt (array of objects)
	dnp3 (object)
	dnp3.response (object)
	dnp3.response.iin (object)
	dnp3.response.control (object)
	dnp3.response.application (object)
	dnp3.response.application.objects (array of objects)
	dnp3.response.application.control (object)
	dnp3.request (object)
	dnp3.request.control (object)
	dnp3.request.application (object)
	dnp3.request.application.objects (array of objects)
	dnp3.request.application.control (object)
	dnp3.iin (object)
	dnp3.control (object)
	dnp3.application (object)
	dnp3.application.objects (array of objects)
	dnp3.application.control (object)
	dhcp (object)
	dcerpc (object)
	dcerpc.res (object)
	dcerpc.req (object)
	dcerpc.interfaces (array of objects)
	bittorrent_dht (object)
	bittorrent_dht.response (object)
	bittorrent_dht.response.nodes6 (array of objects)
	bittorrent_dht.request (object)
	bittorrent_dht.error (object)
	arp (object)
	anomaly (object)
	alert (object)
	alert.target (object)
	alert.source (object)
	alert.metadata (object)

	Bibliography
	Index

