Suricata User Guide
Release 8.0.0

OISF

Jul 08, 2025

CONTENTS

What is Suricata 3
1.1 About the Open Information Security Foundation 3
Quickstart guide 5
2.1 Installation oL e e e e e e e e e e e e e e e e 5
22 BasicSetup L e e e 5
2.3 SIgNAtUres oo i e e e e e e e e e e e e 6
24 Running Suricatao e e e e e e 6
2.5 ALRTting L e e e e e e e e e 7
2.6 EVEIJson e 7
Installation 9
3.1 SOUICE . v v v e e e e e e e e e e 9
3.2 Binary packages e e e e e e e e e e e e e e e 12
3.3 Advanced Installation L. e e e e e e e e 16
Upgrading 17
4.1 General inStruCtions it e e e e e e e e e e e e e e e e e e e 17
42 Upgrading 7.0t0 8.0 L e e e e e e e e 17
43 Upgrading 6.0t0 7.0 L L e e e e e e e e 21
44 Upgrading 5.0t0 6.0 L e e e 23
4.5 Upgrading 4.1t05.0 o o e e e e e e e e e 24
Security Considerations 25
5.1 RunningasaUser Other ThanRoot 25
52 ContainerSt i e e e e e e e e e e e e 27
Support Status 29
6.1 Levels of SUPPOTt. o o e e e e e e e 29
6.2 Distributions e e 30
6.3 Architecture SUPPOIt L L e e e e e e 31
Command Line Options 33
T UnitTests . . . oo v o e e e e e e e e e e e e e e 37
Suricata Rules 39
8.1 RulesFormat e e e 39
82 MetaKeywords L e e e e e e 46
83 IPKeywords e e 50
84 TCPkeywords e 55
85 UDPkeywords e e e e 59

8.6 ICMPKkeywords i i i i i e e e e e e e e e e e e 59
8.7 Payload Keywords e e e e e e 63
8.8 Integer Keywords L e e e e 86
8.9 Transformations L e e e e e e e e e e 88
8.10 Prefiltering Keywords e 94
8.11 Flow Keywords o o e e 97
8.12 Bypass Keyword e e e e e e e 104
8.13 HTTP Keywords o o o i e e e e e e e e e e e e e e e e 105
8.14 File Keywords o o o e e e e e e e 124
8.15 DNS Keywords e 129
8.16 mMDNS Keywords e e e 133
8.17 SSL/TLS Keywords o o it e e e e e e e e e e e e e e e e e e 134
.18 SSH Keywords o o e e e e e e e e e e e 140
8.19 JA3/MJAAKeywords o o i e e e e e e e e 143
8.20 Modbus Keyword L e e e e e 144
821 DCERPC Keywords o i e e e e e e e e e 147
822 DHCPkeywords o i i e e e e e e e e 148
8.23 DNP3 Keywords v i v i i e e e e e e e e e e e e e 149
8.24 ENIP/CIP Keywords o i i e e e e e e e e e e e 152
8.25 FTP/FTP-DATA Keywords e e e e e e e e 157
8.26 Kerberos Keywords L 161
827 SMB Keywords e e e e e 163
828 SNMP Keywords o v i e e e e e e e e e e e e e e e e 166
8.29 Base6d keywords e e e e e e e e e e e e e e 168
8.30 SIP Keywords e e e e e e e 169
831 SDPKeywords e 175
832 RFB Keywords e e e 182
833 MQTT Keywords o vt e e e e e e e e e e e e e e e e 183
834 TKE Keywords i i i i e e e e e e e e e e e e e 188
835 HTTP2 Keywords i e e e e e e e 191
836 QuicKeywords 193
837 NESKeywords e 194
838 SMTP Keywords e e e e e 194
8.39 WebSocket Keywords e e e e e e e e 196
8.40 Generic App Layer Keywords e e e e 197
8.41 Generic Decode Layer Keywords 199
8.42 Xbits Keyword e 200
843 Alert Keywords L. e e 202
8.44 Thresholding Keywords e e e e e e e 203
8.45 TP Reputation Keyword o L e e e e e e e 205
8.46 IP Addresses Match L 207
8.47 ConfigRules L e 207
848 Datasets e e e e e e e e e e 208
8.49 Lua Scripting for Detection e e e e e e e e e e 217
8.50 Differences From Snort 220
8.51 Multiple Buffer Matching e 230
852 Tag . . . o e e 232
853 VLANKeywords e e e 234
854 LDAPKeywords o . e e e e e e 236
8.55 PGSQL Keywords o o i i e e e e e e e e e e e e e 245
8.56 Rule Types and Categorization o i i i e e e e e e e 245
8.57 Email Keywords e e e e e 268
9 Rule Management 273

9.1 Rule Management with Suricata-Update e 273

9.2 Adding Your Own Rules e e e e 275
9.3 RuleReloads e 276
9.4 RulesProfiling e e e 277
10 Making sense out of Alerts 279
11 Performance 281
I11.1 Runmodes e e e 281
11.2 Packet Capture o it e e e e e e e e e e e e e e e 286
11.3 Tuning Considerations o i i e e e 288
11.4 Hyperscan e e e 290
11.5 High Performance Configuration e 291
11.6 Statistics o o e e e e e 297
11.7 TIgnoring Traffic 0 e e e e e 300
11.8 Packet Profiling e 302
11.9 RuleProfiling L e 303
1110 Temalloc o o o e e e e e e 304
11.11 Performance Analysis i i e e e e 304
12 Configuration 309
12.1 Suricata.yamlo e 309
12.2 Global-Thresholds e 372
12.3 Exception Policies e e e e e 375
12.4 Snort.conf to Suricata.yaml oL e 380
125 MultiTenancy o ot e e e 385
12.6 Dropping Privileges After Startup e 389
12.7 Using Landlock LSM L L 389
12.8 systemd notification L. L e e e e e e e e e 390
129 Includes. o L e e e e e 391
13 Reputation 393
13.1 IPReputation o o e e e e e 393
14 Init Scripts 397
15 Setting up IPS/inline for Linux 399
15.1 Setting up IPS with Netfilter e 399
152 SettingupIPSatLayer2 e 403
16 Setting up IPS/inline for Windows 409
17 Output 411
17.1 EVE . e e e e 411
172 LuaOutput e e e 494
17.3 Syslog Alerting Compatibility e 496
17.4 Custom http logging o e e e e e e e e e e 497
17.5 Customtlslogging o o e e e e e e 498
17.6 LogRotation e e e e e e e e e 499
18 Lua support 501
18.1 Luausagein Suricata. L . o i e e e e e e 501
182 Luafunctions o i e e e e e e e e e e 501
183 Lualibraries L e e e e e e e e 503

19

20

21

22

23

24

25

26

27

28

29

File Extraction

19.1 Architecture o o e e e e e e e e e e e e e e
19.2 Settings o o v i e e e e e e e e e e e e e
193 0Output L e e
194 Rules o . e e e e e e e e e e
19.5 MDS . o o e e e e e
19.6 Updating Filestore Configuration i ittt e e

Public Data Sets

Using Capture Hardware

21.1 Endace DAG e e e
21.2 Napatech L e
213 MYTIiCOM . . o o o e
214 eBPFand XDP e
215 Netmap o o o e e e e e e e e e e e e e e e
21.6 AF_XDP e
21.7 DPDK . . o
21.8 PCAPFileReading L e

Interacting via Unix Socket

22.1 Introduction L L e e e e e e e e e e e
22.2 Commands in standard running mode e e e e
22.3 Commandsonthecmd prompt. o o v it e e e e e e e e e e e e
224 PCAPprocessingmode e e e
225 Buildyourownclient oL

Plugins
23.1 nDPIL . . .

Firewall Mode
24.1 Firewall Mode Design 0 e e e e e e
242 Firewall Ruleset Examples L e

3rd Party Integration
25.1 Symantec SSL Visibility (BlueCoat) e e

Man Pages

26.1 Suricata e e e e e e e e e e e
26.2 Suricata Socket Control L e e
26.3 Suricata Control L e e e e e e e e
26.4 Suricata Control Filestore e

Acknowledgements

Licenses

28.1 GNU General Public License e e
28.2 Creative Commons Attribution-NonCommercial 4.0 International Public License
28.3 Suricata Source Code e e e e e e e
28.4 Suricata Documentation L e e e e e e e e e e e e e

Suricata Developer Guide

29.1 Working with the Codebase L
29.2 Contributing e e e e e e e e e e e
29.3 Suricatalnternals e e
29.4 Extending Suricata L e e e e e e e e e e

543
543
543
544
545
545
548

549

551
551
552
560
562
573
576
581
585

587
587
587
589
589
590

593
593

595
595
599

603
603

605
605
611
613
614

617

621
621
625
629
629

665

29.5 LibSuricataand Plugins e e e e e e e e e 690

20.6 Upgrading o o e e e e e e e e e e 691
30 Verifying Suricata Source Distribution Files 693
30.1 Verification Steps o . e e e e e e e e e e e e 693
31 Appendix 695
31.1 EVEIJSON Schema s e 695
31.2 EVEIndex 696
Bibliography 795
Index 797

vi

Suricata User Guide, Release 8.0.0

This is the documentation for Suricata 8.0.0.

CONTENTS 1

Suricata User Guide, Release 8.0.0

2 CONTENTS

CHAPTER
ONE

WHAT IS SURICATA

Suricata is a high performance Network IDS, IPS and Network Security Monitoring engine. It is open source and owned
by a community-run non-profit foundation, the Open Information Security Foundation (OISF). Suricata is developed
by the OISF.

1.1 About the Open Information Security Foundation

The Open Information Security Foundation is a non-profit foundation organized to build community and to support
open-source security technologies like Suricata, the world-class IDS/IPS engine.

1.1.1 License

The Suricata source code is licensed under version 2 of the GNU General Public License.

This documentation is licensed under the Creative Commons Attribution-NonCommercial 4.0 International Public
License.

https://oisf.net

Suricata User Guide, Release 8.0.0

4 Chapter 1. What is Suricata

CHAPTER
TWO

QUICKSTART GUIDE

This guide will give you a quick start to run Suricata and will focus only on the basics. For more details, read through
the more specific chapters.

2.1 Installation

It's assumed that you run a recent Ubuntu release as the official PPA can then be used for the installation. To install the
latest stable Suricata version, follow the steps:

sudo apt-get install software-properties-common
sudo add-apt-repository ppa:oisf/suricata-stable
sudo apt update

sudo apt install suricata jq

The dedicated PPA repository is added, and after updating the index, Suricata can be installed. We recommend installing
the jq tool at this time as it will help with displaying information from Suricata's EVE JSON output (described later
in this guide).

For the installation on other systems or to use specific compile options see Installation.

After installing Suricata, you can check which version of Suricata you have running and with what options, as well as
the service state:

sudo suricata --build-info
sudo systemctl status suricata

2.2 Basic setup

First, determine the interface(s) and IP address(es) on which Suricata should be inspecting network packets:

$ ip addr

2: enpls®: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 gdisc fq_codel state UP group..
—.default glen 1000

link/ether 00:11:22:33:44:55 brd ff:ff:ff:ff:ff:ff

inet 10.0.0.23/24 brd 10.23.0.255 scope global noprefixroute enpls®

Use that information to configure Suricata:

Suricata User Guide, Release 8.0.0

sudo vim /etc/suricata/suricata.yaml

There are many possible configuration options, we focus on the setup of the HOME_NET variable and the network inter-
face configuration. The HOME_NET variable should include, in most scenarios, the IP address of the monitored interface
and all the local networks in use. The default already includes the RFC 1918 networks. In this example 10.0.0.23 is
already included within 10.0.0.0/8. If no other networks are used the other predefined values can be removed.

In this example the interface name is enp1s® so the interface name in the af-packet section needs to match. An
example interface config might look like this:

Capture settings:

af-packet:

- interface: enpls®
cluster-id: 99
cluster-type: cluster_flow
defrag: yes
tpacket-v3: yes

This configuration uses the most recent recommended settings for the IDS runmode for basic setups. There are many
of possible configuration options which are described in dedicated chapters and are especially relevant for high perfor-
mance setups.

2.3 Signatures

Suricata uses Signatures to trigger alerts so it's necessary to install those and keep them updated. Signatures are also
called rules, thus the name rule-files. With the tool suricata-update rules can be fetched, updated and managed to
be provided for Suricata.

In this guide we just run the default mode which fetches the ET Open ruleset:

sudo suricata-update

Afterwards the rules are installed at /var/lib/suricata/rules which is also the default at the config and uses the
sole suricata.rules file.

2.4 Running Suricata

With the rules installed, Suricata can run properly and thus we restart it:

sudo systemctl restart suricata

To make sure Suricata is running check the Suricata log:

sudo tail /var/log/suricata/suricata.log

The last line will be similar to this:

<Notice> - all 4 packet processing threads, 4 management threads initialized, engine.
—started.

6 Chapter 2. Quickstart guide

Suricata User Guide, Release 8.0.0

The actual thread count will depend on the system and the configuration.

To see statistics, check the stats.log file:

sudo tail -f /var/log/suricata/stats.log

By default, it is updated every 8 seconds to show updated values with the current state, like how many packets have
been processed and what type of traffic was decoded.

2.5 Alerting

To test the IDS functionality of Suricata it's best to test with a signature. The signature with ID 2100498 from the ET
Open ruleset is written specific for such test cases.

2100498:

alert ip any any -> any any (msg:"GPL ATTACK_RESPONSE id check returned root"; content:
~"uid=0|28|root|29|"; classtype:bad-unknown; sid:2100498; rev:7; metadata:created_at.
—2010_09_23, updated_at 2010_09_23;)

The syntax and logic behind those signatures is covered in other chapters. This will alert on any IP traffic that has the
content within its payload. This rule can be triggered quite easy. Before we trigger it, start tail to see updates to
fast.log.

Rule trigger:

sudo tail -f /var/log/suricata/fast.log
curl http://testmynids.org/uid/index.html

The following output should now be seen in the log:

[1:2100498:7] GPL ATTACK_RESPONSE id check returned root [**] [Classification:..
—Potentially Bad Traffic] [Priority: 2] {TCP} 217.160.0.187:80 -> 10.0.0.23:41618

This should include the timestamp and the IP of your system.

2.6 EVE Json

The more advanced output is the EVE JSON output which is explained in detail in Eve JSON Output. To see what this
looks like it's recommended to use jq to parse the JSON output.

Alerts:

sudo tail -f /var/log/suricata/eve.json | jq 'select(.event_type=="alert")'

This will display more detail about each alert, including meta-data.

Stats:

sudo tail -f /var/log/suricata/eve.json | jq 'select(.event_type=="stats")|.stats.
—capture.kernel_packets'
sudo tail -f /var/log/suricata/eve.json | jq 'select(.event_type=="stats")'

The first example displays the number of packets captured by the kernel; the second examples shows all of the statistics.

2.5. Alerting 7

Suricata User Guide, Release 8.0.0

8 Chapter 2. Quickstart guide

CHAPTER
THREE

INSTALLATION

Before Suricata can be used it has to be installed. Suricata can be installed on various distributions using binary
packages: Binary packages.

For people familiar with compiling their own software, the Source method is recommended.

Advanced users can check the advanced guides, see Advanced Installation.

3.1 Source

Installing from the source distribution files gives the most control over the Suricata installation.

The Suricata source distribution files should be verified before building the source, see Verifying Suricata Source
Distribution Files.

Basic steps:

tar xzvf suricata-7.0.0.tar.gz
cd suricata-7.0.0

./configure

make

make install

This will install Suricata into /usr/local/bin/, use the default configuration in /usr/local/etc/suricata/ and
will output to /usr/local/var/log/suricata

3.1.1 Common configure options

--disable-gccmarch-native
Do not optimize the binary for the hardware it is built on. Add this flag if the binary is meant to be portable or
if Suricata is to be used in a VM.
--prefix=/usr/
Installs the Suricata binary into /usr/bin/. Default /usr/local/
--sysconfdir=/etc
Installs the Suricata configuration files into /etc/suricata/. Default /usr/local/etc/
--localstatedir=/var

Setups Suricata for logging into /var/log/suricata/. Default /usr/local/var/log/suricata

Suricata User Guide, Release 8.0.0

--enable-lua

Enables Lua support for detection and output.

--enable-geoip
Enables GeolP support for detection.

--enable-dpdk
Enables DPDK packet capture method.

3.1.2 Dependencies and compilation

Ubuntu/Debian

Note: The following instructions require sudo to be installed.

Listing 1: Minimal dependencies for Ubuntu/Debian

sudo apt -y install autoconf automake build-essential cargo \
cbindgen libjansson-dev libpcap-dev libpcre2-dev libtool \
libyaml-dev make pkg-config rustc zliblg-dev

CentOS, AlmaLinux, RockyLinux, Fedora, etc

Note: The following instructions require sudo to be installed.

To install all minimal dependencies, it is required to enable extra package repository in most distros. You can enable it
possibly by one of the following ways:

sudo dnf -y update

sudo dnf -y install epel-release dnf-plugins-core

Almalinux 8 / RockyLinux 8

sudo dnf config-manager --set-enabled powertools

AlmaLinux 9 / RockyLinux 9

sudo dnf config-manager --set-enable crb

Oracle Linux 8

sudo dnf config-manager --set-enable 0l8_codeready_builder
Oracle Linux 9

sudo dnf config-manager --set-enable 0l9_codeready_builder

10 Chapter 3. Installation

https://www.dpdk.org/

Suricata User Guide, Release 8.0.0

Listing 2: Minimal dependencies for RPM-based distributions

sudo dnf install -y rustc cargo cbindgen
sudo dnf install -y gcc gcc-c++ jansson-devel libpcap-devel \
libyaml-devel make pcre2-devel zlib-devel

Windows

For building and installing from source on Windows, see install/windows.

Compilation

Follow these steps from your Suricata directory:

./configure # you may want to add additional parameters here

./configure --help to get all available parameters

j is for adding concurrency to make; the number indicates how much

concurrency so choose a number that is suitable for your build system
make -3j8

make install # to install your Suricata compiled binary

make install-full - installs configuration and rulesets as well

Rust support

Rust packages can be found in package managers but some distributions don't provide Rust or provide
outdated Rust packages. In case of insufficient version you can install Rust directly from the Rust project
itself:

1) Install Rust https://www.rust-lang.org/en-US/install.html

2) Install cbindgen - if the cbindgen is not found in the repository
or the cbindgen version is lower than required, it can be
alternatively installed as: cargo install --force cbindgen

3) Make sure the cargo path is within your PATH environment
echo 'export PATH="~/.cargo/bin:$ "' >> ~/.bashrc
export PATH="~/.cargo/bin:$ "

3.1.3 Auto-Setup

You can also use the available auto-setup features of Suricata:

./configure && make && sudo make install-conf

make install-conf would do the regular "make install" and then it would automatically create/setup all the necessary
directories and suricata.yaml for you.

./configure && make && sudo make install-rules

make install-rules would do the regular "make install" and then it would automatically download and set up the latest
ruleset from Emerging Threats available for Suricata.

3.1. Source 11

Suricata User Guide, Release 8.0.0

./configure && make && sudo make install-full

make install-full would combine everything mentioned above (install-conf and install-rules) and will present you with
a ready-to-run (configured and set-up) Suricata.

3.2 Binary packages

3.2.1 Ubuntu Package Installation

For Ubuntu, the OISF maintains a Personal Package Archive (PPA) suricata-stable that always contains the latest
stable release.

Note: The following instructions require sudo to be installed.

Setup to install the latest stable Suricata:

sudo apt-get install software-properties-common
sudo add-apt-repository ppa:oisf/suricata-stable
sudo apt-get update

Then, you can install the latest stable with:

sudo apt-get install suricata

After installing you can proceed to the Basic setup.

OISF launchpad: suricata-stable.

Upgrading

To upgrade:

sudo apt-get update
sudo apt-get upgrade suricata

Remove

To remove Suricata from your system:

sudo apt-get remove suricata

12 Chapter 3. Installation

https://launchpad.net/~oisf/+archive/suricata-stable

Suricata User Guide, Release 8.0.0

Getting Debug or Pre-release Versions

Note: The following instructions require sudo to be installed.

If you want Suricata with built-in (enabled) debugging, you can install the debug package:

sudo apt-get install suricata-dbg

If you would like to help test the Release Candidate (RC) packages, the same procedures apply, just using another PPA:
suricata-beta:

sudo add-apt-repository ppa:oisf/suricata-beta
sudo apt-get update
sudo apt-get upgrade

You can use both the suricata-stable and suricata-beta repositories together. Suricata will then always be the latest
release, stable or beta.

OISF launchpad: suricata-beta.

Daily Releases

Note: The following instructions require sudo to be installed.

If you would like to help test the daily build packages from our latest git(dev) repository, the same procedures as above
apply, just using another PPA, suricata-daily:

sudo add-apt-repository ppa:oisf/suricata-daily-allarch
sudo apt-get update
sudo apt-get upgrade

Note: Please have in mind that this is packaged from our latest development git master and is therefore potentially
unstable.

We do our best to make others aware of continuing development and items within the engine that are not yet complete
or optimal. With this in mind, please refer to Suricata's issue tracker on Redmine for an up-to-date list of what we are
working on, planned roadmap, and to report issues.

OISF launchpad: suricata-daily.

3.2. Binary packages 13

https://launchpad.net/~oisf/+archive/suricata-beta
http://redmine.openinfosecfoundation.org/projects/suricata/issues
https://launchpad.net/~oisf/+archive/suricata-daily

Suricata User Guide, Release 8.0.0

After Installation

After installing you can proceed to the Basic setup.

3.2.2 Debian Package Installation

Suricata is available in the official Debian repositories for Debian 9 (stretch) and later versions.

Note: The following instructions require sudo to be installed.

In Debian 9 (stretch) and later do:

sudo apt-get install suricata

In the "stable" version of Debian, Suricata is usually not available in the latest version. A more recent version is often
available from Debian backports, if it can be built there.

To use backports, the backports repository for the current stable distribution needs to be added to the system-wide
sources list. For Debian 10 (buster), for instance, run the following as root:

echo "deb http://http.debian.net/debian buster-backports main" > \
/etc/apt/sources.list.d/backports.list

apt-get update

apt-get install suricata -t buster-backports

After Installation

After installing you can proceed to the Basic setup.

3.2.3 RPM Installation

Using the Fedora COPR system, the OISF provides Suricata packages for Fedora, Red Hat Enterprise Linux, and
Enterprise Linux rebuilds.

The benefit of using the OISF maintained COPR package repositories is that the OISF maintains packages for all
non-EOL Suricata versions for each distribution version. For example, the OISF maintains Suricata 7 and Suricata 8
packages for RHEL 9 and 10.

Installing From Package Repositories

Note: Instructions in the following sections require sudo to be installed.

14 Chapter 3. Installation

Suricata User Guide, Release 8.0.0

Enterprise Linux and Rebuilds

sudo dnf install epel-release dnf-plugins-core
sudo dnf copr enable @oisf/suricata-8.0
sudo dnf install suricata

Fedora

sudo dnf install dnf-plugins-core
sudo dnf copr enable @oisf/suricata-8.0
sudo dnf install suricata

Additional Notes for RPM Installations

e Suricata is pre-configured to run as the suricata user.

e Command line parameters such as providing the interface names can be configured in /etc/sysconfig/
suricata.

» Users can run suricata-update without being root provided they are added to the suricata group.
* Directories:

— /etc/suricata: Configuration directory

— /var/log/suricata: Log directory

— /var/lib/suricata: State directory rules, datasets.

Starting Suricata On-Boot

The Suricata RPMs are configured to run from Systemd.

Note: The following instructions require sudo to be installed.

To start Suricata:

sudo systemctl start suricata

To stop Suricata:

sudo systemctl stop suricata

To have Suricata start on-boot:

sudo systemctl enable suricata

To reload rules:

sudo systemctl reload suricata

3.2. Binary packages 15

Suricata User Guide, Release 8.0.0

After Installation

After installing you can proceed to the Basic setup.

3.2.4 Other Package Installations

Suricata can be found in the package managers for many other operating systems and distributions, but it is important
to note that these are not created or supported by the OISF and the Suricata development team.

Arch Based

The ArchLinux AUR contains Suricata and suricata-nfqueue packages, with commonly used configurations for compi-
lation (may also be edited to your liking). You may use makepkg, yay (sample below), or other AUR helpers to compile
and build Suricata packages.

yay -S suricata

After Installation

After installing you can proceed to the Basic setup.

Suricata is available on various distributions as binary packages. These offer a convenient way to install and manage
Suricata without compiling from source.

For Ubuntu systems:
See Ubuntu Package Installation for detailed instructions on installing from PPA repositories.
For Debian systems:

See Debian Package Installation for detailed instructions on installing from official repositories and back-
ports.

For RPM-based distributions (CentOS, AlmaLinux, RockyLinux, Fedora, etc):
See RPM Installation for detailed instructions on installing from COPR repositories.
For other distributions:

See Other Package Installations for installation instructions for Arch Linux and other distributions.

3.3 Advanced Installation

If you are using Ubuntu, you can follow Installation from GIT .

For other various installation guides for installing from GIT and for other operating systems, please check (bear in mind
that those may be somewhat outdated): https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_
Installation

16 Chapter 3. Installation

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Suricata_Installation

CHAPTER
FOUR

UPGRADING

4.1 General instructions

Suricata can be upgraded by simply installing the new version to the same locations as the already installed ver-
sion. When installing from source, this means passing the same --prefix, --sysconfdir, --localstatedir and
--datadir options to configure.

$ suricata --build-info|grep -A 3 '\-\-prefix'

--prefix /usr
--sysconfdir /etc
--localstatedir /var
--datarootdir /usr/share

4.1.1 Configuration Updates

New versions of Suricata will occasionally include updated config files: classification.config and reference.
config. Since the Suricata installation will not overwrite these if they exist, they must be manually updated. If there
are no local modifications they can simply be overwritten by the ones Suricata supplies.

Major updates include new features, new default settings and often also remove features. This upgrade guide covers
the changes that might have an impact of migrating from an older version and keeping the config. We encourage you
to also check all the new features that have been added but are not covered by this guide. Those features are either not
enabled by default or require dedicated new configuration.

4.2 Upgrading 7.0 to 8.0

Note: stats.whitelist has been renamed to stats.score in eve. json

17

Suricata User Guide, Release 8.0.0

4.2.1 Major changes

SIP parser has been updated to inspect traffic carried by TCP as well. SIP keywords can still match on their
respective fields in addition to these improvements. Transactions are logged with the same schema regardless of
which transport protocol is carrying the payload. Also, SIP protocol is detected using pattern matching and not
only probing parser.

SIP_PORTS variable has been introduced in suricata.yaml
Application layer's sip counter has been split into sip_tcp and sip_udp for the stats event.

Stats counters that are O can now be hidden from EVE logs. Default behavior still logs those (see EVE Output -
Stats for configuration setting).

SDP parser, logger and sticky buffers have been introduced. Due to SDP being encapsulated within other proto-
cols, such as SIP, they cannot be directly enabled or disabled. Instead, both the SDP parser and logger depend
on being invoked by another parser (or logger).

ARP decoder and logger have been introduced. Since ARP can be quite verbose and produce many events, the
logger is disabled by default.

It is possible to see an increase of alerts, for the same rule-sets, if you use many stream/payload rules, due to
Suricata triggering TCP stream reassembly earlier.

New transform from_base64 that base64 decodes a buffer and passes the decoded buffer. It's recommended
that from_base64 be used instead of base64_decode

Datasets of type String now include the length of the strings to determine if the memcap value is reached. This
may lead to memcaps being hit for older setups that didn't take that into account. For more details, check https:
/Iredmine.openinfosecfoundation.org/issues/3910

DNS logging has been modified to be more consistent across requests, responses and alerts. See DNS Logging
Changes for 8.0.

PF_RING support has been moved to a plugin. See PF_RING plugin.

LDAP parser and logger have been introduced.

The following sticky buffers for matching SIP headers have been implemented:
— sip.via

— sip.from

sip.to

sip.content_type

sip.content_length
Napatech support has been moved to a capture plugin. See Napatech plugin.

Unknown requirements in the requires keyword will now be treated as unmet requirements, causing the rule
to not be loaded. See requires.

The configuration setting controlling stream checksum checks no longer affects checksum keyword validation. In
Suricata 7.0, when stream.checksum-validation was set to no, the checksum keywords (e.g., ipv4-csum,
tcpv4-csum, etc) will always consider it valid; e.g., tcpv4-csum: invalid will never match. In Suricata 8.0,
stream.checksum-validation no longer affects the checksum rule keywords. E.g., ipv4-csum: valid
will only match if the check sum is valid, even when engine checksum validations are disabled.

Lua detection scripts (rules) now run in a sandboxed environment. See Lua Scripting for Detection.

Lua output scripts have no default module search path, a search path will need to be set before external modules
can be loaded. See the new default configuration file or YAML for more details.

18

Chapter 4. Upgrading

https://redmine.openinfosecfoundation.org/issues/3910
https://redmine.openinfosecfoundation.org/issues/3910

Suricata User Guide, Release 8.0.0

If the configuration value ftp.memcap is invalid, Suricata will set it to ® which means no limit will be placed.
In previous Suricata releases, Suricata would terminate execution. A warning message will be displayed Invalid
value <value> for ftp.memcap when this occurs.

The utility applications suricatasc and suricatactl have been rewritten in Rust. For most end-users this is
a transparent change, however if you run these tools from the source directory, patch them or use them as Python
modules your workflows may need to be adapted.

Datasets now have a default max limit for hashsize of 65536. This is configurable via the datasets.limits
options.

For detect inspection recursion limits, if no value is provided, the default is now set to 3000.
AF_PACKET now has better defaults:

— AF_PACKET will now default to defrag off for inline mode with cluster_£flow as its not recommended
for inline use. However it can still be enabled with the defrag configuration parameter.

— AF_PACKET will now default to tpacket-v3 for non-inline modes, it remains disabled for inline modes.
To keep tpacket-v2 for non-inline modes, the existing tpacket-v3 configuration parameter can be set to
false.

— The AF_PACKET default block size for both TPACKET_V2 and TPACKET_V3 has been increased
from 32k to 128k. This is to allow for full size defragmented packets. For TPACKET_V3 the exist-
ing block-size parameter can be used to change this back to the old default of 32768 if needed. For
TPACKET_V2 a new configuration parameter has been added, v2-block-size which can be used to tune
this value for TPACKET_V2. Due to the increased block size, memory usage has been increased, but
should not be an issue in most cases.

DPDK interface settings can now be configured automatically by setting auto to mempool-size,
mempool-cache-size, rx-descriptors, tx-descriptors. See Automatic interface configuration.

DPDK interface mempools are now allocated per thread instead of per port. This change improves performance
and should not be visible from the user configuration perspective.

DPDK supports link state check, allowing Suricata to start only when the link is up. This is especially useful
for Intel E810 (ice) NICs as they need a few seconds before they are ready to receive packets. With this check
disabled, Suricata reports as started but only begins processing packets after the previously mentioned interval.
Other cards were not observed to have this issue. This feature is disabled by default. See Link State Change
timeout.

Encrypted traffic bypass has been decoupled from stream.bypass setting. This means that encrypted traffic can
be bypassed while tracking/fully inspecting other traffic as well.

Encrypted SSH traffic bypass is now independently controlled through app-layer.protocols.ssh.
encryption-handling setting. The setting can either be bypass, track-only or full. To retain the previ-
ous behavior of encrypted traffic bypass combined with stream depth bypass, set app-layer.protocols.ssh.
encryption-handling to bypass (while also setting app-layer.protocols.tls.encryption-handling
to bypass and stream.bypass to true).

Spaces are accepted in HTTP1 URIs instead of in the protocol version. That is: GET /a b HTTP/1.1 gets now
URI as /a b and protocol as HTTP/1.1 when it used to be URI as /a and protocol as b HTTP/I.1

The configuration structure of threading.cpu-affinity has been changed from a list format to a dictionary
format. Additionally, member properties of *-cpu-set nodes have been moved one level up. The support for list
items such as - worker-cpu-set, - management-cpu-set, etc. is still supported. To convert to the new configuration
format follow the example below or the description in Threading.

threading:
cpu-affinity:

(continues on next page)

4.2,

Upgrading 7.0 to 8.0 19

Suricata User Guide, Release 8.0.0

(continued from previous page)

- - worker-cpu-set:

- cpu: [0, 1]
+ worker-cpu-set:
+ cpu: [0, 1]

* All applayer protocols except FTP and HTTP now trigger inspection upon completion of a request/response in
the respective direction. This means that earlier a content that matched just because it fell in the inspection chunk
without wholly belonging to any one request/response may not match any longer.

4.2.2 Removals

* The ssh keywords ssh.protoversion and ssh.softwareversion have been removed.

4.2.3 Deprecations

* The http-1log output is now deprecated and will be removed in Suricata 9.0.
* The tls-1log output is now deprecated and will be removed in Suricata 9.0.

* The syslog output is now deprecated and will be removed in Suricata 9.0. Note that this is the standalone
syslog output and does affect the eve outputs ability to send to syslog.

* The default option in app-layer.protocols.tls.encryption-handling is now deprecated and will be
removed in Suricata 9.0. The track-only option should be used instead.

4.2.4 Keyword changes

* ja3.hashand ja3s.hash no longer accept contents with non hexadecimal characters, as they will never match.

4.2.5 Logging changes

* RFB security result is now consistently logged as security_result when it was sometimes logged with a dash
instead of an underscore.

 Application layer metadata is logged with alerts by default only for rules that use application layer keywords.
For other rules, the configuration parameter detect . guess-applayer-tx can be used to force the detect engine
to guess a transaction, which is not guaranteed to be the one you expect. In this case, the engine will NOT
log any transaction metadata if there is more than one live transaction, to reduce the chances of logging
unrelated data. This may lead to what looks like a regression in behavior, but it is a considered choice.

4.2.6 Other Changes

* libhtp has been replaced with a rust version. This means libhtp is no longer built and linked as a shared library,
and the libhtp dependency is now built directly into suricata.

20 Chapter 4. Upgrading

Suricata User Guide, Release 8.0.0

4.3 Upgrading 6.0 to 7.0

4.3.1 Major changes

Upgrade of PCRE1 to PCRE2. See Changes from PCREI to PCRE? for more details.

IPS users: by default various new "exception policies" are set to DROP traffic. Please see Exception Policies for
details on the settings and their scope. For trouble shooting, please check My traffic gets blocked after upgrading
to Suricata 7.

New protocols enabled by default: bittorrent-dht, quic, http2.

The telnet protocol is also enabled by default, but only for the app-1layer.

4.3.2 Security changes

suricata.yaml now prevents process creation by Suricata by default with security.limit-noproc. The suricata.yaml
configuration file needs to be updated to enable this feature. For more info, see Configuration hardening.

Absolute filenames and filenames containing parent directory traversal are no longer allowed by default for
datasets when the filename is specified as part of a rule. See Datasets Security and Datasets File Locations
for more information.

Lua rules are now disabled by default (change also introduced in 6.0.13), see Lua Scripting for Detection.

4.3.3 Removals

The libprelude output plugin has been removed.

EVE DNS vl logging support has been removed. If still using EVE DNS v1 logging, see the manual section on
DNS logging configuration for the current configuration options: DNS EVE Configuration

4.3.4 Logging changes

IKEv2 Eve logging changed, the event_type has become ike which covers both protocol versions. The fields
errors and notify have moved to ike.ikev2.errors and ike.ikev2.notify.

FTP DATA metadata for alerts are now logged in ftp_data instead of root.
Alert x£ff field is now logged as alert.xff for alerts instead of at the root.

Protocol values and their names are built into Suricata instead of using the system's /etc/protocols file. Some
names and casing may have changed in the values proto in eve. json log entries and other logs containing
protocol names and values. See https://redmine.openinfosecfoundation.org/issues/4267 for more information.

Logging of additional HTTP headers configured through the EVE http.custom option will now be logged in
the request_headers and/or response_headers respectively instead of merged into the existing http object.
In Suricata 6.0, a configuration like:

http:
custom: [Server]

would result in a log entry like:

4.3.

Upgrading 6.0 to 7.0 21

https://forum.suricata.io/t/my-traffic-gets-blocked-after-upgrading-to-suricata-7
https://forum.suricata.io/t/my-traffic-gets-blocked-after-upgrading-to-suricata-7
https://redmine.openinfosecfoundation.org/issues/4267

Suricata User Guide, Release 8.0.0

"http": {
"hostname": "suricata.io",
"http_method": "GET",
"protocol": "HTTP/1/1",
"server": "nginx",

This merging of custom headers in the http object could result in custom headers overwriting standard fields in
the http object, or a response header overwriting request header.

To prevent the possibility of fields being overwritten, all custom headers are now logged into the
request_headers and response_headers arrays to avoid any chance of collision. This also facilitates the
logging of headers that may appear multiple times, with each occurrence being logged in future releases (see
note below).

While these arrays are not new in Suricata 7.0, they had previously been used exclusively for the
dump-all-headers option.

As of Suricata 7.0, the above configuration example will now be logged like:

"http": {
"hostname": "suricata.io",
"http_method": "GET",
"protocol™: "HTTP/1/1",
"response_headers": [

{ "name": "Server", "value": "nginx" }

]

}

Effectively making the custom option a subset of the dump-all-headers option.

If you've been using the custom option, this may represent a breaking change. However, if you haven't used it,
there will be no change in the output.

Note: Currently, if the same HTTP header is seen multiple times, the values are concatenated into a comma-
separated value.

For more information, refer to: https://redmine.openinfosecfoundation.org/issues/1275.

* Engine logging/output now uses separate defaults for console and file, to provide a cleaner output on the
console.

Defaults are:
— console: %D: %S: %M
— file: [%i - %m] %z %d: %S: %M

The console output also changes based on verbosity level.

22 Chapter 4. Upgrading

https://redmine.openinfosecfoundation.org/issues/1275

Suricata User Guide, Release 8.0.0

4.3.5 Deprecations

* Multiple "include" fields in the configuration file will now issue a warning and in Suricata 8.0 will not be sup-

ported. See Includes for documentation on including multiple files.

e For AF-Packet, the cluster_rollover setting is no longer supported. Configuration settings using

cluster_rollover will cause a warning message and act as though cluster_flow * was specified. Please update
your configuration settings.

4.3.6 Other changes

4.4

Experimental keyword http2.header is removed. http.header, hitp.request_header, and http.response_header
are to be used.

NSS is no longer required. File hashing and JA3 can now be used without the NSS compile time dependency.

If installing Suricata without the bundled Suricata-Update, the default-rule-path has been changed from
/etc/suricata/rules to /var/lib/suricata/rules to be consistent with Suricata when installed with
Suricata-Update.

FTP has been updated with a maximum command request and response line length of 4096 bytes. To change the
default see F'TP.

SWF decompression in http has been disabled by default. To change the default see Configure HTTP (libhtp).
Users with configurations from previous releases may want to modify their config to match the new default. See
https://redmine.openinfosecfoundation.org/issues/5632 for more information.

The new option livedev is enabled by default with use-for-tracking being set to true. This should be disabled if
multiple live devices are used to capture traffic from the same network.

Upgrading 5.0 to 6.0

SIP now enabled by default
RDP now enabled by default
ERSPAN Type I enabled by default.

4.4.1 Major changes

New protocols enabled by default: mqtt, rfb
SSH Client fingerprinting for SSH clients
Conditional logging

Initial HTTP/2 support

DCERPC logging

Improved EVE logging performance

4.4. Upgrading 5.0 to 6.0 23

https://redmine.openinfosecfoundation.org/issues/5632

Suricata User Guide, Release 8.0.0

4.4.2 Removals
* File-store v1 has been removed. If using file extraction, the file-store configuration will need to be updated to
version 2. See Update File-store vi Configuration to V2.

¢ Individual Eve (JSON) loggers have been removed. For example, stats-json, dns-json, etc. Use multiple
Eve logger instances if this behavior is still required. See Multiple Logger Instances.

¢ Unified2 has been removed. See unified2-removed.

4.4.3 Performance

e In YAML files w/o a flow-timeouts.tcp.closed setting, the default went from O to 10 seconds. This may lead to
higher than expected TCP memory use: https://redmine.openinfosecfoundation.org/issues/6552

4.5 Upgrading 4.1 t0 5.0

4.5.1 Major changes

* New protocols enabled by default: snmp (new config only)

* New protocols disabled by default: rdp, sip

* New defaults for protocols: nfs, smb, tftp, krb5 ntp are all enabled by default (new config only)
* VXLAN decoder enabled by default. To disable, set decoder.vxlan.enabled to false.

e HTTP LZMA support enabled by default. To disable, set 1zma-enabled to false in each of the 1libhtp
configurations in use.

* classification.config updated. ET 5.0 ruleset will use this.

e decoder event counters use 'decoder.event' as prefix now. This can be controlled using the stats.
decoder-events-prefix setting.

4.5.2 Removals

* dns-log, the text dns log. Use EVE.dns instead.
e file-log, the non-EVE JSON file log. Use EVE files instead.
* drop-log, the non-EVE JSON drop log.

See https://suricata.io/about/deprecation-policy/

24 Chapter 4. Upgrading

https://redmine.openinfosecfoundation.org/issues/6552
https://suricata.io/about/deprecation-policy/

CHAPTER
FIVE

SECURITY CONSIDERATIONS

Suricata is a security tool that processes untrusted network data, as well as requiring elevated system privileges to
acquire that data. This combination deserves extra security precautions that we discuss below.

Additionally, supply chain attacks, particularly around rule distribution, could potentially target Suricata installations.

5.1 Running as a User Other Than Root

Note: If using the Suricata RPMs, either from the OISF COPR repo, or the EPEL repo, the following is already
configured for you. The only thing you might want to do is add your management user to the suricata group.

Many Suricata examples and guides will show Suricata running as the root user, particularly when running on live
traffic. As Suricata generally needs low level read (and in IPS write) access to network traffic, it is required that
Suricata starts as root, however Suricata does have the ability to drop down to a non-root user after startup, which could
limit the impact of a security vulnerability in Suricata itself.

Note: Currently the ability to drop root privileges after startup is only available on Linux systems.

5.1.1 Create User

Before running as a non-root user, you need to choose and possibly create the user and group that will Suricata will run
as. Typically this user would be a sytem user with the name suricata. Such a user can be created with the following
command:

useradd --no-create-home --system --shell /sbin/nologin suricata

This will create a user and group with the name suricata.

25

Suricata User Guide, Release 8.0.0

5.1.2 File System Permissions

Before running Suricata as the user suricata, some directory permissions will need to be updated to allow the

suricata read and write access.

Assuming your Suricata was installed from source using the recommended configuration of:

./configure --prefix=/usr/ --sysconfdir=/etc/ --localstatedir=/var/

the following directories will need their permissions updated:

Directory Permissions

/etc/suricata Read

/var/log/suricata | Read, Write

/var/lib/suricata | Read, Write

/var/run/suricata | Read, Write

The following commands will setup the correct permissions:

e /etc/suricata:

chgrp -R suricata /etc/suricata
chmod -R g+r /etc/suricata

e /var/log/suricata:

chgrp -R suricata /var/log/suricata
chmod -R g+rw /var/log/suricata

e /var/lib/suricata:

chgrp -R suricata /var/lib/suricata
chmod -R g+srw /var/lib/suricata

e /var/lib/suricata:

chgrp -R suricata /var/run/suricata
chmod -R g+srw /var/run/suricata

5.1.3 Configure Suricata to Run as Suricata

Suricata can be configured to run as an alternate user by updating the configuration file or using command line argu-

ments.

» Using the configuration file, update the run-as section to look like:

run-as:
user: suricata
group: suricata

* Or if using command line arguments, add the following to your command:

--user suricata --group suricata

26

Chapter 5. Security Considerations

Suricata User Guide, Release 8.0.0

5.1.4 Starting Suricata

It is important to note that Suricata still needs to be started with root permissions in most cases. Starting as root allows
Suricata to get access to the network interfaces and set the capabilities required during runtime before it switches down
to the configured user.

5.1.5 Other Commands: Suricata-Update, SuricataSC

With the previous permissions setup, suricata-update and suricatasc can also be run without root or sudo. To
allow a user to access these commands, add them to the suricata group.

5.2 Containers

Containers such as Docker and Podman are other methods to provide isolation between Suricata and the host machine
running Suricata. However, we still recommend running as a non-root user, even in containers.

5.2.1 Capabilities

For both Docker and Podman the following capabilities should be provided to the container running Suricata for proper
operation:

--cap-add=net_admin --cap-add=net_raw --cap-add=sys_nice

5.2.2 Podman

Unfortunately Suricata will not work with rootless Podman, this is due to Suricata's requirement to start with root
privileges to gain access to the network interfaces. However, if started with the above capabilities, and configured to
run as a non-root user, it will drop root privileges before processing network data.

5.2. Containers 27

Suricata User Guide, Release 8.0.0

28 Chapter 5. Security Considerations

CHAPTER
SIX

SUPPORT STATUS

6.1 Levels of Support

The support tiers detailed below do not represent a binding commitment. Instead, they serve as a framework that the
OISF employs to prioritize features and functionality.

6.1.1 Tier 1

Tier 1 supported items are developed and supported by the Suricata team. These items receive full CI (continuous
integration) coverage, and functional failures block git merges and releases. Tier 1 features are enabled by default on
platforms that support the feature.

6.1.2 Tier 2

Tier 2 supported items are developed and supported by the Suricata team, sometimes with help from community mem-
bers. Major functional failures block git merges and releases, however less major issues may be documented as "known
issues" and may go into a release. Tier 2 features and functionality may be disabled by default.

6.1.3 Community
When a feature of Suricata is community supported, it means the OISF/Suricata development team won’t directly
support it. This is to avoid overloading the team.
When accepting a feature into the code base anyway, it will come with a number of limits and conditions:
* submitter must commit to maintaining it:
— make sure code compiles and correctly functions after Suricata and/or external (e.g. library) changes.
— support users when they encounter problems on forum and redmine tickets.

¢ the code will be disabled by default and will not become part of the QA setup. This means it will be enabled
only by an --enable configure flag.

¢ the code may not have CI coverage by the OISF infrastructure.

If the feature gets lots of traction, and/or if the team just considers it very useful, it may get ‘promoted’ to being officially
supported.

On the other hand, the feature will be removed if the submitter stops maintaining it and no-one steps up to take over.

29

Suricata User Guide, Release 8.0.0

6.1.4 Vendor

Vendor supported features are features specific to a certain vendor and usually require software and/or hardware from
that vendor. While these features may exist in the main Suricata code, they rely on support from the vendor to keep the
feature in a functional state.

Vendor supported functionality will generally not have CI or QA coverage by the OISF.

6.1.5 Unmaintained

When a feature is unmaintained it is very likely broken and may be (partially) removed during cleanups and code
refactoring. No end-user support is done by the core team. If someone wants to help maintain and support such a
feature, we recommend talking to the core team before spending a lot of time on it.

Please see Contributing to Suricata for more information if you wish to contribute.

6.2 Distributions

6.2.1 Tier 1

These tier 1 supported Linux distributions and operating systems receive full CI and QA, as well as documentation.

Distribution Version Support QA Notes

RHEL/CentOS 7 OISF

RHEL/Alma/Rocky | 8 OISF

RHEL/Alma/Rocky | 9 OISF

Ubuntu 20.04 OISF

Ubuntu 22.04 OISF

Debian 10 (Buster) OISF

Debian 11 (Bullseye) OISF Foundation of SELKS

Debian 12 (Book- | OISF

worm)

FreeBSD 12 OISF Foundation of OPNsense, pfSense

FreeBSD 13 OISF Foundation of OPNSense
6.2.2 Tier 2

These tier 2 supported Linux distributions and operating systems receive CI but not full QA (functional testing).

Distribution Version Support QA Notes
CentOS Stream OISF

Fedora Active OISF

OpenBSD 7.2 OISF

OpenBSD 7.1 OISF

0OSX/macOS 7? OISF

Win- OISF

dows/MinGW 64

30 Chapter 6. Support Status

Suricata User Guide, Release 8.0.0

6.3 Architecture Support

6.3.1 Tier 1
Architecture | Support QA Notes
x86_64 OISF
ARMS-64bit | OISF
6.3.2 Tier 2
Architecture | Support QA Notes
ARM7-32bit | OISF
i386 OISF
6.3.3 Community
Architecture | Support QA Notes
PPCo64el Part of Fedora automated QA Access can be arranged through IBM dev
cloud
PPC64 No access to working hardware
PPC32 No access to working hardware
RISC-V

6.3.4 High Level Features

Capture support

Tier 1

Tier 2

Capture Type Maintainer | QA | Notes
AF_PACKET OISF Used by Security Onion, SELKS
NETMAP (FreeBSD) | OISF Used by OPNsense, PFsense
NFQUEUE OISF
libpcap OISF
Capture Type Maintainer | QA | Notes
PF_RING OISF
NETMAP (Linux) OISF
DPDK OISF
AF_PACKET (eBPF/XDP) | OISF

6.3. Architecture Support

31

Suricata User Guide, Release 8.0.0

Community
Capture Type | Maintainer | QA | Notes
NFLOG Community
AF_XDP Community
Vendor
Capture Type | Maintainer QA | Notes
Napatech Napatech / Community
Unmaintained
Capture Type | Maintainer | QA | Notes
IPFW
Endace/DAG
Operation modes
Tier 1
Mode Maintainer QA Notes
IDS (passive) OISF
IPS (active) OISF
Offline pcap file OISF
Tier 2
Mode Maintainer QA Notes
Unix socket mode OISF
IDS (active) OISF Active responses, reject keyword

32

Chapter 6. Support Status

CHAPTER
SEVEN

COMMAND LINE OPTIONS

Suricata's command line options:

-h

Display a brief usage overview.
-V

Displays the version of Suricata.
-Cc <path>

Path to configuration file.

--include <path>

Additional configuration files to include. Multiple additional configuration files can be provided and will be
included in the order specified on the command line. These additional configuration files are loaded as if they
existed at the end of the main configuration file.

Example including one additional file:

--include /etc/suricata/other.yaml

Example including more than one additional file:

--include /etc/suricata/other.yaml --include /etc/suricata/extra.yaml

Test configuration.

Increase the verbosity of the Suricata application logging by increasing the log level from the default. This option
can be passed multiple times to further increase the verbosity.

e -v: INFO

e -vv: PERF

* -vvv: CONFIG
e -vvvv: DEBUG

This option will not decrease the log level set in the configuration file if it is already more verbose than the level
requested with this option.

-r <path>

Run in pcap offline mode (replay mode) reading files from pcap file. If <path> specifies a directory, all files in
that directory will be processed in order of modified time maintaining flow state between files.

33

Suricata User Guide, Release 8.0.0

--pcap-file-continuous
Used with the -r option to indicate that the mode should stay alive until interrupted. This is useful with directories
to add new files and not reset flow state between files.

--pcap-file-recursive
Used with the -r option when the path provided is a directory. This option enables recursive traversal into sub-
directories to a maximum depth of 255. This option cannot be combined with --pcap-file-continuous. Symlinks
are ignored.

--pcap-file-delete
Used with the -r option to indicate that the mode should delete pcap files after they have been processed. This is
useful with pcap-file-continuous to continuously feed files to a directory and have them cleaned up when done.
If this option is not set, pcap files will not be deleted after processing.

--pcap-file-buffer-size <value>
Set read buffer size using setvbuf to speed up pcap reading. Valid values are 4 KiB to 64 MiB. Default value
is 128 KiB. Supported on Linux only.

-i <interface>
After the -i option you can enter the interface card you would like to use to sniff packets from. This option will
try to use the best capture method available. Can be used several times to sniff packets from several interfaces.

--pcap[=<device>]
Run in PCAP mode. If no device is provided the interfaces provided in the pcap section of the configuration file
will be used.

--af-packet[=<device>]
Enable capture of packet using AF_PACKET on Linux. If no device is supplied, the list of devices from the
af-packet section in the yaml is used.

--af-xdp[=<device>]
Enable capture of packet using AF_XDP on Linux. If no device is supplied, the list of devices from the af-xdp
section in the yaml is used.

-q <queue id>
Run inline of the NFQUEUE queue ID provided. May be provided multiple times.

-s <filename.rules>
With the -s option you can set a file with signatures, which will be loaded together with the rules set in the yaml.

It is possible to use globbing when specifying rules files. For example, -s '/path/to/rules/*.rules'

-S <filename.rules>

With the -S option you can set a file with signatures, which will be loaded exclusively, regardless of the rules set
in the yaml.

It is possible to use globbing when specifying rules files. For example, -S '/path/to/rules/*.rules'

-1 <directory>

With the -1 option you can set the default log directory. If you already have the default-log-dir set in yaml, it will
not be used by Suricata if you use the -1 option. It will use the log dir that is set with the -1 option. If you do not
set a directory with the -1 option, Suricata will use the directory that is set in yaml.

Normally if you run Suricata on your console, it keeps your console occupied. You can not use it for other
purposes, and when you close the window, Suricata stops running. If you run Suricata as daemon (using the -D
option), it runs at the background and you will be able to use the console for other tasks without disturbing the
engine running.

34 Chapter 7. Command Line Options

Suricata User Guide, Release 8.0.0

--runmode <runmode>

With the --runmode option you can set the runmode that you would like to use. This command line option can
override the yaml runmode option.

Runmodes are: workers, autofp and single.

For more information about runmodes see Runmodes in the user guide.
-F <bpf filter file>

Use BPF filter from file.
-k [all|none]

Force (all) the checksum check or disable (none) all checksum checks.

--user=<user>

Set the process user after initialization. Overrides the user provided in the run-as section of the configuration
file.

--group=<group>
Set the process group to group after initialization. Overrides the group provided in the run-as section of the
configuration file.

--pidfile <file>

Write the process ID to file. Overrides the pid-file option in the configuration file and forces the file to be written
when not running as a daemon.

--init-errors-fatal
Exit with a failure when errors are encountered loading signatures.

--strict-rule-keywords[=all | <keyword> | <keywords(csv)]
Applies to: classtype, reference and app-layer-event.

By default missing reference or classtype values are warnings and not errors. Additionally, loading outdated
app-layer-event events are also not treated as errors, but as warnings instead.

If this option is enabled these warnings are considered errors.

If no value, or the value 'all', is specified, the option applies to all of the keywords above. Alternatively, a comma
separated list can be supplied with the keyword names it should apply to.

--disable-detection
Disable the detection engine.

--disable-hashing
Disable support for hash algorithms such as md5, shal and sha256.

By default hashing is enabled. Disabling hashing will also disable some Suricata features such as the filestore,
ja3, and rule keywords that use hash algorithms.

--dump-config
Dump the configuration loaded from the configuration file to the terminal and exit.

--dump-features

Dump the features provided by Suricata modules and exit. Features list (a subset of) the configuration values and
are intended to assist with comparing provided features with those required by one or more rules.

--build-info

Display the build information the Suricata was built with.

35

Suricata User Guide, Release 8.0.0

--list-app-layer-protos

List all supported application layer protocols.
--list-keywords=[all|csv|<kword>]

List all supported rule keywords.
--list-runmodes

List all supported run modes.

--set <key>=<value>

Set a configuration value. Useful for overriding basic configuration parameters. For example, to change the
default log directory:

--set default-log-dir=/var/tmp

This option cannot be used to add new entries to a list in the configuration file, such as a new output. It can only
be used to modify a value in a list that already exists.

For example, to disable the eve-1log in the default configuration file:

--set outputs.l.eve-log.enabled=no

Also note that the index values may change as the suricata.yaml is updated.
See the output of --dump-config for existing values that could be modified with their index.
--engine-analysis
Print reports on analysis of different sections in the engine and exit. Please have a look at the conf parameter
engine-analysis on what reports can be printed
--unix-socket=<file>
Use file as the Suricata unix control socket. Overrides the filename provided in the unix-command section of the
configuration file.
--reject-dev=<device>
Use device to send out RST / ICMP error packets with the reject keyword.
--pcap-buffer-size=<size>
Set the size of the PCAP buffer (0 - 2147483647).
--netmap[=<device>]
Enable capture of packet using NETMAP on FreeBSD or Linux. If no device is supplied, the list of devices from
the netmap section in the yaml is used.
--pfring[=<device>]
Enable PF_RING packet capture. If no device provided, the devices in the Suricata configuration will be used.
--pfring-cluster-id <id>
Set the PF_RING cluster ID.
--pfring-cluster-type <type>
Set the PF_RING cluster type (cluster_round_robin, cluster_flow).

-d <divert-port>
Run inline using IPFW divert mode.

36 Chapter 7. Command Line Options

Suricata User Guide, Release 8.0.0

--dag <device>

Enable packet capture off a DAG card. If capturing off a specific stream the stream can be select using a device
name like "dag0:4". This option may be provided multiple times read off multiple devices and/or streams.

--napatech
Enable packet capture using the Napatech Streams API.

--erf-in=<file>
Run in offline mode reading the specific ERF file (Endace extensible record format).
--simulate-ips

Simulate IPS mode when running in a non-IPS mode.

7.1 Unit Tests

The builtin unittests are only available when Suricata has been configured and built with --enable-unittests.

Running unittests does not require a configuration file. Use -1 to supply an output directory.:

sudo suricata -u

-u
Run the unit tests and exit. Requires that Suricata be configured with --enable-unittests.
-U, --unittest-filter=REGEX

With the -U option you can select which of the unit tests you want to run. This option uses REGEX. Example of
use: suricata -u -U http

--list-unittests
Lists available unit tests.
--fatal-unittests
Enables fatal failure on a unit test error. Suricata will exit instead of continuing more tests.

--unittests-coverage
Display unit test coverage report.

7.1. Unit Tests 37

Suricata User Guide, Release 8.0.0

38 Chapter 7. Command Line Options

CHAPTER
EIGHT

SURICATA RULES

8.1 Rules Format

Signatures play a very important role in Suricata. In most occasions people are using existing rulesets.
The official way to install rulesets is described in Rule Management with Suricata-Update.

There are a number of free rulesets that can be used via suricata-update. To aid in learning about writing rules, the
Emerging Threats Open ruleset is free and a good reference that has a wide range of signature examples.

This Suricata Rules document explains all about signatures; how to read, adjust and create them.
A rule/signature consists of the following:

¢ The action, determining what happens when the rule matches.

* The header, defining the protocol, IP addresses, ports and direction of the rule.

* The rule options, defining the specifics of the rule.
An example of a rule is as follows:

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

In this example, red is the action, green is the header and blue are the options.

We will be using the above signature as an example throughout this section, highlighting the different parts of the
signature.

8.1.1 Action

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Valid actions are:
* alert - generate an alert.
* pass - stop further inspection of the packet.
e drop - drop packet and generate alert.
* reject - send RST/ICMP unreach error to the sender of the matching packet.

* rejectsrc - same as just reject.

39

Suricata User Guide, Release 8.0.0

* rejectdst - send RST/ICMP error packet to receiver of the matching packet.

* rejectboth - send RST/ICMP error packets to both sides of the conversation.

Note: In IPS mode, using any of the reject actions also enables drop.

For more information see Action-order.

8.1.2 Protocol

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

This keyword in a signature tells Suricata which protocol it concerns. You can choose between four basic protocols:
* tcp (for tep-traffic)
e udp
* icmp
* ip (ip stands for 'all' or 'any")
There are a couple of additional TCP related protocol options:
* tcp-pkt (for matching content in individual tcp packets)
* tcp-stream (for matching content only in a reassembled tcp stream)
There are also a few so-called application layer protocols, or layer 7 protocols you can pick from. These are:
* http (either HTTP1 or HTTP2)
* httpl
* http2
* ftp
e tls (this includes ssl)
* smb
* dns
* dcerpc
e dhep
* ssh
* smtp
* imap
* pop3
* modbus (disabled by default)
* dnp3 (disabled by default)
* enip (disabled by default)

e nfs

40 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

* ike

e krb5

* bittorrent-dht

* ntp

e dhep

e rfb

e rdp

* snmp

* tftp

* sip

* websocket
The availability of these protocols depends on whether the protocol is enabled in the configuration file, suricata.yaml.

If you have a signature with the protocol declared as 'http', Suricata makes sure the signature will only match if the TCP
stream contains http traffic.

8.1.3 Source and destination

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

The first emphasized part is the traffic source, the second is the traffic destination (note the direction of the directional
arrow).

With the source and destination, you specify the source of the traffic and the destination of the traffic, respectively. You
can assign IP addresses, (both IPv4 and IPv6 are supported) and IP ranges. These can be combined with operators:

Operator | Description

o IP ranges (CIDR notation)
! exception/negation

[..,..] grouping

Normally, you would also make use of variables, such as $HOME_NET and $EXTERNAL_NET. The suricata.yaml config-
uration file specifies the IP addresses these concern. The respective $HOME_NET and $EXTERNAL_NET settings will be
used in place of the variables in your rules.

See Rule-vars for more information.

Rule usage examples:

Example Meaning

1.1.1.1 Every IP address but 1.1.1.1

M1.1.1.1, 1.1.1.2] Every IP address but 1.1.1.1 and 1.1.1.2
$HOME_NET Your setting of HOME_NET in yaml
[SEXTERNAL_NET, !$HOME_NET] | EXTERNAL_NET and not HOME_NET
[10.0.0.0/24, 110.0.0.5] 10.0.0.0/24 except for 10.0.0.5

[..., [....]]

[0 1.

8.1. Rules Format 41

Suricata User Guide, Release 8.0.0

Warning: If you set your configuration to something like this:

HOME_NET: any
EXTERNAL_NET: !$HOME_NET

You cannot write a signature using $SEXTERNAL_NET because it evaluates to 'not any', which is an invalid value.

Note: Please note that the source and destination address can also be matched via the ip.src and ip.dst keywords
(See IP Addresses Match). These keywords are mostly used in conjunction with the dataset feature (Datasets).

8.1.4 Ports (source and destination)

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;

sid:123; rev:1;)

The first emphasized part is the source port, the second is the destination port (note the direction of the directional

arrow).

Traffic comes in and goes out through ports. Different protocols have different port numbers. For example, the default
port for HTTP is 80 while 443 is typically the port for HTTPS. Note, however, that the port does not dictate which
protocol is used in the communication. Rather, it determines which application is receiving the data.

The ports mentioned above are typically the destination ports. Source ports, i.e. the application that sent the packet,
typically get assigned a random port by the operating system. When writing a rule for your own HTTP service, you
would typically write any -> 80, since that would mean any packet from any source port to your HTTP application

(running on port 80) is matched.

In setting ports you can make use of special operators as well. Operators such as:

Operator | Description

port ranges

!

exception/negation
[..,..] grouping
Rule usage examples:

Example Meaning
[80, 81, 82] | port 80, 81 and 82
[80: 82] Range from 80 till 82
[1024:] From 1024 till the highest port-number
180 Every port but 80
[80:100,!99] | Range from 80 till 100 but 99 excluded
[1:80,![2,4]] | Range from 1-80, except ports 2 and 4
[... [----1]

42

Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.1.5 Direction

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

The directional arrow indicates which way the signature will be evaluated. In most signatures an arrow to the right (->)
is used. This means that only packets with the same direction can match. There is also the double arrow (=>), which
respects the directionality as ->, but allows matching on bidirectional transactions, used with keywords matching each
direction. Finally, it is also possible to have a rule match either directions (<>):

source -> destination
source => destination
source <> destination (either directions)

The following example illustrates direction. In this example there is a client with IP address 1.2.3.4 using port 1024.
A server with IP address 5.6.7.8, listening on port 80 (typically HTTP). The client sends a message to the server and
the server replies with its answer.

. —
client server
-
IP address: 1.2.3.4 IP address: 5.6.7.8
Port: 1024 Port: 80
I -
srclP 1234 srclIP 56.78
src port 1024 sre port 80
dstIP 5.6.78 dstIP 1234
dst port 80 dst port 1024

Now, let's say we have a rule with the following header:

alert tcp 1.2.3.4 1024 -> 5.6.7.8 80

Only the traffic from the client to the server will be matched by this rule, as the direction specifies that we do not want
to evaluate the response packet.

Now, if we have a rule with the following header:

alert tcp 1.2.3.4 any <> 5.6.7.8 80

Suricata will duplicate it and use the same rule with headers in both directions :

alert tcp 1.2.3.4 any -> 5.6.7.8 80 alert tcp 5.6.7.8 80 -> 1.2.3.4 any

8.1. Rules Format 43

Suricata User Guide, Release 8.0.0

Warning: There is no 'reverse' style direction, i.e. there is no <-.

Transactional rules

Here is an example of a transactional rule:

alert http any any => 5.6.7.8 80 (msg:"matching both uri and status"; sid: 1; http.uri; content: "/download";
http.stat_code; content: "200";)

It will match on flows to 5.6.7.8 and port 80. And it will match on a full transaction, using both the uri from the request,
and the stat_code from the response. As such, it will match only when Suricata got both request and response.

Transactional rules can use direction-ambiguous keywords, by specifying the direction.

alert http any any => 5.6.7.8 80 (msg:"matching json to server and xml to client"; sid: 1; http.content_type: to_server;
content: "json"; http.content_type: to_client; content: "xml";)

Transactional rules have some limitations :
* They cannot use direction-ambiguous keywords

* They are only meant to work on transactions with first a request to the server, and then a response to the client,
and not the other way around (not tested).

* They cannot have fast_pattern or prefilter the direction to client if they also have a streaming buffer on
the direction to server, see example below.

* They will refuse to load if a single directional rule is enough.
This rule cannot have the fast_pattern to client, as file.data is a streaming buffer and will refuse to load.
alert http any any => any any (file.data: to_server; content: "123"; http.stat_code; content: "500"; fast_patten;)

If not explicit, a transactional rule will choose a fast_pattern to server by default

8.1.6 Rule options

The rest of the rule consists of options. These are enclosed by parenthesis and separated by semicolons. Some options
have settings (such as msg), which are specified by the keyword of the option, followed by a colon, followed by the
settings. Others have no settings; they are simply the keyword (such as nocase):

<keyword>: <settings>;
<keyword>;

Rule options have a specific ordering and changing their order would change the meaning of the rule.

Note: The characters ; and " have special meaning in the Suricata rule language and must be escaped when used in
a rule option value. For example:

msg: "Message with semicolon\;";

As a consequence, you must also escape the backslash, as it functions as an escape character.

The rest of this chapter in the documentation documents the use of the various keywords.

Some generic details about keywords follow.

44 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Disabling Alerts

There is a way to disable alert generation for a rule using the keyword noalert. When this keyword is part of a rule,
no alert is generated if the other portions of the rule match. That is, the other rule actions will still be applied. Using
noalert can be helpful when a rule is collecting or setting state using flowbits, datasets or other state maintenance
constructs of the rule language. See Thresholding Keywords for other ways to control alert frequency.

The following rules demonstrate noalert with a familiar pattern:
* The first rule marks state without generating an alert.
* The second rule generates an alert if the state is set and additional qualifications are met.

alert http any any -> $HOME_NET any (msg:"noalert example: set state"; flow:established,to_server;
xbits:set, SC.EXAMPLE.,track ip_dst, expire 10; noalert; http.method; content:"GET"; sid:1;)

alert http any any -> $HOME_NET any (msg:"noalert example: state use"; flow:established,to_server;
xbits:isset, SC.EXAMPLE.track ip_dst; http.method; content:"POST"; sid: 2;)

In IPS mode, noalert is commonly used in when Suricata should drop network packets without generating alerts (ex-
ample below). The following rule is a simplified example showing how noalert could be used with IPS deployments
to drop inbound SSH requests.

drop tcp any any -> any 22 (msg:"Drop inbound SSH traffic"; noalert; sid: 3)
Modifier Keywords

Some keywords function act as modifiers. There are two types of modifiers.

* The older style 'content modifiers' look back in the rule, e.g.:

alert http any any -> any any (content:"index.php"; http_uri; sid:1;)

In the above example the pattern 'index.php' is modified to inspect the HTTP uri buffer.

* The more recent type is called the 'sticky buffer'. It places the buffer name first and all keywords following it
apply to that buffer, for instance:

alert http any any -> any any (http_response_line; content:"403 Forbidden"; sid:1;)

In the above example the pattern '403 Forbidden' is inspected against the HTTP response line because it follows
the http_response_line keyword.

Normalized Buffers

A packet consists of raw data. HTTP and reassembly make a copy of those kinds of packets data. They erase anomalous
content, combine packets etcetera. What remains is a called the 'normalized buffer"

8.1. Rules Format 45

Suricata User Guide, Release 8.0.0

GET /somemap/f/fothermap/ HTTF/1.0

normalization

GET /somemap/othermap/ HTTP/.0

matching

content: “/somemap/othermap/";

Because the data is being normalized, it is not what it used to be; it is an interpretation. Normalized buffers are: all
HTTP-keywords, reassembled streams, TLS-, SSL-, SSH-, FTP- and dcerpc-buffers.

Note that there are some exceptions, e.g. the http_raw_uri keyword. See http.uri for more information.

8.2 Meta Keywords

Meta keywords have no effect on Suricata's inspection of network traffic; they do have an effect on the way Suricata
reports events/alerts.

8.2.1 msg (message)

The keyword msg gives contextual information about the signature and the possible alert.

The format of msg is:

msg: "some description";

Examples:

msg:"ET MALWARE Win32/RecordBreaker CnC Checkin";
msg:"ET EXPLOIT SMB-DS DCERPC PnP bind attempt";

To continue the example from the previous chapter, the msg component of the signature is emphasized below:

alert http SHOME_NET any -> $SEXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Tip: It is a standard practice in rule writing to make the first part of the signature msg uppercase and to indicate the
class of the signature.

46 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

It is also standard practice that msg is the first keyword in the signature.

Note: The following characters must be escaped inside the msg: ; \

8.2.2 sid (signature ID)

The keyword sid gives every signature its own id. This id is stated with a number greater than zero. The format of sid
is:

sid:123;

Example of sid in a signature:

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Tip: Itis a standard practice in rule writing that the signature sid is provided as the last keyword (or second-to-last
if there is a rev) of the signature.

There are reserved ranges of sids, the reservations are recorded at https://sidallocation.org/ .

Note: This value must be unique for all rules within the same rule group (gid).

As Suricata-update currently considers the rule's sid only (cf. Bug#5447), it is advisable to opt for a completely unique
sid altogether.

8.2.3 rev (revision)

The sid keyword is commonly accompanied by the rev keyword. Rev represents the version of the signature. If a
signature is modified, the number of rev will be incremented by the signature writers. The format of rev is:

rev:123;

Example of rev in a signature:

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Tip: It is a standard practice in rule writing that the rev keyword is expressed after the sid keyword. The sid and rev
keywords are commonly put as the last two keywords in a signature.

8.2. Meta Keywords 47

https://sidallocation.org/
https://redmine.openinfosecfoundation.org/issues/5447

Suricata User Guide, Release 8.0.0

8.2.4 gid (group ID)

The gid keyword can be used to give different groups of signatures another id value (like in sid). Suricata by default
uses gid 1. It is possible to modify the default value. In most cases, it will be unnecessary to change the default gid
value. Changing the gid value has no technical implications, the value is only noted in alert data.

Example of the gid value in an alert entry in the fast.log file. In the part [1:123], the first 1 is the gid (123 is the sid and
1 is the rev).

07/12/2022-21:59:26.713297 [**] [1:123:1] HTTP GET Request Containing Rule in URI [**] [Classification: Poten-
tially Bad Traffic] [Priority: 2] {TCP} 192.168.225.121:12407 -> 172.16.105.84:80

8.2.5 classtype

The classtype keyword gives information about the classification of rules and alerts. It consists of a short name, a long
name and a priority. It can tell for example whether a rule is just informational or is about a CVE. For each classtype,
the classification.config has a priority that will be used in the rule.

Example classtype definition:

config classification: web-application-attack,Web Application Attack,1
config classification: not-suspicious,Not Suspicious Traffic,3

Once we have defined the classification in the configuration file, we can use the classtypes in our rules. A rule with
classtype web-application-attack will be assigned a priority of 1 and the alert will contain "Web Application Attack' in
the Suricata logs:

classtype Alert Priority
web-application-attack | Web Application Attack | 1
not-suspicious Not Suspicious Traffic 3

Our continuing example also has a classtype: bad-unknown:

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP GET Request Containing Rule in URI";
flow:established,to_server; http.method; content:"GET"; http.uri; content:"rule"; fast_pattern; classtype:bad-unknown;
sid:123; rev:1;)

Tip: It is a standard practice in rule writing that the classtype keyword comes before the sid and rev keywords (as
shown in the example rule).

8.2.6 reference

The reference keyword is used to document where information about the signature and about the problem the signature
tries to address can be found. The reference keyword can appear multiple times in a signature. This keyword is meant
for signature-writers and analysts who investigate why a signature has matched. It has the following format:

reference:type,reference

A typical reference to www.info.com would be:

reference:url,www.info.com

48 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

There are several systems that can be used as a reference. A commonly known example is the CVE-database, which
assigns numbers to vulnerabilities, to prevent having to type the same URL over and over again. An example reference
of a CVE:

reference:cve,CVE-2014-1234

This would make a reference to http://cve.mitre.org/cgi-bin/cvename.cgi?’name=CVE-2014-1234.

All the reference types are defined in the reference.config configuration file.

8.2.7 priority

The priority keyword comes with a mandatory numeric value which can range from 1 to 255. The values 1 through
4 are commonly used. The highest priority is 1. Signatures with a higher priority will be examined first. Normally
signatures have a priority determined through a classtype definition. The classtype definition can be overridden by
defining the priority keyword in the signature. The format of priority is:

priority:1;

8.2.8 metadata

The metadata keyword allows additional, non-functional, information to be added to the signature. While the format is
free-form, it is recommended to stick to [key, value] pairs as Suricata can include these in eve alerts. The format is:

metadata: key value;
metadata: key value, key value;

8.2.9 target

The target keyword allows the rules writer to specify which side of the alert is the target of the attack. If specified, the
alert event is enhanced to contain information about source and target.

The format is:

target: [src_ip|dest_ip]

If the value is src_ip then the source IP in the generated event (src_ip field in JSON) is the target of the attack. If target
is set to dest_ip then the target is the destination IP in the generated event.

8.2.10 requires

The requires keyword allows a rule to require specific Suricata features to be enabled, specific keywords to be avail-
able, or the Suricata version to match an expression. Rules that do not meet the requirements will be ignored, and
Suricata will not treat them as errors.

Requirements that follow the valid format of <keyword> <expression> but are not known to Suricata are allowed
for future compatiblity, however unknown requirement expressions will lead to the requirement not being met, skipping
the rule.

When parsing rules, the parser attempts to process the requires keywords before others. This allows it to occur after
keywords that may only be present in specific versions of Suricata, as specified by the requires statement. However,
the keywords preceding it must still adhere to the basic known formats of Suricata rules.

8.2. Meta Keywords 49

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-1234

Suricata User Guide, Release 8.0.0

The format is:

requires: feature geoip, version >= 7.0.0, keyword foobar

To require multiple features, the feature sub-keyword must be specified multiple times:

requires: feature geoip, feature lua

Alternatively, and expressions may be expressed like:

requires: version >= 7.0.4 < 8

and or expressions may expressed with | like:

requires: version >= 7.0.4 < 8 | >= 8.0.3

to express that a rule requires version 7.0.4 or greater, but less than 8, OR greater than or equal to 8.0.3. Which could
be useful if a keyword wasn't added until 7.0.4 and the 8.0.3 patch releases, as it would not exist in 8.0.1.

This can be extended to multiple release branches:

requires: version >= 7.0.10 < 8 | >= 8.0.5 < 9 | >= 9.0.3

If no minor or patch version component is provided, it will default to 0.
The version may only be specified once, if specified more than once the rule will log an error and not be loaded.

The requires keyword was introduced in Suricata 7.0.3 and 8.0.0.

8.3 IP Keywords

8.3.1 til

The ttl keyword is used to check for a specific IP time-to-live value in the header of a packet. The format is:

ttl:<number>;

For example:

ttl:10;

ttl uses an unsigned 8-bit integer.

At the end of the ttl keyword you can enter the value on which you want to match. The Time-to-live value determines
the maximal amount of time a packet can be in the Internet-system. If this field is set to 0, then the packet has to be
destroyed. The time-to-live is based on hop count. Each hop/router the packet passes subtracts one from the packet
TTL counter. The purpose of this mechanism is to limit the existence of packets so that packets can not end up in
infinite routing loops.

Example of the ttl keyword in a rule:

alert ip SEXTERNAL_NET any -> SHOME_NET any (msg:"IP Packet With TTL 0"; ttl:0; classtype:misc-activity;
sid:1; rev:1;)

50 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.3.2 ipopts

With the ipopts keyword you can check if a specific IP option is set. Ipopts has to be used at the beginning of a rule.
You can only match on one option per rule. There are several options on which can be matched. These are:

IP Option | Description

T Record Route

eol End of List

nop No Op

ts Time Stamp

sec IP Security

esec IP Extended Security
Istr Loose Source Routing
ssIr Strict Source Routing
satid Stream Identifier

any any IP options are set

Format of the ipopts keyword:

ipopts: <name>;

For example:

ipopts: ts;

Example of ipopts in a rule:

alert ip SEXTERNAL_NET any -> $HOME_NET any (msg:"IP Packet with timestamp option"; ipopts:ts;
classtype:misc-activity; sid:2; rev:1;)

8.3.3 sameip

Every packet has a source IP-address and a destination IP-address. It can be that the source IP is the same as the
destination IP. With the sameip keyword you can check if the IP address of the source is the same as the IP address of
the destination. The format of the sameip keyword is:

sameip;

Example of sameip in a rule:

alert ip any any -> any any (msg:"IP Packet with the same source and destination IP"; sameip; classtype:bad-unknown;
sid:3; rev:1;)

8.3.4 ip_proto

With the ip_proto keyword you can match on the IP protocol in the packet-header. You can use the name or the number
of the protocol. You can match for example on the following protocols:

1 ICMP Internet Control Message

6 TCP Transmission Control Protocol
17 UDP User Datagram

47 GRE General Routing Encapsulation

(continues on next page)

8.3. IP Keywords 51

Suricata User Guide, Release 8.0.0

(continued from previous page)

50 ESP Encap Security Payload for IPv6
51 AH Authentication Header for Ipv6
58 IPv6-ICMP ICMP for Ipv6

For the complete list of protocols and their numbers see http://en.wikipedia.org/wiki/List_of_IP_protocol_numbers
Example of ip_proto in a rule:
alert ip any any -> any any (msg:"IP Packet with protocol 1"; ip_proto:1; classtype:bad-unknown; sid:5; rev:1;)

The named variant of that example would be:

ip_proto:ICMP;

8.3.5 ipv4.hdr

Sticky buffer to match on content contained within an IPv4 header.
Example rule:

alert ip any any -> any any (msg:"IPv4 header keyword example"; ipv4.hdr; content:"|06]|"; offset:9; depth:1; sid:1;
rev:1;)

This example looks if byte 10 of IPv4 header has value 06, which indicates that the IPv4 protocol is TCP.

8.3.6 ipv6.hdr

Sticky buffer to match on content contained within an IPv6 header.
Example rule:

alert ip any any -> any any (msg:"IPv6 header keyword example"; ipv6.hdr; content:"|06|"; offset:6; depth:1; sid:1;
rev:1;)

This example looks if byte 7 of IP64 header has value 06, which indicates that the IPv6 protocol is TCP.

8.3.7 id

With the id keyword, you can match on a specific IP ID value. The ID identifies each packet sent by a host and
increments usually with one with each packet that is being send. The IP ID is used as a fragment identification number.
Each packet has an IP ID, and when the packet becomes fragmented, all fragments of this packet have the same ID. In
this way, the receiver of the packet knows which fragments belong to the same packet. (IP ID does not take care of the
order, in that case offset is used. It clarifies the order of the fragments.)

Format of id:

id:<number>;

Example of id in a rule:

alert tcp SEXTERNAL_NET any -> $SHOME_NET any (msg:"id keyword example"; id:1; content:"content|3a 20|";
fast_pattern; classtype:misc-activity; sid:12; rev:1;)

52 Chapter 8. Suricata Rules

http://en.wikipedia.org/wiki/List_of_IP_protocol_numbers

Suricata User Guide, Release 8.0.0

8.3.8 geoip

The geoip keyword enables matching on the source, destination or source and destination IPv4 addresses of network
traffic, and to see to which country it belongs. To be able to do this, Suricata uses the GeolP2 API of MaxMind.

The syntax of geoip:

geoip: src,RU;

geoip: both,CN,RU;
geoip: dst,CN,RU,IR;
geoip: both,US,CA,UK;
geoip: any,CN,IR;

Option | Description

both Both source and destination have to match with the given geoip(s)

any Either the source or the destination has to match with the given geoip(s).
dest The destination matches with the given geoip.

src The source matches with the given geoip.

geoip currently only supports IPv4. As it uses the GeolP2 API of MaxMind, libmaxminddb must be compiled in.
You must download and install the GeoIP2 or GeoLite2 database editions desired. Visit the MaxMind site at https:
//dev.maxmind.com/geoip/geolite2-free-geolocation-data for details.

You must also supply the location of the GeoIP2 or GeoLite2 database file on the local system in the YAML-file
configuration (for example):

geoip-database: /usr/local/share/GeoIP/GeolLite2-Country.mmdb

8.3.9 fragbits (IP fragmentation)

With the fragbits keyword, you can check if the fragmentation and reserved bits are set in the IP header. The fragbits
keyword should be placed at the beginning of a rule. Fragbits is used to modify the fragmentation mechanism. During
routing of messages from one Internet module to the other, it can occur that a packet is bigger than the maximal packet
size a network can process. In that case, a packet can be send in fragments. This maximum of the packet size is called
Maximal Transmit Unit (MTU).

You can match on the following bits:

M - More Fragments
D - Do not Fragment
R - Reserved Bit

Matching on this bits can be more specified with the following modifiers:

+ match on the specified bits, plus any others
match if any of the specified bits are set
! match if the specified bits are not set

Format:

fragbits: [*+!]<[MDR]>;

Example of fragbits in a rule:

8.3. IP Keywords 53

https://dev.maxmind.com/geoip/geolite2-free-geolocation-data
https://dev.maxmind.com/geoip/geolite2-free-geolocation-data

Suricata User Guide, Release 8.0.0

alert tcp SEXTERNAL_NET any -> $SHOME_NET any (msg:"fragbits keyword example non-fragmented packet with
fragment offset>0"; fragbits:M; fragoffset:>0; classtype:bad-unknown; sid:123; rev:1;)

8.3.10 fragoffset

With the fragoffset keyword you can match on specific decimal values of the IP fragment offset field. If you would
like to check the first fragments of a session, you have to combine fragoffset 0 with the More Fragment option. The
fragmentation offset field is convenient for reassembly. The id is used to determine which fragments belong to which
packet and the fragmentation offset field clarifies the order of the fragments.

You can use the following modifiers:

< match if the value is smaller than the specified value
> match if the value is greater than the specified value
! match if the specified value is not present

Format of fragoffset:

fragoffset:[!|<|>]<number>;

Example of fragoffset in a rule:

alert tcp SEXTERNAL_NET any -> $SHOME_NET any (msg:"fragoffset keyword example invalid non-fragmented
packet with fragment offset>0"; fragbits:M; fragoffset:>0; classtype:bad-unknown; sid:13; rev:1;)

8.3.11 tos

The tos keyword can match on specific decimal values of the IP header TOS field. The tos keyword can have a value
from 0 - 255. This field of the IP header has been updated by rfc2474 to include functionality for Differentiated services.
Note that the value of the field has been defined with the right-most 2 bits having the value 0. When specifying a value
for tos, ensure that the value follows this.

E.g, instead of specifying the decimal value 34 (hex 22), right shift twice and use decimal 136 (hex 88).
You can specify hexadecimal values with a leading x, e.g, x88.

Format of tos:

tos: [!]<number>;

Example of tos in a rule:

alert ip any any -> any any (msg:"tos keyword example tos value 8"; flow:established; tos:8; classtype:not-suspicious;
sid:123; rev:1;)

Example of tos with a negated value:

alert ip any any -> any any (msg:"tos keyword example with negated content"; flow:established,to_server; tos:!8;
classtype:bad-unknown; sid:14; rev:1;)

54 Chapter 8. Suricata Rules

https://tools.ietf.org/html/rfc2474
https://en.wikipedia.org/wiki/Differentiated_services

Suricata User Guide, Release 8.0.0

8.4 TCP keywords

8.4.1 tcp.flags

The tcp.flags keyword checks for specific TCP flag bits.
The following flag bits may be checked:

T
o
Q

Description

FIN - Finish

SYN - Synchronize sequence numbers
RST - Reset

PSH - Push

ACK - Acknowledgment

URG - Urgent

CWR - Congestion Window Reduced
ECE - ECN-Echo

No TCP Flags Set

olm| Al ||| ® w1

The following modifiers can be set to change the match criteria:

Modifier | Description

+ match on the bits, plus any others
® match if any of the bits are set

! match if the bits are not set

To handle writing rules for session initiation packets such as ECN where a SYN packet is sent with CWR and ECE
flags set, an option mask may be used by appending a comma and masked values. For example, a rule that checks for
a SYN flag, regardless of the values of the reserved bits is tcp.flags:S,CE;

Format of tcp.flags:

tcp. flags: [modifier]<test flags>[,<ignore flags>];
tcp.flags:[!|*|+]<FSRPAUCE®>[,<FSRPAUCE>];

Example:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"Example tcp.flags sig"; tcp.flags:FPU,CE;
classtype:misc-activity; sid:1; rev:1;)
It is also possible to use the 7cp.flags content as a fast_pattern by using the prefilter keyword. For more information on

prefilter usage see Prefiltering Keywords. Example:

alert tcp SEXTERNAL_NET any -> $SHOME_NET any (msg:"Example tcp.flags sig"; tcp.flags:FPU,CE; prefilter;
classtype:misc-activity; sid: 1; rev:1;)

8.4. TCP keywords 55

https://en.wikipedia.org/wiki/Transmission_Control_Protocol#TCP_segment_structure

Suricata User Guide, Release 8.0.0

8.4.2 seq

The seq keyword can be used in a signature to check for a specific TCP sequence number. A sequence number is a
number that is generated practically at random by both endpoints of a TCP-connection. The client and the server both
create a sequence number, which increases by one with every byte that they send. So this sequence number is different
for both sides. This sequence number has to be acknowledged by both sides of the connection.

Through sequence numbers, TCP handles acknowledgement, order and retransmission. Its number increases with every
data-byte the sender has sent. The seq helps keeping track of to what place in a data-stream a byte belongs. If the SYN
flag is set at 1, then the sequence number of the first byte of the data is this number plus 1 (so, 2).

Example:

seq:0;

Example of seq in a signature:

alert tcp SEXTERNAL_NET any -> $SHOME_NET any (msg:"GPL SCAN NULL"; flow:stateless; ack:0; flags:0;
seq:0; reference:arachnids,4; classtype:attempted-recon; sid:2100623; rev:7;)

Example of seq in a packet (Wireshark):

= PT 4 EE acaaF EHEX @

Filter: | = | Expression... | Clear | Apply|
M. - | Time SOurce Diestination Protocol | info
1 0. Daagan fedd: :230: 16ff: feaa:b 182::1:f83:d083 IMPwE Meighbor solicitatian
2 8.34T7e64 Fedig: - 230 18T7: Teaach T782::1 TIMPwE Rouler adverlisement
3 9.343192 2089.85.227.13 152.165.8.32 TLSv1 #application Data
192.168.8.32 209.085.227.19 53367 = AL

5 13.287477 192.168.8,32 289.85.227 .18 TCP [Tor segment of 2 o gred o

6 13.287598 192.168.8.32 209.85.227.18 TLSv1 Application Data

T 13.332348 289,85 227.14 152.168.8,32 TCP hitps = 54745 [ACK] Seq=2415329985 Ack=417R766438 Win=372 Len=8 Ti¥=1
B 13.447521 289.85.227.18 152.165.9.32 TLSw1l #pplication Data, Application Data

G 13.447555 192.168.58.32 259.085.227.18 TCR 54745 > https [ACK] Seq=41T4T7E6436 Ack=2415238283 Win=203 Len=8 TS¥=3

* Frame 4 |66 bytes on wire, 66 bytes captured)

¢ Ethernet II, Sre: Intel 97:17:d6 (B8:19:42:97:17:d6), Dst: Jetwayln as:be:a6 (80:30:18:a8:be:ab)

* Internet Protocol, Src: 192.168.8.32 ([192.168.8.32), Dst: 289.85.227.19 (289.85.227.19)

* Transmission Control Protocal, Sre Port: 53567 (53567}, Dst Port: hitps (443), Seq: 436637787, Ack: 1282214827, Len: @
Source port: 53567 (53567
Destination port: hitps (443)
|Strean index: @

Ackndw ledgensnt number: 1202214827
Heater Length: 32 bytes
¥ Flags: @x1a {ACK)
Window size: 1882
v Checksum: @xdal? |validation dizabled]
v Dptions: |12 bytes)
» |SEQ/ACK analysis|

0AAE B0 30 18 a@ be ab 08 19 d2 97 1f o6 0B B0 45 8@
BA1E B@ 34 ab 15 40 96 48 06 25 7d @ a6 08 20 d1 55
p928 €3 13 d1 3f 81 bb ENEICEIRIY 47 a6 57 ob 68 18 ...7.. 5. WL
BH3E B3 o2 42 12 99 96 61 B1 65 G2 9O 38 %h 71 eb e ..0..... ...8.0k,
BadE bé hd

56 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.4.3 ack

The ack keyword can be used in a signature to check for a specific TCP acknowledgement number.

The ack is the acknowledgement of the receipt of all previous (data)-bytes send by the other side of the TCP-connection.
In most occasions every packet of a TCP connection has an ACK flag after the first SYN and a ack-number which
increases with the receipt of every new data-byte.

Format of ack:

ack:1;

Example of ack in a signature:

alert tcp SEXTERNAL_NET any -> $SHOME_NET any (msg:"GPL SCAN NULL"; flow:stateless; ack:0; flags:0;
seq:0; reference:arachnids,4; classtype:attempted-recon; sid:2100623; rev:7;)

Example of ack in a packet (Wireshark):

T4 EE aaqlf @EEX @
Filter: | = |Expression.. | Clear | Apply
Mo. - Time Source Drestination Protocol | Info
1 §.Ba0Ea8 fedn: :230: 16ff: feaa:b f1a2::1:ff83:d083 I0MPYE Meighbor solicitation
? B.347e64 Tedif: :238: 16TT: Teaa:h T782::1 IMPwE Router adverlisement
3 9.343792 289.85,227.19 152.1658.8.32 TLSV1 Application Data
192.1608.8.32 289.05.227.19 53367 = htip
¥ 13,287477 192, 168.8,32 269,853,227, 18 TCP [TCP segment of o reassembled PDU
6 13.287598 192.168.8.32 299.85.227.18 TLSv1 hpplication Data
T 13.337348 209.85.327.18 152.168.8.32 TR hitps = 54745 [ACK] Seq=22152299085 Ack=4170766438 Win=372 Len=8 TSW=1
B 13.447521 289.85.227.18 152.168.8.32 TLSw1 #Application Data, Application Data
% 13 447555 192 168.8.32 289 _R5.227.18 TCR 54745 = hitps [ACK] Seq=41TaT766436 Ack=7415238283 Win=283 Len=8 TSW¢=3

* Frame 4 |66 byfes on wire, 66 bytes captured)
= Ethernet II, Src: Intel 97:17:d6 (B@:19:d2:97:17:d6), Dst: JetwayIn as:be:af (@0:30:18:a:2:be:a6)
» Internet Protecol, Src: 192.168.8.32 [192.168.8.32), Dst: 289.85.227.19 [209.85.327.19)
* Transmissien Control Protocol, Sre Port: 53567 (53567), Dst Port: RTtps (443), Seq: 436627767, Ack: 1282214827, Len: @
Source port: 53567 (53567
Destination port: htTps (443)
|Strean indes: @
Sequence nunber: 4366277487

Header Length: 32X bytes
» Flags: @x18 {ACK)
Windaw S12e: 1882
¥ Checksum: @x4al? |valigation disabled]
v Dptians: |12 bytes)
* |SEQ/ACK analysis]

4

BAAE B0 30 18 aa be a6 08 19 d2 97 1f d6 BB BO 45 0@
BALE BO 34 aB 15 48 BE 48 06 25 7d cB a6 B8 20 d1 55
B926 ©3 13 d1 3f 6L bb 1a 66 &8 fb 88 18
BE3E B3 ca 42 17 80 BB Bl Bl @5 82 88 38 b 71 oh =9
BA4E bhE ba

8.4.4 window

The window keyword is used to check for a specific TCP window size.

The TCP window size is a mechanism that has control of the data-flow. The window is set by the receiver (receiver
advertised window size) and indicates the amount of bytes that can be received. This amount of data has to be acknowl-
edged by the receiver first, before the sender can send the same amount of new data.

This mechanism is used to prevent the receiver from being overflowed by data. The value of the window size is limited
and can be 2 to 65.535 bytes. To make more use of your bandwidth you can use a bigger TCP-window.

The format of the window keyword is:

8.4. TCP keywords 57

Suricata User Guide, Release 8.0.0

window: [!]<number>;

Example of window in a rule:

alert tcp SEXTERNAL_NET any -> SHOME_NET any (msg:"GPL DELETED typot trojan traffic"; flow:stateless;
flags:S,12; window:55808; reference:mcafee,100406; classtype:trojan-activity; sid:2182; rev:8;)

8.4.5 tcp.mss

Match on the TCP MSS option value. Will not match if the option is not present.
tcp.mss uses an unsigned 16-bit integer.

The format of the keyword is:

tcp.mss:<min>-<max>;
tcp.mss: [<|>]<number>;
tcp.mss:<value>;

Example rule:

alert tcp SEXTERNAL_NET any -> SHOME_NET any (flow:stateless; flags:S,12; tcp.mss:<536; sid:1234; rev:5;)

8.4.6 tcp.wscale

Match on the TCP window scaling option value. Will not match if the option is not present.
tcp.wscale uses an unsigned 8-bit integer.

The format of the keyword is:

tcp.wscale:<min>-<max>;
tcp.wscale: [<|>]<number>;
tcp.wscale:<value>;

Example rule:

alert tcp SEXTERNAL_NET any -> SHOME_NET any (flow:stateless; flags:S,12; tcp.wscale:>10; sid:1234; rev:5;)

8.4.7 tcp.hdr

Sticky buffer to match on the whole TCP header.
Example rule:

alert tcp SEXTERNAL_NET any -> $HOME_NET any (flags:S,12; tcp.hdr; content:"|02 04]"; offset:20;
byte_test:2,<,536,0,big,relative; sid:1234; rev:5;)

This example starts looking after the fixed portion of the header, so into the variable sized options. There it will look
for the MSS option (type 2, option len 4) and using a byte_test determine if the value of the option is lower than 536.
The tcp.mss option will be more efficient, so this keyword is meant to be used in cases where no specific keyword is
available.

58 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.5 UDP keywords

8.5.1 udp.hdr

Sticky buffer to match on the whole UDP header.
Example rule:
alert udp any any -> any any (udp.hdr; content:"|00 08|"; offset:4; depth:2; sid:1234; rev:5;)

This example matches on the length field of the UDP header. In this case the length of 8 means that there is no payload.
This can also be matched using dsize:0;.

8.6 ICMP keywords

ICMP (Internet Control Message Protocol) is a part of IP. IP at itself is not reliable when it comes to delivering data
(datagram). ICMP gives feedback in case problems occur. It does not prevent problems from happening, but helps in
understanding what went wrong and where. If reliability is necessary, protocols that use IP have to take care of reliability
themselves. In different situations ICMP messages will be send. For instance when the destination is unreachable, if
there is not enough buffer-capacity to forward the data, or when a datagram is send fragmented when it should not be,
etcetera. More can be found in the list with message-types.

There are four important contents of a ICMP message on which can be matched with corresponding ICMP-keywords.
These are: the type, the code, the id and the sequence of a message.

8.6.1 itype

The itype keyword is for matching on a specific ICMP type (number). ICMP has several kinds of messages and uses
codes to clarify those messages. The different messages are distinct by different names, but more important by numeric
values. For more information see the table with message-types and codes.

itype uses an unsigned 8-bit integer.

The format of the itype keyword:

itype:min<>max;
itype: [<|>]<number>;

Example This example looks for an ICMP type greater than 10:

itype:>10;

Example of the itype keyword in a signature:

alert icmp $EXTERNAL_NET any -> $SHOME_NET any (msg:"GPL SCAN Broadscan Smurf Scanner"; dsize:4;
icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon; sid:2100478; rev:4;)

The following lists all ICMP types known at the time of writing. A recent table can be found at the website of IANA

8.5. UDP keywords 59

https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml

Suricata User Guide, Release 8.0.0

ICMP Type | Name

0 Echo Reply

3 Destination Unreachable

4 Source Quench

5 Redirect

6 Alternate Host Address

8 Echo

9 Router Advertisement

10 Router Solicitation

11 Time Exceeded

12 Parameter Problem

13 Timestamp

14 Timestamp Reply

15 Information Request

16 Information Reply

17 Address Mask Request

18 Address Mask Reply

30 Traceroute

31 Datagram Conversion Error
32 Mobile Host Redirect

33 IPv6 Where-Are-You

34 IPv6 I-Am-Here

35 Mobile Registration Request
36 Mobile Registration Reply
37 Domain Name Request

38 Domain Name Reply

39 SKIP

40 Photuris

41 Experimental mobility protocols such as Seamoby

8.6.2 icode

With the icode keyword you can match on a specific ICMP code. The code of a ICMP message clarifies the message.
Together with the ICMP-type it indicates with what kind of problem you are dealing with. A code has a different
purpose with every ICMP-type.

icode uses an unsigned 8-bit integer.

The format of the icode keyword:

icode:min<>max;
icode: [<|>]<number>;

Example: This example looks for an ICMP code greater than 5:

icode:>5;

Example of the icode keyword in a rule:

alert icmp SHOME_NET any -> $SEXTERNAL_NET any (msg:"GPL MISC Time-To-Live Exceeded in Transit";
icode:0; itype:11; classtype:misc-activity; sid:2100449; rev:7;)

The following lists the meaning of all ICMP types. When a code is not listed, only type O is defined and has the meaning
of the ICMP code, in the table above. A recent table can be found at the website of IANA

60 Chapter 8. Suricata Rules

https://www.iana.org/assignments/icmp-parameters/icmp-parameters.xhtml

Suricata User Guide, Release 8.0.0

ICMP Code | ICMP Type

Description

3

Net Unreachable

Host Unreachable

Protocol Unreachable

Port Unreachable

Fragmentation Needed and Don't Fragment was Set

Source Route Failed

Destination Network Unknown

Destination Host Unknown

QAN N KW~ O

Source Host Isolated

Communication with Destination Network is Administratively Prohibited

Communication with Destination Host is Administratively Prohibited

Destination Network Unreachable for Type of Service

Destination Host Unreachable for Type of Service

Communication Administratively Prohibited

Host Precedence Violation

Precedence cutoff in effect

Redirect Datagram for the Network (or subnet)

Redirect Datagram for the Host

Redirect Datagram for the Type of Service and Network

Redirect Datagram for the Type of Service and Host

Normal router advertisement

@)}

Doesn't route common traffic

11

Time to Live exceeded in Transit

Fragment Reassembly Time Exceeded

12

Pointer indicates the error

Missing a Required Option

Bad Length

40

Bad SPI

Authentication Failed

Decompression Failed

Decryption Failed

Need Authentication

N[R D= O = OO =W N~ O~

Need Authorization

8.6.3 icmp_id

With the icmp_id keyword you can match on specific ICMP id-values. Every ICMP-packet gets an id when it is being
send. At the moment the receiver has received the packet, it will send a reply using the same id so the sender will

recognize it and connects it with the correct ICMP-request.

Format of the icmp_id keyword:

icmp_id:<number>;

Example: This example looks for an ICMP ID of 0:

icmp_id:0;

Example of the icmp_id keyword in a rule:

8.6. ICMP keywords

61

Suricata User Guide, Release 8.0.0

alert icmp $EXTERNAL_NET any -> $SHOME_NET any (msg:"GPL SCAN Broadscan Smurf Scanner"; dsize:4;
icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon; sid:2100478; rev:4;)

8.6.4 icmp_seq

You can use the icmp_seq keyword to check for a ICMP sequence number. ICMP messages all have sequence numbers.
This can be useful (together with the id) for checking which reply message belongs to which request message.

Format of the icmp_seq keyword:

icmp_seq:<number>;

Example: This example looks for an ICMP Sequence of 0:

icmp_seq:0;

Example of icmp_seq in a rule:

alert icmp $EXTERNAL_NET any -> $SHOME_NET any (msg:"GPL SCAN Broadscan Smurf Scanner"; dsize:4;
icmp_id:0; icmp_seq:0; itype:8; classtype:attempted-recon; sid:2100478; rev:4;)

Note: Some pcap analysis tools, like wireshark, may give both a little endian and big endian value for icmp_seq. The
icmp_seq keyword matches on the big endian value, this is due to Suricata using the network byte order (big endian)
to perform the match comparison.

8.6.5 icmpv4.hdr

Sticky buffer to match on the whole ICMPv4 header.

8.6.6 icmpv6.hdr

Sticky buffer to match on the whole ICMPv6 header.

8.6.7 icmpv6.mtu

Match on the ICMPv6 MTU optional value. Will not match if the MTU is not present.
icmpv6.mtu uses an unsigned 32-bit integer.

The format of the keyword:

icmpv6.mtu:<min>-<max>;
icmpv6.mtu: [<|>]<number>;
icmpv6e.mtu:<value>;

Example rule:

alert ip SEXTERNAL_NET any -> $SHOME_NET any (icmpv6.mtu:<1280; sid:1234; rev:5;)

62 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.7 Payload Keywords

Payload keywords inspect the content of the payload of a packet or stream.

8.7.1 content

The content keyword is very important in signatures. Between the quotation marks you can write on what you would
like the signature to match. The most simple format of content is:

content: "............ ;

It is possible to use several contents in a signature.

Contents match on bytes. There are 256 different values of a byte (0-255). You can match on all characters; from a till
z, upper case and lower case and also on all special signs. But not all of the bytes are printable characters. For these
bytes heximal notations are used. Many programming languages use 0x00 as a notation, where Ox means it concerns
a binary value, however the rule language uses |00 | as a notation. This kind of notation can also be used for printable
characters.

Example:

|61] is a

|61 61| is aa

|41] is A

|21] is !

|®OD| is carriage return
|0A| is line feed

There are characters you can not use in the content because they are already important in the signature. For matching
on these characters you should use the heximal notation. These are:

" [22]
; | 3B

|3A]
| | 7C|

It is a convention to write the heximal notation in upper case characters.

To write for instance http:// in the content of a signature, you should write it like this: content: "http|3A|//";
If you use a heximal notation in a signature, make sure you always place it between pipes. Otherwise the notation will
be taken literally as part of the content.

A few examples:

content:"a|0D|bc";
content:" |61 OD 62 63|";
content:"a|0D|b|63|";

It is possible to let a signature check the whole payload for a match with the content or to let it check specific parts of
the payload. We come to that later. If you add nothing special to the signature, it will try to find a match in all the bytes
of the payload.

drop tcp $SHOME_NET any -> $EXTERNAL_NET any (msg:"ET TROJAN Likely Bot Nick in IRC (USA +..)";
flow:established,to_server; flowbits:isset,is_proto_irc; content:"NICK "; pcre:"/NICK .*USA.*[0-9]{3,}/i"; refer-
ence:url,doc.emergingthreats.net/2008124; classtype:trojan-activity; sid:2008124; rev:2;)

8.7. Payload Keywords 63

Suricata User Guide, Release 8.0.0

By default the pattern-matching is case sensitive. The content has to be accurate, otherwise there will not be a match.

PAYLOAD

abCdefghlj

-

content:"abc”™;
content:"aBc¢": x

content:"abC";

Legend:

match

x no match

match in the payload

i no match in the payload

It is possible to use the ! for exceptions in contents as well.

For example:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"Outdated Firefox on
Windows"; content:"User-Agent|3A| Mozilla/5.0 |[28|Windows|3B| ";
content:"Firefox/3."; distance:0; content:!"Firefox/3.6.13";
distance:-10; sid:9000000; rev:1;)

You see content: ! "Firefox/3.6.13";. This means an alert will be generated if the used version of Firefox is not
3.6.13.

Note: The following characters must be escaped inside the content: ; \ "

64 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.7.2 nocase

If you do not want to make a distinction between uppercase and lowercase characters, you can use nocase. The keyword
nocase is a content modifier.

The format of this keyword is:

nocase;

You have to place it after the content you want to modify, like:

content: "abc"; nocase;

Example nocase:

PAYLOAD

abCldefghl]

content:"abc”; nocase;
content:"aBc™; nocase;

content:"abC"; nocase;

It has no influence on other contents in the signature.

8.7.3 depth

The depth keyword is a absolute content modifier. It comes after the content. The depth content modifier comes with
a mandatory numeric value, like:

depth:12;

The number after depth designates how many bytes from the beginning of the payload will be checked.

Example:

8.7. Payload Keywords 65

Suricata User Guide, Release 8.0.0

PAYLOAD

depth

content:"def"; depth:3; x

content:"abc”; depth:3;

8.7.4 startswith

The startswith keyword is similar to depth. It takes no arguments and must follow a content keyword. It modifies
the content to match exactly at the start of a buffer.

Example:

content:"GET|20|"; startswith;

startswith is a short hand notation for:

content:"GET|[20|"; depth:4; offset:0;

startswith cannot be mixed with depth, offset, within or distance for the same pattern.

8.7.5 endswith

The endswith keyword is similar to isdataat:!1,relative;. It takes no arguments and must follow a content
keyword. It modifies the content to match exactly at the end of a buffer.

Example:

content:".php"; endswith;

endswith is a short hand notation for:

content:".php"; isdataat:!1,relative;

endswith cannot be mixed with offset, within or distance for the same pattern.

66 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.7.6 offset

The offset keyword designates from which byte in the payload will be checked to find a match. For instance offset:3;
checks the fourth byte and further.

PAYLOAD

i_abadefghlj

hmemmmm

offset

content:"abc”; offset:3; x

content:"def"; offset:3;

The keywords offset and depth can be combined and are often used together.

For example:

content:"def"; offset:3; depth:3;

If this was used in a signature, it would check the payload from the third byte till the sixth byte.

8.7. Payload Keywords 67

Suricata User Guide, Release 8.0.0

PAYLOAD

abcE

depth
offset

content."def"; offset.3; depth:3;

8.7.7 distance

The keyword distance is a relative content modifier. This means it indicates a relation between this content keyword
and the content preceding it. Distance has its influence after the preceding match. The keyword distance comes with a
mandatory numeric value. The value you give distance, determines the byte in the payload from which will be checked
for a match relative to the previous match. Distance only determines where Suricata will start looking for a pattern.
So, distance:5; means the pattern can be anywhere after the previous match + 5 bytes. For limiting how far after the
last match Suricata needs to look, use 'within'.

The absolute value for distance must be less than or equal to IMB (1048576).

Examples of distance:
content;"abc™; content:"kim”; distance: 0,
1 2 3

The distance (3), tells how the second (2)
content relates to the first (1) content.

68 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

distance

content:"abe™: content:"kim™: distance: 0: x

M checked area using 'distance’

content:"abc”; content:"def"; distance:0; l/

content:"abe™: content:"bed”; distance:0; x

8.7. Payload Keywords 69

Suricata User Guide, Release 8.0.0

distance
distance

content:."abc”; content:"def"; distance:0; f

content:"abe™ content:"def"; distance:4; v

Distance can also be a negative number. It can be used to check for matches with partly the same content (see example)
or for a content even completely before it. This is not very often used though. It is possible to attain the same results
with other keywords.

content:"abc™; content:"bed™; distance:-2; v

70 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.7.8 within

The keyword within is relative to the preceding match. The keyword within comes with a mandatory numeric value.
Using within makes sure there will only be a match if the content matches with the payload within the set amount of
bytes. Within can not be 0 (zero)

The absolute value for within must be less than or equal to 1IMB (1048576).

Example:
content:"abc”™; content:"kim™ within:3:

Y

1 9 3

The keyword within (3), tells how the second
(2) content relates to the first (1) content.

Example of matching with within:

PAYLOAD

abcddflghiij

]

content:"abc”; content:"def’; within:3;

content;"abc”; content:"fgh”; within:3; x

The second content has to fall/come 'within 3 ' from the first content.

As mentioned before, distance and within can be very well combined in a signature. If you want Suricata to check a
specific part of the payload for a match, use within.

8.7. Payload Keywords 71

Suricata User Guide, Release 8.0.0

within
distance

content:"abc”; content:"del"; distance:0; within:3; x

within
distance

cantent:"abc™; content"def”; distance:1; within:4; b/

8.7.9 rawbytes

The rawbytes keyword has no effect but is included to be compatible with signatures that use it, for example signatures
used with Snort.

72 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.7.10 isdataat

The purpose of the isdataat keyword is to look if there is still data at a specific part of the payload. The keyword starts
with a number (the position) and then optional followed by 'relative’ separated by a comma and the option rawbytes.
You use the word 'relative' to know if there is still data at a specific part of the payload relative to the last match.

So you can use both examples:

isdataat:512;

isdataat:50, relative;

The first example illustrates a signature which searches for byte 512 of the payload. The second example illustrates a
signature searching for byte 50 after the last match.

You can also use the negation (!) before isdataat.

PAYLOAD
abcldefghi]
isdataat
content:"abc™; isdataat:c, relative:
content:"abc”; isdataat8, relative; x

8.7.11 absent

The keyword absent checks that a sticky buffer does not exist. It can be used without any argument to match only on
absent buffer :

Example of absent in a rule:

alert http any any -> any any (msg:"HTTP request without referer"; http.referer; absent; sid:1; rev:1;)

It can take an argument "or_else" to match on absent buffer or on what comes next such as negated content, for instance

alert http any any -> any any (msg:"HTTP request without referer"; http.referer; absent: or_else; content: !"abc"; sid:1;
rev:1;)

For files (i.e file.data), absent means there are no files in the transaction.

8.7. Payload Keywords 73

Suricata User Guide, Release 8.0.0

8.7.12 bsize

With the bsize keyword, you can match on the length of the buffer. This adds precision to the content match, previously
this could have been done with isdataat.

bsize uses an unsigned 64-bit integer.

An optional operator can be specified; if no operator is present, the operator will default to '=". When a relational
operator is used, e.g., '<', '>' or '<>' (range), the bsize value will be compared using the relational operator. Ranges are

exclusive.

If one or more content keywords precedes bsize, each occurrence of content will be inspected and an error will
be raised if the content length and the bsize value prevent a match.

Format:

bsize:<number>;
bsize:=<number>;
bsize:<<number>;
bsize:><number>;
bsize:<lo-number><><hi-number>;

Examples of bsize in a rule:
alert dns any any -> any any (msg:"bsize exact buffer size"; dns.query; content:"google.com"; bsize:10; sid:1; rev:1;)
alert dns any any -> any any (msg:"bsize less than value"; dns.query; content:"google.com"; bsize:<25; sid:2; rev:1;)

alert dns any any -> any any (msg: "bsize buffer less than or equal value"; dns.query; content:"google.com"; bsize:<=20;
sid:3; rev:1;)

alert dns any any -> any any (msg:"bsize buffer greater than value"; dns.query; content:"google.com"; bsize:>8; sid:4;
rev:1;)

alert dns any any -> any any (msg:"bsize buffer greater than or equal value"; dns.query; content:"google.com";
bsize:>=8; sid:5; rev:1;)

alert dns any any -> any any (msg:"bsize buffer range value"; dns.query; content:"google.com"; bsize:8<>20; sid:6;
rev:1;)

alert dns any any -> any any (msg:"test bsize rule"; dns.query; content:"short"; bsize:<10; sid:124; rev:1;)
alert dns any any -> any any (msg:"test bsize rule"; dns.query; content:"longer string"; bsize:>10; sid:125; rev:1;)
alert dns any any -> any any (msg:"test bsize rule"; dns.query; content:"middle"; bsize:6<>15; sid:126; rev:1;)

To emphasize how range works: in the example above, a match will occur if bsize is greater than 6 and less than 15.

8.7.13 dsize

With the dsize keyword, you can match on the size of the packet payload/data. You can use the keyword for example
to look for abnormal sizes of payloads which are equal to some n i.e. 'dsize:n' not equal 'dsize:!n' less than 'dsize:<n’
or greater than 'dsize:>n' This may be convenient in detecting buffer overflows.

dsize cannot be used when using app/streamlayer protocol keywords (i.e. http.uri)
dsize uses an unsigned 16-bit integer.

Format:

dsize:[<>!]number; || dsize:min<>max;

74 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Examples of dsize values:

alert tcp any any -> any any (msg:"dsize exact size"; dsize:10; sid:1; rev:1;)

alert tcp any any -> any any (msg:"dsize less than value"; dsize:<10; sid:2; rev:1;)

alert tcp any any -> any any (msg:"dsize less than or equal value"; dsize:<=10; sid:3; rev:1;)
alert tcp any any -> any any (msg:"dsize greater than value"; dsize:>8; sid:4; rev:1;)

alert tcp any any -> any any (msg:"dsize greater than or equal value"; dsize:>=10; sid:5; rev:1;)
alert tcp any any -> any any (msg:"dsize range value"; dsize:8<>20; sid:6; rev:1;)

alert tcp any any -> any any (msg:"dsize not equal value"; dsize:!9; sid:7; rev:1;)

8.7.14 byte_test

The byte_test keyword extracts <num of bytes> and performs an operation selected with <operator> against the
value in <test value> at a particular <offset>. The <bitmask value> is applied to the extracted bytes (before
the operator is applied), and the final result will be right shifted one bit for each trailing ® in the <bitmask value>.

Format:

byte_test:<num of bytes> | <variable_name>, [!]<operator>, <test value>, <offset> [,
—relative] \
[,<endian>] [, string, <num type>][, dce][, bitmask <bitmask value>];

<num of bytes> The number of bytes selected from the packet to be con-
verted or the name of a byte_extract/byte_math variable.
<operator> * [!] Negation can prefix other operators
* <less than
* > greater than
e =equal
e <=less than or equal
* >= greater than or equal
* & bitwise AND
* A bitwise OR
<value> Value to test the converted value against [hex or decimal
accepted]
<offset> Number of bytes into the payload
[relative] Offset relative to last content match
[endian] Type of number being read: - big (Most significant byte
at lowest address) - little (Most significant byte at the
highest address)
[string] <num> * hex - Converted string represented in hex
* dec - Converted string represented in decimal
* oct - Converted string represented in octal
[dce] Allow the DCE module to determine the byte order
[bitmask] Applies the AND operator on the bytes converted
Example:

8.7. Payload Keywords 75

Suricata User Guide, Release 8.0.0

alert tcp any any -> any any \
(msg:"Byte_Test Example - Num = Value"; \
content:" |00 01 00 02|"; byte_test:2,=,0x01,0;)

alert tcp any any -> any any \
(msg:"Byte_Test Example - Num = Value relative to content"; \
content:" |00 01 00 02|"; byte_test:2,=,0x03,2,relative;)

alert tcp any any -> any any \
(msg:"Byte_Test Example - Num != Value"; content:"[00 01 00 02|"; \
byte_test:2,!=,0x06,0;)

alert tcp any any -> any any \
(msg:"Byte_Test Example - Detect Large Values"; content:" |00 01 00 02["; \
byte_test:2,>,1000,1,relative;)

alert tcp any any -> any any \
(msg:"Byte_Test Example - Lowest bit is set"; \
content:" |00 01 00 02|"; byte_test:2,&,0x01,12,relative;)

alert tcp any any -> any any (msg:"Byte_Test Example - Compare to String"; \
content: "foobar"; byte_test:4,=,1337,1,relative,string,dec;)

8.7.15 byte_math

The byte_math keyword adds the capability to perform mathematical operations on extracted values with an existing
variable or a specified value.

When relative is included, there must be a previous content or pcre match.
Note: if oper is / and the divisor is O, there will never be a match on the byte_math keyword.

The result can be stored in a result variable and referenced by other rule options later in the rule.

Keyword | Modifier

content offset,depth,distance,within
byte_test offset,value

byte_jump | offset

isdataat offset

Format:

byte_math:bytes <num of bytes> | <variable-name> , offset <offset>, oper <operator>,..
—rvalue <rvalue>, \
result <result_var> [, relative] [, endian <endian>] [, string <number-type>] \
[, dce] [, bitmask <value>];

76 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

<num of bytes>

The number of bytes selected from the packet or the
name of a byte_extract variable.

<offset>

Number of bytes into the payload

oper <operator>

Mathematical operation to perform: +, -, *, /, <<, >>

rvalue <rvalue>

Value to perform the math operation with

result <result-var>

Where to store the computed value

[relative]

Offset relative to last content match

[endian <type>]

* big (Most significant byte at lowest address)

* little (Most significant byte at the highest address)

¢ dce (Allow the DCE module to determine the byte
order)

[string <num_type>]

* hex Converted data is represented in hex
¢ dec Converted data is represented in decimal
* oct Converted data is represented as octal

[dce]

Allow the DCE module to determine the byte order

[bitmask] <value>

The AND operator will be applied to the extracted value
The result will be right shifted by the number of bits
equal to the number of trailing zeros in the mask

Example:

alert tcp any any -> any any \
(msg:"Testing bytemath_body"; \
content:" |00 ®4 93 F3|"; \

content:" |00 00 00 07|"; distance:4; within:4; \
byte_math:bytes 4, offset 0, oper +, rvalue \

248, result var, relative;)

alert udp any any -> any any \
1, 0, extracted_val, relative; \

(byte_extract:

byte_math: bytes 1, offset 1, oper +, rvalue extracted_val, result var; \

byte_test: 2, =, var,

msg:"Byte extract and byte math with byte test verification";)

8.7.16 byte_jump

The byte_jump keyword allows for the ability to select a <num of bytes>from an <offset>and moves the detection
pointer to that position. Content matches will then be based off the new position.

Format:

byte_jump:<num of bytes> | <variable-name>, <offset> [, relative][, multiplier <mult_

—~value>] \

[, <endian>][, string, <num_type>][, align][, from_beginning][, from_end] \
[, post_offset <value>][, dce][, bitmask <value>];

8.7. Payload Keywords

77

Suricata User Guide, Release 8.0.0

<num of bytes>

The number of bytes selected from the packet to be con-
verted or the name of a byte_extract/byte_math variable.

<offset>

Number of bytes into the payload

[relative]

Offset relative to last content match

[multiplier] <value>

Multiple the converted byte by the <value>

[endian]

* big (Most significant byte at lowest address)
* little (Most significant byte at the highest address)

[string] <num_type>

* hex Converted data is represented in hex
* dec Converted data is represented in decimal
 oct Converted data is represented as octal

[align]

Rounds the number up to the next 32bit boundary

[from_beginning]

Jumps forward from the beginning of the packet, instead
of where the detection pointer is set

[from_end]

Jump will begin at the end of the payload, instead of
where the detection point is set

[post_offset] <value>

After the jump operation has been performed, it will
jump an additional number of bytes specified by <value>

[dce]

Allow the DCE module to determine the byte order

[bitmask] <value>

The AND operator will be applied by <value> and the

converted bytes, then jump operation is performed

Example:

alert tcp any any -> any any \
(msg:"Byte_Jump Example"; \
content:"Alice"; byte_jump:2,0; content:"Bob";)

alert tcp any any -> any any \
(msg:"Byte_Jump Multiple Jumps"; \
byte_jump:2,0; byte_jump:2,0,relative; content:"foobar"; distance:0; within:6;)

alert tcp any any -> any any \
(msg:"Byte_Jump From the End -8 Bytes"; \
byte_jump:0,0, from_end, post_offset -8; \
content:"|6c 33 33 74|"; distance:0 within:4;)

8.7.17 byte_extract

The byte_extract keyword extracts <num of bytes> at a particular <offset> and stores it in <var_name>. The
value in <var_name> can be used in any modifier that takes a number as an option and in the case of byte_test it
can be used as a value.

Format:

byte_extract:<num of bytes>, <offset>, <var_name>, [,relative] [,multiplier <mult-value>

=1\

[,<endian>] [, dce] [, string [, <num_type>] [, align <align-value];

78 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

<num of bytes> The number of bytes selected from the packet to be ex-
tracted

<offset> Number of bytes into the payload

<var_name> The name of the variable in which to store the value

[relative] Offset relative to last content match

multiplier <value> multiply the extracted bytes by <mult-value> before stor-
ing

[endian] Type of number being read: - big (Most significant byte
at lowest address) - little (Most significant byte at the
highest address)

string] <num>
[el * hex - Converted string represented in hex

¢ dec - Converted string represented in decimal
* oct - Converted string represented in octal

[dce] Allow the DCE module to determine the byte order
align <align-value> Round the extracted value up to the next <align-value>
byte boundary post-multiplication (if any) ; <align-
value> may be 2 or 4

Keyword | Modifier

content offset,depth,distance,within
byte_test offset,value

byte_math | rvalue

byte_jump | offset

isdataat offset

Example:

alert tcp any any -> any any \

(msg:"Byte_Extract Example Using distance"; \

content:"Alice"; byte_extract:2,0,size; content:"Bob"; distance:size; within:3;.
—sid:1;)
alert tcp any any -> any any \

(msg:"Byte_Extract Example Using within"; \

flow:established, to_server; content:" |00 FF|"; \

byte_extract:1,0,len,relative; content:"|5c 00|"; distance:2; within:len; sid:2;)
alert tcp any any -> any any \

(msg:"Byte_Extract Example Comparing Bytes"; \

flow:established, to_server; content:" |00 FF|"; \

byte_extract:2,0,cmp_ver,relative; content:"FooBar"; distance:0; byte_test:2,=,
—cmp_ver,0; sid:3;)

8.7. Payload Keywords 79

Suricata User Guide, Release 8.0.0

8.7.18 entropy

The entropy keyword calculates the Shannon entropy value for content and compares it with an entropy value. When
there is a match, rule processing will continue. Entropy values are between 0.0 and 8.0, inclusive. Internally, entropy
is represented as a 64-bit floating point value.

The entropy keyword syntax is the keyword entropy followed by options and the entropy value and operator used to
determine if the values agree.

The minimum entropy keyword specification is:

entropy: value <entropy-spec>

This results in the calculated entropy value being compared with entropy-spec using the (default) equality operator.

Example:

entropy: 7.01

A match occurs when the calculated entropy and specified entropy values agree. This is determined by calculating the
entropy value and comparing it with the value from the rule using the specified operator.

Example:

entropy: <7.01

Options have default values: - bytes is equal to the current content length - offset is O - equality comparison

When entropy keyword options are specified, all options and "value" must be comma-separated. Options and value
may be specified in any order.

The complete format for the entropy keyword is:

entropy: [bytes <byteval>] [offset <offsetval>] value <operator><entropy-value>

This example shows all possible options with default values and an entropy value of 4.037:

entropy: bytes 0, offset 0, value = 4.037

The following operators are available:

* = (default): Match when calculated value equals entropy value

* < Match when calculated value is strictly less than entropy value

* <= Match when calculated value is less than or equal to entropy value

* > Match when calculated value is strictly greater than entropy value

* >= Match when calculated value is greater than or equal to entropy value
* I= Match when calculated value is not equal to entropy value

* x-y Match when calculated value is within the exclusive range

* 1x-y Match when calculated value is not within the exclusive range

This example matches if the file.data content for an HTTP transaction has a Shannon entropy value of 4 or higher:

alert http any any -> any any (msg:"entropy simple test"; file.data; entropy: value >= 4;
< sid:1;)

80 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Logging

When the entropy rule keyword is provided and the rule is evaluated, the calculated entropy value is associated with
the flow even if the calculated entropy value didn't result in a match or alert. Subsequent logging of event types that
include the flow, including alerts, will contain the entropy value in the metadata section of an output log. The follow
is an example that shows the calculated entropy value with the buffer on which the value was computed:

"metadata": {
"entropy": {
"file_data": 4.265743301617466
}
}

The events where entropy is logged will depend largely on how it's used within a rule and the rule's protocol.

For example -- this rule -- when evaluated by Suricata -- will result in the calculated entropy being included in the
alert, flow and http events. Depending on the traffic and Suricata configuration, other event types may include
the entropy value:

alert http any any -> any any (flow:established; file.data; entropy: value > 4.4; sid: 1;
)

8.7.19 rpc

The rpc keyword can be used to match in the SUNRPC CALL on the RPC procedure numbers and the RPC version.

You can modify the keyword by using a wild-card, defined with * With this wild-card you can match on all version
and/or procedure numbers.

RPC (Remote Procedure Call) is an application that allows a computer program to execute a procedure on another com-
puter (or address space). It is used for inter-process communication. See http://en.wikipedia.org/wiki/Inter-process_
communication

Format:

rpc:<application number>, [<version number>|*], [<procedure number>|*]>;

Example of the rpc keyword in a rule:

alert udp SEXTERNAL_NET any -> SHOME_NET 111 (msg:"RPC portmap request yppasswdd"; rpc:100009,*,*;
reference:bugtraq,2763; classtype:rpc-portmap-decode; sid:1296; rev:4;)

8.7.20 replace

The replace content modifier can only be used in IPS. It adjusts network traffic. It changes the content it follows (‘abc')
into another ('def’), see example:

content: “abc”; replace: “def"”;

.

8.7. Payload Keywords 81

http://en.wikipedia.org/wiki/Inter-process_communication
http://en.wikipedia.org/wiki/Inter-process_communication

Suricata User Guide, Release 8.0.0

PAYLOAD PAYLOAD
abe def

The replace modifier has to contain as many characters as the content it replaces. It can only be used with individual
packets. It will not work for Normalized Buffers like HTTP uri or a content match in the reassembled stream.

The checksums will be recalculated by Suricata and changed after the replace keyword is being used.

8.7.21 pcre (Perl Compatible Regular Expressions)
The keyword pcre matches specific on regular expressions. More information about regular expressions can be found
here http://en.wikipedia.org/wiki/Regular_expression.

The complexity of pcre comes with a high price though: it has a negative influence on performance. So, to mitigate
Suricata from having to check pcre often, pcre is mostly combined with 'content'. In that case, the content has to match
first, before pcre will be checked.

Format of pcre:

pcre:"/<regex>/opts";

Example of pcre. In this example there will be a match if the payload contains six numbers following:

pcre:"/[0-91{6}/";

Example of pcre in a signature:

drop tcp $SHOME_NET any -> $EXTERNAL_NET any (msg:"ET TROJAN Likely Bot Nick in IRC (USA +..)";
flow:established,to_server; flowbits:isset,is_proto_irc; content:"NICK "; pcre:"/NICK .*USA.*[0-9]{3,}/i"; refer-
ence:url,doc.emergingthreats.net/2008124; classtype:trojan-activity; sid:2008124; rev:2;)

There are a few qualities of pcre which can be modified:
* By default pcre is case-sensitive.
* The . (dot) is a part of regex. It matches on every byte except for newline characters.
* By default the payload will be inspected as one line.

These qualities can be modified with the following characters:

i pcre is case insensitive
s pcre does check newline characters
m can make one line (of the payload) count as two lines

These options are perl compatible modifiers. To use these modifiers, you should add them to pcre, behind regex. Like
this:

pcre: "/<regex>/i";

Pcre compatible modifiers

There are a few pcre compatible modifiers which can change the qualities of pcre as well. These are:

82 Chapter 8. Suricata Rules

http://en.wikipedia.org/wiki/Regular_expression

Suricata User Guide, Release 8.0.0

* A: A pattern has to match at the beginning of a buffer. (In pcre » is similar to A.)
* E: Ignores newline characters at the end of the buffer/payload.

* G: Inverts the greediness.

Note: The following characters must be escaped inside the content: ; \ "

PCRE extraction

It is possible to capture groups from the regular expression and log them into the alert events.
There are 3 capabilities:

* pkt: the extracted group is logged as pkt variable in metadata.pktvars

« alert: the extracted group is logged to the alert.context subobject

* flow: the extracted group is stored in a flow variable and end up in the metadata.flowvars

To use the feature, parameters of pcre keyword need to be updated. After the regular pcre regex and options, a comma-
separated list of variable names. The prefix here is flow:, pkt: or alert: and the names can contain special char-
acters now. The names map to the capturing substring expressions in order

pcre:"/([a-z]+)\/[a-z]+\/(.+)\/(.+)\/changelog$/GUR, \
flow:ua/ubuntu/repo, flow:ua/ubuntu/pkg/base, \
flow:ua/ubuntu/pkg/version";

This would result in the alert event having something like

"metadata": {
"flowvars": [
{"ua/ubuntu/repo": "fr"},
{"ua/ubuntu/pkg/base": "curl"},
{"ua/ubuntu/pkg/version": "2.2.1"}
]
}

The other events on the same flow such as the f1low one will also have the flow vars.

If this is not wanted, you can use the alert: construct to only get the event in the alert

pcre:"/([a-z]+)\/[a-z]+\/(.+)\/(.+)\/changelog$/GUR, \
alert:ua/ubuntu/repo,alert:ua/ubuntu/pkg/base, \
alert:ua/ubuntu/pkg/version";

With that syntax, the result of the extraction will appear like

"alert": {
"context": {
"ua/ubuntu/repo": "fr",

"ua/ubuntu/pkg/base": "curl",
"ua/ubuntu/pkg/version": "2.2.1"

8.7. Payload Keywords 83

Suricata User Guide, Release 8.0.0

A combination of the extraction scopes can be combined.

It is also possible to extract key/value pair in the pkt scope. One capture would be the key, the second the value. The
notation is similar to the last

pcre:"A/([A-Z]+) (.*)\r\n/, pkt:key,pkt:value";

key and value are simply hardcoded names to trigger the key/value extraction. As a consequence, they can't be used
as name for the variables.

Suricata's modifiers

Suricata has its own specific pcre modifiers. These are:
* R: Match relative to the last pattern match. It is similar to distance:0;

 U: Makes pcre match on the normalized uri. It matches on the uri_buffer just like uricontent and content combined
with http_uri.U can be combined with /R. Note that R is relative to the previous match so both matches have to
be in the HTTP-uri buffer. Read more about H7TP URI Normalization.

PAYLOAD

findex_htmil

content:"/index.”; http_uri; content:"htm”; http_uri; distance:0;
contentindex.", http_uri; pere:"htm?EUR",

content"index.”; http_uri; pere”™index\. himl2/&U";

PAYL OAD

findex_htrm

content;"findex."; hitp uri; content:"htm"; hitp uri; distance:0;
content"index."; hittp_uri; pcre™/html?3UR",

content"index.”; http_uri; pore”index\.html? U

84 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

PAYLOAD

findex. htmo

content™findex.”; hitp_uri; content:"htm”; http_uri; distance:0;

contentindex."; hitp_uri; pere:"/htmI?$UR"; x

content:"index.”; http_uri; pere:"™index.html U™ x

PAYLOAD

lindex.abc.htm

content:™findex.”; hitp_uri; content:"htm”; http_uri; distance:0; x

content."index.”; http_uri; pore"htmI?EUR"

content:"index.”; http_uri; pcre:"Mindex\ himl?/&U"; x

I: Makes pcre match on the HTTP-raw-uri. It matches on the same buffer as http_raw_uri. I can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-raw-uri buffer.
Read more about HTTP URI Normalization.

P: Makes pcre match on the HTTP- request-body. So, it matches on the same buffer as http_client_body. P can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-request
body.

Q: Makes pcre match on the HTTP- response-body. So, it matches on the same buffer as http_server_body. Q
can be combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-
response body.

H: Makes pcre match on the HTTP-header. H can be combined with /R. Note that R is relative to the previous
match so both matches have to be in the HTTP-header body.

D: Makes pcre match on the unnormalized header. So, it matches on the same buffer as http_raw_header. D can
be combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-raw-
header.

M: Makes pcre match on the request-method. So, it matches on the same buffer as http_method. M can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-method
buffer.

C: Makes pcre match on the HTTP-cookie. So, it matches on the same buffer as http_cookie. C can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-cookie buffer.

8.7.

Payload Keywords 85

Suricata User Guide, Release 8.0.0

¢ S: Makes pcre match on the HTTP-stat-code. So, it matches on the same buffer as http_stat_code. S can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-stat-
code buffer.

¢ Y: Makes pcre match on the HTTP-stat-msg. So, it matches on the same buffer as http_stat_msg. Y can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-stat-msg
buffer.

* B: You can encounter B in signatures but this is just for compatibility. So, Suricata does not use B but supports
it so it does not cause errors.

* 0: Overrides the configures pcre match limit.

* V: Makes pcre match on the HTTP-User-Agent. So, it matches on the same buffer as http_user_agent. V can be
combined with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-User-
Agent buffer.

e W: Makes pcre match on the HTTP-Host. So, it matches on the same buffer as http_host. W can be combined
with /R. Note that R is relative to the previous match so both matches have to be in the HTTP-Host buffer.

Changes from PCRE1 to PCRE2

The upgrade from PCRE1 to PCRE2 changes the behavior for some PCRE expressions.

* \I is a valid pcre in PCREI, with a useless escape, so equivalent to I, but it is no longer the case in PCRE2.
There are other characters than I exhibiting this pattern

* [\d-a] is a valid pcre in PCRE1, with either a digit, a dash or the character a, but the dash must now be escaped
with PCRE2 as [\d\-a] to get the same behavior

e pcre2_substring_copy_bynumber now returns an error PCRE2_ERROR_UNSET instead of
pcre_copy_substring returning no error and giving an empty string. If the behavior of some use case
is no longer the expected one, please let us know.

8.8 Integer Keywords

Many keywords will match on an integer value on the network traffic. These are unsigned integers that can be 8, 16,
32 or 64 bits.

Simple example:

bsize:integer value;

The integer value can be written as base-10 like 100 or as an hexadecimal value like 0x64.

The most direct example is to match for equality, but there are different modes.

86 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.8.1

Comparison modes

Integers can be matched for

* Equality

* Inequality

* Greater than
* Less than

* Range

* Negated range
* Bitmask

* Negated Bitmask

Note: Comparisons are strict by default. Ranges are thus exclusive. That means a range between 1 and 4 will match

2 and 3, but neither 1 nor 4. Negated range !1-4 will match for 1 or below and for 4 or above.
Examples:

bsize:19; # equality

bsize:=0x13; # equality

bsize:10x14; # inequality

bsize:!1=20; # inequality

bsize:>21; # greater than

bsize
bsize
bsize
bsize:
bsize:
bsize
bsize

:>=21; # greater than or equal
1<22; # lesser than
:<=22; # lesser than or equal

19-22; # range between valuel and value2
119-22; # negated range between valuel and value2

:&0xc0=0x80; # bitmask mask is compared to value for equality
:&0xc0!=0; # bitmask mask is compared to value for inequality

8.8.2

Enumerations

Some integers on the wire represent an enumeration, that is, some values have a string/meaning associated to it. Rules
can be written using one of these strings to check for equality or inequality. This is meant to make rules more human-
readable and equivalent for matching.

Examples:

websocket.opcode: text;
websocket.opcode:1; # behaves the same

websocket.opcode: !ping;
websocket.opcode:!9; # behaves the same

8.8. Integer Keywords 87

Suricata User Guide, Release 8.0.0

8.8.3 Bitmasks

Some integers on the wire represent multiple bits. Some of these bits have a string/meaning associated to it. Rules can
be written using a list (comma-separated) of these strings, where each item can be negated.

There is no right shift for trailing zeros applied here (even if there is one for byte_test and byte_math). That means
arule with websocket. flags:&0xc0=2 will be rejected as invalid as it can never match.

Examples:

websocket.flags:fin, !comp;
websocket.flags:&0xc0=0x80; # behaves the same

8.9 Transformations

Transformation keywords turn the data at a sticky buffer into something else. Some transformations support options
for greater control over the transformation process

Example:

alert http any any -> any any (file_data; strip_whitespace; \
content: "window.navigate("; sid:1;)

This example will match on traffic even if there are one or more spaces between the navigate and (.

The transforms can be chained. They are processed in the order in which they appear in a rule. Each transform's output
acts as input for the next one.

Example:

alert http any any -> any any (http_request_line; compress_whitespace; to_sha256; \
content:"|54A9 7A8A BO9C 1B81 3725 2214 51D3 F997 FO015 9DD7 049E ES5AD CED3 945A FC79.
~7401|"; sid:1;)

Note: not all sticky buffers support transformations yet

8.9.1 dotprefix

Takes the buffer, and prepends a . character to help facilitate concise domain checks. For example, an input string
of hello.google.com would be modified and become .hello.google.com. Additionally, adding the dot allows
google.com to match against content:".google.com"

Example:

alert dns any any -> any any (dns.query; dotprefix; \
content:".microsoft.com"; sid:1;)

This example will match on windows.update.microsoft.com and maps.microsoft.com.au but not windows.
update. fakemicrosoft.com.

This rule can be used to match on the domain only; example:

88 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

alert dns any any -> any any (dns.query; dotprefix; \
content:".microsoft.com"; endswith; sid:1;)

This example will match on windows.update.microsoft.com but not windows.update.microsoft.com.au.

Finally, this rule can be used to match on the TLD only; example:

alert dns any any -> any any (dns.query; dotprefix; \
content:".co.uk"; endswith; sid:1;)

This example will match on maps.google.co.uk but not maps.google.co.nl.

8.9.2 domain

Takes the buffer and extracts the domain name from it. The domain name is defined using Mozilla’s Public Suffix List.
This implies that it is using traditional top level domain such as . com but also some specific domain like airport.aero
or execute-api.cn-north-1.amazonaws.com.cn where declaration of sub domain by users below the domain is
possible.

Example:

alert tls any any -> any any (tls.sni; domain; \
dataset:isset,domains,type string,load domains.lst; sid:1;)

This example will match on all domains contained in the file domains.1st. For example, if domains.1lst contains
oisf.net then webshop.oisf.net will match.

8.9.3 tid

Takes the buffer and extracts the Top Level Domain (TLD) name from it. The TLD name is defined using Mozilla’s
Public Suffix List. This implies that it is will have traditional TLD such as com but also some specific domain like
airport.aeroor execute-api.cn-north-1.amazonaws.com.cn where declaration of sub domain by users below
the domain is possible.

Example:

alert tls any any -> any any (tls.sni; tld; \
dataset:isset,tlds,type string,load tlds.lst; sid:1;)

This example will match on all TLDs contained in the file t1ds.1st. For example, if tlds.1lst contains net then
oisf.net will match.

8.9.4 strip_whitespace

Strips all whitespace as considered by the isspace() call in C.

Example:

alert http any any -> any any (file_data; strip_whitespace; \
content: "window.navigate("; sid:1;)

8.9. Transformations 89

https://publicsuffix.org/
https://publicsuffix.org/
https://publicsuffix.org/

Suricata User Guide, Release 8.0.0

8.9.5 compress_whitespace

Compresses all consecutive whitespace into a single space.

8.9.6 to_lowercase

Converts the buffer to lowercase and passes the value on.
This example alerts if http.uri contains this text has been converted to lowercase

Example:

alert http any any -> any any (http.uri; to_lowercase; \
content:"this text has been converted to lowercase"; sid:1;)

8.9.7 to_md5

Takes the buffer, calculates the MDS5 hash and passes the raw hash value on.

Example:

alert http any any -> any any Chttp_request_line; to_md5; \
content:" |54 A9 7A 8A BO® 9C 1B 81 37 25 22 14 51 D3 F9 97|"; sid:1;)

8.9.8 to_uppercase

Converts the buffer to uppercase and passes the value on.
This example alerts if http.uri contains THIS TEXT HAS BEEN CONVERTED TO UPPERCASE

Example:

alert http any any -> any any (http.uri; to_uppercase; \
content:"THIS TEXT HAS BEEN CONVERTED TO UPPERCASE"; sid:1;)

8.9.9 to_shat

Takes the buffer, calculates the SHA-1 hash and passes the raw hash value on.

Example:

alert http any any -> any any Chttp_request_line; to_shal; \
content:'"|54A9 7A8A BO9C 1B81 3725 2214 51D3 F997 FO15 9DD7|"; sid:1;)

90 Chapter 8

. Suricata Rules

Suricata User Guide, Release 8.0.0

8.9.10 to_sha256

Takes the buffer, calculates the SHA-256 hash and passes the raw hash value on.

Example:

alert http any any -> any any Chttp_request_line; to_sha256; \
content:"|54A9 7A8A BO9C 1B81 3725 2214 51D3 F997 FO015 9DD7 049E ES5AD CED3 945A FC79.
~7401|"; sid:1;)

8.9.11 pcrexform

Takes the buffer, applies the required regular expression, and outputs the first captured expression.

Note: this transform requires a mandatory option string containing a regular expression.

This example alerts if http.request_line contains /dropper.php Example:

alert http any any -> any any (msg:"HTTP with pcrexform"; http.request_line; \
pcrexform: " [a-zA-Z]+\s+(.*)\s+HTTP"; content:"/dropper.php"; sid:1;)

8.9.12 url _decode

Decodes url-encoded data, ie replacing '+' with space and '%oHH' with its value. This does not decode unicode '%ouZZZZ!
encoding

8.9.13 xor

Takes the buffer, applies xor decoding.

Note: this transform requires a mandatory option which is the hexadecimal encoded xor key.

This example alerts if http.uri contains password= xored with 4-bytes key 0d®ac8£ff Example:

alert http any any -> any any (msg:"HTTP with xor"; http.uri; \
xor:"0d0ac8ff"; content:'"password="; sid:1;)

8.9.14 header lowercase
This transform is meant for HTTP/1 HTTP/2 header names normalization. It lowercases the header names, while
keeping untouched the header values.

The implementation uses a state machine : - it lowercases until it finds : ~ - it does not change until it finds a new line
and switch back to first state

This example alerts for both HTTP/1 and HTTP/2 with a authorization header Example:

alert http any any -> any any (msg:"HTTP authorization"; http.header_names; \
header_lowercase; content:"authorization:"; sid:1;)

8.9. Transformations 91

Suricata User Guide, Release 8.0.0

8.9.15 strip_pseudo_headers

This transform is meant for HTTP/1 HTTP/2 header names normalization. It strips HTTP2 pseudo-headers (names
and values).

The implementation just strips every line beginning by :.

This example alerts for both HTTP/1 and HTTP/2 with only a user agent Example:

alert http any any -> any any (msg:"HTTP ua only"; http.header_names; \
bsize:16; content:"|0d 0Oa|User-Agent|0d 0®a 0d 0Oa|"; nocase; sid:1;)

8.9.16 from_base64

This transform is similar to the keyword base64_decode: the buffer is decoded using the optional values for mode,
offset and bytes and is available for matching on the decoded data.

After this transform completes, the buffer will contain only bytes that could be bases64-decoded. If the decoding
process encountered invalid bytes, those will not be included in the buffer.

The option values must be , separated and can appear in any order.

Note: from_base64 follows RFC 4648 by default i.e. encounter with any character that is not found in the base64
alphabet leads to rejection of that character and the rest of the string.

Format:

from_base64: [[bytes <value>] [, offset <offset_value> [, mode: strict|rfc4648|rfc2045]]]

There are defaults for each of the options: - bytes defaults to the length of the input buffer - offset defaults to ® and
must be less than 65536 - mode defaults to r£fc4648

Note that both bytes and offset may be variables from byte_extract and/or byte_math in later versions of Suricata.
They are not supported yet.

Mode r£c4648 applies RFC 4648 decoding logic which is suitable for encoding binary data that can be safely sent by
email, used in a URL, or included with HTTP POST requests.

Mode rfc2045 applies RFC 2045 decoding logic which supports strings, including those with embedded spaces, line
breaks, and any non base64 alphabet.

Mode strict will fail if an invalid character is found in the encoded bytes.
The following examples will alert when the buffer contents match (see the last content value for the expected strings).

This example uses the defaults and transforms "VGhpcyBpcyBTdXJpY2FO0YQ==""to "This is Suricata":

content: "VGhpcyBpcyBTdXJpY2F0YQ=="; from_base64; content:"This is Suricata";

This example transforms "dGhpc2lzYXRIc3QK" to "thisisatest":

content:"/?arg=dGhpc21zYXR1c3QK"; from_base64: offset 6, mode rfc4648; \
content:"thisisatest";

This example transforms "Zm 9v Ym Fy" to "foobar":

92 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

content:"/?arg=Zm 9v Ym Fy"; from_base64: offset 6, mode rfc2045; \
content: "foobar";

8.9.17 luaxform

This transform allows a Lua script to apply a transformation to a buffer.
Lua scripts that are used for transformations must contain a function named transform.

Lua transforms can be passed optional arguments -- see the examples below -- but they are not required to do so.
Arguments are comma-separated.

A Lua transform function is not invoked if the buffer is empty or the Lua framework is not accessible (rare).
Lua transform functions must return two values (see below) or the buffer is not modified.

Note that the arguments and values are passed without validation nor interpretation. There is a maximum of 10 argu-
ments.

The Lua transform function is invoked with these parameters:
* input The buffer provided to the transform
» arguments The list of arguments.
Lua transform functions must return two values [Lua datatypes shown]:
* buffer [Lua string] The return buffer containing the original input buffer or buffer modified by the transform.
* bytes [Lua integer] Number of bytes in return buffer.
This example supplies the HTTP data to a Lua transform and the transform results are checked with content.

Example:

alert http any any -> any any (msg:"Lua Xform example"; flow:established; \
file.data; luaxform:./lua/lua-transform.lua; content: "abc"; sid: 2;)

This example supplies the HTTP data to a Lua transform with with arguments that specify the offset and byte count for
the transform. The resulting buffer is then checked with a content match.

Example:

alert http any any -> any any (msg:"Lua Xform example"; flow:established; \
file.data; luaxform:./lua/lua-transform.lua, bytes 12, offset 13; content: "abc";
— sid: 1;)

The following Lua script shows a transform that handles arguments: bytes and offset and uses those values (or defaults,
if there are no arguments) for applying the uppercase transform to the buffer.

function init (args)
local needs = {}
return needs
end

local function get_value(item, key)
if string.find(item, key) then
local _, value = string.match(item, " (%a+)%s*(%d*)")
if value ~= "" then

(continues on next page)

8.9. Transformations 93

Suricata User Guide, Release 8.0.0

(continued from previous page)

return tonumber(value)
end
end

return nil
end

-- Arguments supported

local bytes_key = "bytes"

local offset_key = "offset"”

function transform(input_len, input, argc, args)
local bytes = #input
local offset = 0

-- Look for optional bytes and offset arguments
for i, item in ipairs(args) do
local value = get_value(item, bytes_key)
if value ~= nil then
bytes = value
else
local value = get_value(item, offset_key)
if value ~= nil then
offset = value
end
end
end
local str_len = #input
if offset < 0 or offset > str_len then
print("offset is out of bounds: " .. offset)
return nil
end
str_len = str_len - offset
if bytes < 0 or bytes > str_len then
print("invalid bytes " bytes ..
.. str_len)
return nil
end
local sub = string.sub(input, offset + 1, offset + bytes)
return string.upper(sub), bytes

or bytes > length " .. bytes .. " length ".

end

8.10 Prefiltering Keywords

8.10.1 fast_pattern

Suricata Fast Pattern Determination Explained

If the 'fast_pattern' keyword is explicitly set in a rule, Suricata will use that as the fast pattern match. The 'fast_pattern’
keyword can only be set once per rule. If 'fast_pattern' is not set, Suricata automatically determines the content to use
as the fast pattern match.

94 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

The following explains the logic Suricata uses to automatically determine the fast pattern match to use.

Be aware that if there are positive (i.e. non-negated) content matches, then negated content matches are ignored for fast
pattern determination. Otherwise, negated content matches are considered.

The fast_pattern selection criteria are as follows:

1.

Suricata first identifies all content matches that have the highest "priority" that are used in the signature. The
priority is based off of the buffer being matched on and generally application layer buffers have a higher priority
(lower number is higher priority). The buffer http_method is an exception and has lower priority than the general
content buffer.

Within the content matches identified in step 1 (the highest priority content matches), the longest (in terms of
character/byte length) content match is used as the fast pattern match.

. If multiple content matches have the same highest priority and qualify for the longest length, the one with the

highest character/byte diversity score ("Pattern Strength") is used as the fast pattern match. See Appendix A for
details on the algorithm used to determine Pattern Strength.

If multiple content matches have the same highest priority, qualify for the longest length, and the same highest
Pattern Strength, the buffer ("list_id") that was registered last is used as the fast pattern match.

If multiple content matches have the same highest priority, qualify for the longest length, the same highest Pattern
Strength, and have the same list_id (i.e. are looking in the same buffer), then the one that comes first (from left-
to-right) in the rule is used as the fast pattern match.

It is worth noting that for content matches that have the same priority, length, and Pattern Strength, 'http_stat_msg',
'http_stat_code', and 'http_method' take precedence over regular 'content' matches.

Appendices

Appendix A - Pattern Strength Algorithm

From detect-engine-mpm.c. Basically the Pattern Strength "score" starts at zero and looks at each character/byte in the
passed in byte array from left to right. If the character/byte has not been seen before in the array, it adds 3 to the score
if it is an alpha character; else it adds 4 to the score if it is a printable character, 0x00, 0x01, or OxFF; else it adds 6 to
the score. If the character/byte has been seen before it adds 1 to the score. The final score is returned.

/:’: b3

7’:/

\brief Predict a strength value for patterns

Patterns with high character diversity score higher.
Alpha chars score not so high

Other printable + a few common codes a little higher
Everything else highest.

Longer patterns score better than short patters.

\param pat pattern
\param patlen length of the pattern

\retval s pattern score

uint32_t PatternStrength(uint8_t *pat, uintl6_t patlen) {

uint8_t a[256];
memset (&, 0 ,sizeof(a));
uint32_t s = 0;
uintl6_t u = 0;

(continues on next page)

8.10. Prefiltering Keywords 95

Suricata User Guide, Release 8.0.0

(continued from previous page)

for (u = 0; u < patlen; u++) {
if (a[pat[ul] == 0) {
if (isalpha(pat[u]))
s += 3;
else if (isprint(pat[u]) || pat[u] == 0x00 || pat[u] == 0x01 || pat[u] ==_

—0xFF)
S += 4;
else
S += 6;
afpatful] = 1;
} else {
S++;
}
}
return s;
}

Only one content of a signature will be used in the Multi Pattern Matcher (MPM). If there are multiple contents, then
Suricata uses the 'strongest' content. This means a combination of length, how varied a content is, and what buffer it
is looking in. Generally, the longer and more varied the better. For full details on how Suricata determines the fast
pattern match, see Suricata Fast Pattern Determination Explained.

Sometimes a signature writer concludes he wants Suricata to use another content than it does by default.

For instance:

User-agent: Mozilla/5.0 Badness;

content: "User-Agent|3A|[";
content: "Badness"; distance:0;

In this example you see the first content is longer and more varied than the second one, so you know Suricata will use
this content for the MPM. Because 'User-Agent:' will be a match very often, and 'Badness' appears less often in network
traffic, you can make Suricata use the second content by using 'fast_pattern'.

content: "User-Agent|3A[";
content: "Badness"; distance:0; fast_pattern;

The keyword fast_pattern modifies the content previous to it.

content:"User-Agent 34)”;
content:"Badness”; distance:0; fast_pattern,

ﬁ-..____...-""

Fast-pattern can also be combined with all previous mentioned keywords, and all mentioned HTTP-modifiers.

96 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

fast_pattern:only

Sometimes a signature contains only one content. In that case it is not necessary Suricata will check it any further
after a match has been found in MPM. If there is only one content, the whole signature matches. Suricata notices
this automatically. In some signatures this is still indicated with 'fast_pattern:only;'. Although Suricata does not need
fast_pattern:only, it does support it.

fast_pattern:'chop’

If you do not want the MPM to use the whole content, you can use fast_pattern 'chop'.

For example:

content: "aaaaaaaaabc"; fast_pattern:8,4;

This way, MPM uses only the last four characters.

8.10.2 prefilter

The prefilter engines for other non-MPM keywords can be enabled in specific rules by using the 'prefilter' keyword.

In the following rule the TTL test will be used in prefiltering instead of the single byte pattern:

alert ip any any -> any any (ttl:123; prefilter; content:"a"; sid:1;)

For more information on how to configure the prefilter engines, see Prefilter Engines

8.11 Flow Keywords

8.11.1 flowbits

Flowbits consists of two parts. The first part describes the action it is going to perform, the second part is the name of
the flowbit.

There are multiple packets that belong to one flow. Suricata keeps those flows in memory. For more information see
Flow Settings.

Flowbits can make sure an alert will be generated when for example two different packets match. An alert will only
be generated when both packets match. So, when the second packet matches, Suricata has to know if the first packet
was a match too. Flowbits mark the flow if a packet matches so Suricata 'knows' it should generate an alert when the
second packet matches as well.

Flowbits have different actions. These are:

flowbits: set, name
Will set the condition/name’, if present, in the flow.

flowbits: isset, name
Can be used in the rule to make sure it generates an alert when the rule matches and the condition is set in the
flow.

flowbits: toggle, name
Reverses the present setting. So for example if a condition is set, it will be unset and vice-versa.

8.11. Flow Keywords 97

Suricata User Guide, Release 8.0.0

flowbits: unset, name
Can be used to unset the condition in the flow.

flowbits: isnotset, name
Can be used in the rule to make sure it generates an alert when it matches and the condition is not set in the flow.

flowbits: noalert
No alert will be generated by this rule.

Example:

userlogin; set

Packet 1 Packet 2

userlogin

alert hitp 3HOME | NET any -= $EXTERMAL_MNET any
(msg: “Logged In User Saying Blah"; content:"userlogin®;
flowhits:set, userogin; flowhits:noalert;)

alert http FHOME_NET any -= SEXTERMNAL_NET any
(msg: “Logged In User Saying Blah";flowbil s:isset,
userlogin; content;"blah”; ;)

When you take a look at the first rule you will notice it would generate an alert if it would match, if it were not for the
'flowbits: noalert' at the end of that rule.

The purpose of this rule is to check for a match on 'userlogin’ and mark that in the flow. So, there is no need to generate
an alert. The second rule has no effect without the first rule. If the first rule matches, the flowbit sets that specific
condition to be present in the flow. Now the second rule can be checked whether or not the previous packet fulfills the
first condition. If the second rule matches now, an alert will be generated.

Note: flowbit names are case-sensitive.

Note: It is possible to use flowbits several times in a rule and combine the different functions.

Note: It is possible to perform an OR operation with flowbits using the | (pipe).

98 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

alert http any any -> any any (msg:"Userl or User2 logged in"; content:"login"; flowbits:isset,userl|user2; sid:1;)

8.11.2 flow

The flow keyword can be used to match on direction of the flow, so to/from client or to/from server. It can also match
if the flow is established or not. The flow keyword can also be used to say the signature has to match on stream only
(only_stream) or on packet only (no_stream).

So with the flow keyword you can match on:

to_client
Match on packets from server to client.

to_server
Match on packets from client to server.

from_client
Match on packets from client to server (same as to_server).

from_server
Match on packets from server to client (same as to_client).

established
Match on established connections.

not_established
Match on packets that are not part of an established connection.

stateless
Match on packets that are part of a flow, regardless of connection state. (This means that packets that are not
seen as part of a flow won't match).

only_stream
Match on packets that have been reassembled by the stream engine.

no_stream
Match on packets that have not been reassembled by the stream engine. Will not match packets that have been
reassembled.

only_frag
Match packets that have been reassembled from fragments.

no_frag
Match packets that have not been reassembled from fragments.

Multiple flow options can be combined, for example:

flow:to_client, established
flow:to_server, established, only_stream
flow:to_server, not_established, no_frag

The determination of established depends on the protocol:

» For TCP a connection will be established after a three way handshake.

8.11. Flow Keywords 99

Suricata User Guide, Release 8.0.0

Packet x Packet x+1

alert htp $HOME_NET any -> SEXTERMNAL_MET any
imsg: "Logged In User Saying Blah"; content:"blah®;
flow:established:)

* For other protocols (for example UDP), the connection will be considered established after seeing traffic from
both sides of the connection.

Packel x Packet x+1

alert hitp FHOME_NET any -= SEXTERMAL_NET any
(msg: “Logged In User Saying Blah"; content:"blah";
flow:established;)

100 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.11.3 flowint

Flowint allows storage and mathematical operations using variables. It operates much like flowbits but with the addition
of mathematical capabilities and the fact that an integer can be stored and manipulated, not just a flag set. We can use
this for a number of very useful things, such as counting occurrences, adding or subtracting occurrences, or doing
thresholding within a stream in relation to multiple factors. This will be expanded to a global context very soon, so
users can perform these operations between streams.

The syntax is as follows:

flowint: name, modifier[, valuel;

Define a var (not required), or check that one is set or not set.

flowint: name, < +,-,=,>,<,>=,<=,==, != >, value;
flowint: name, (isset|notset|isnotset);

Compare or alter a var. Add, subtract, compare greater than or less than, greater than or equal to, and less than or equal
to are available. The item to compare with can be an integer or another variable.

For example, if you want to count how many times a username is seen in a particular stream and alert if it is over 5.

alert tcp any any -> any any (msg:"Counting Usernames'; content:"jonkman"; \
flowint: usernamecount, +, 1; noalert;)

This will count each occurrence and increment the var usernamecount and not generate an alert for each.

Now say we want to generate an alert if there are more than five hits in the stream.

alert tcp any any -> any any (msg:"More than Five Usernames!'"; content:"jonkman"; \
flowint: usernamecount, +, 1; flowint:usernamecount, >, 5;)

So we'll get an alert ONLY if usernamecount is over five.

So now let's say we want to get an alert as above but NOT if there have been more occurrences of that username logging
out. Assuming this particular protocol indicates a log out with "jonkman logout", let's try:

alert tcp any any -> any any (msg:"Username Logged out"; content:"logout jonkman'"; \
flowint: usernamecount, -, 1; flowint:usernamecount, >, 5;)

So now we'll get an alert ONLY if there are more than five active logins for this particular username.

This is a rather simplistic example, but I believe it shows the power of what such a simple function can do for rule
writing. I see a lot of applications in things like login tracking, IRC state machines, malware tracking, and brute force
login detection.

Let's say we're tracking a protocol that normally allows five login fails per connection, but we have vulnerability where
an attacker can continue to login after that five attempts and we need to know about it.

alert tcp any any -> any any (msg:"Start a login count"; content:"login failed"; \
flowint:loginfail, notset; flowint:loginfail, =, 1; noalert;)

So we detect the initial fail if the variable is not yet set and set it to 1 if so. Our first hit.

alert tcp any any -> any any (msg:"Counting Logins"; content:"login failed"; \
flowint:loginfail, isset; flowint:loginfail, +, 1; noalert;)

8.11. Flow Keywords 101

Suricata User Guide, Release 8.0.0

We are now incrementing the counter if it's set.

alert tcp any any -> any any (msg:"More than Five login fails in a Stream"; \
content:"login failed"; flowint:loginfail, isset; flowint:loginfail, >, 5;)

Now we'll generate an alert if we cross five login fails in the same stream.

But let's also say we also need alert if there are two successful logins and a failed login after that.

alert tcp any any -> any any (msg:"Counting Good Logins'"; \
content:"login successful"; flowint:loginsuccess, +, 1; noalert;)

Here we're counting good logins, so now we'll count good logins relevant to fails:

alert tcp any any -> any any (msg:"Login fail after two successes"; \
content:"login failed"; flowint:loginsuccess, isset; \
flowint:loginsuccess, =, 2;)

Here are some other general examples:

alert tcp any any -> any any (msg:"Setting a flowint counter"; content:"GET"; \
flowint:myvar, notset; flowint:maxvar,notset; \
flowint:myvar,=,1; flowint: maxvar,=,6;)

alert tcp any any -> any any (msg:"Adding to flowint counter"; \
content: "Unauthorized"; flowint:myvar,isset; flowint: myvar,+,2;)

alert tcp any any -> any any (msg:"when flowint counter is 3 create new counter"; \
content: "Unauthorized"; flowint:myvar, isset; flowint:myvar,==,3; \
flowint:cntpackets,notset; flowint:cntpackets, =, 0;)

alert tcp any any -> any any (msg:"count the rest without generating alerts"; \
flowint:cntpackets,isset; flowint:cntpackets, +, 1; noalert;)

alert tcp any any -> any any (msg:"fire this when it reach 6";
flowint: cntpackets, isset;
flowint: maxvar,isset; flowint: cntpackets, ==, maxvar;)

~

8.11.4 stream_size

The stream size option matches on traffic according to the registered amount of bytes by the sequence numbers. There
are several modifiers to this keyword:

> greater than

< less than

= equal

1= not equal

>= greater than or equal
<= less than or equal
Format

102 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

stream_size:<server|client |both|either>, <modifier>, <number>;

Example of the stream-size keyword in a rule:

alert tcp any any -> any any (stream_size:both, >, 5000; sid:1;)

8.11.5 flow.age

Flow age in seconds (integer) This keyword does not wait for the end of the flow, but will be checked at each packet.
flow.age uses an unsigned 32-bit integer.

Syntax:

flow.age: [op]<number>

The time can be matched exactly, or compared using the _op_ setting:

flow.age:3 # exactly 3
flow.age:<3 # smaller than 3 seconds
flow.age:>=2 # greater or equal than 2 seconds

Signature example:

alert tcp any any -> any any (msg:"Flow longer than one hour"; flow.age:>3600; flowbits:.
—isnotset, onehourflow; flowbits: onehourflow, name; sid:1; rev:1;)

In this example, we combine flow.age and flowbits to get an alert on the first packet after the flow's age is older than one
hour.

8.11.6 flow.pkts

Flow number of packets (integer) This keyword does not wait for the end of the flow, but will be checked at each packet.
flow.pkts uses an unsigned 32-bit integer and supports following directions:

* toclient

* toserver

* either

Syntax:

flow.pkts:<direction>, [op]<number>

The number of packets can be matched exactly, or compared using the _op_ setting:

flow.pkts:toclient, 3 # exactly 3
flow.pkts:toserver,<3 # smaller than 3
flow.pkts:either,>=2 # greater than or equal to 2

Signature example:

alert ip any any -> any any (msg:"Flow has 20 packets in toclient dir"; flow.
—pkts:toclient,20; sid:1;)

8.11. Flow Keywords 103

Suricata User Guide, Release 8.0.0

Note: Suricata also supports flow.pkts_toclient and flow.pkts_toserver keywords for flow.
pkts:toclient and flow.pkts:toserver respectively but that is not the preferred syntax.

8.11.7 flow.bytes

Flow number of bytes (integer) This keyword does not wait for the end of the flow, but will be checked at each packet.
flow.bytes uses an unsigned 64-bit integer and supports following directions:

* toclient

¢ toserver

* either

Syntax:

flow.bytes:<direction>, [op]<number>

The number of bytes can be matched exactly, or compared using the _op_ setting:

flow.bytes:toclient,3 # exactly 3
flow.bytes:toserver,<3 # smaller than 3
flow.bytes:either,>=2 # greater than or equal to 2

Signature example:

alert ip any any -> any any (msg:"Flow has less than 2000 bytes in toserver dir"; flow.
—Dbytes:toserver,<2000; sid:1;)

Note: Suricata also supports flow.bytes_toclient and flow.bytes_toserver keywords for flow.
bytes:toclient and flow.bytes:toserver respectively but that is not the preferred syntax.

8.12 Bypass Keyword

Suricata has a bypass keyword that can be used in signatures to exclude traffic from further evaluation.
The bypass keyword is useful in cases where there is a large flow expected (e.g. Netflix, Spotify, YouTube).

The bypass keyword is considered a post-match keyword.

8.12.1 bypass

Bypass a flow on matching http traffic.

alert http any any -> any any (http.host; content:"suricata.io"; bypass; sid:10001; rev:1;)

104 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.13 HTTP Keywords

Using the HTTP specific sticky buffers (see Modifier Keywords) provides a way to efficiently inspect the specific fields
of HTTP protocol communications. After specifying a sticky buffer in a rule it should be followed by one or more
Payload Keywords or using pcre (Perl Compatible Regular Expressions).

8.13.1 HTTP Primer

HTTP is considered a client-server or request-response protocol. A client requests resources from a server and a server
responds to the request.

In versions of HTTP prior to version 2 a client request could look like:

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

Example signature that would alert on the above request.

alert http SHOME_NET any -> $SEXTERNAL_NET any (msg:"HTTP Request Example"; flow:established,to_server;
http.method; content:"GET"; http.uri; content:"/index.html"; bsize:11; http.protocol; content:"HTTP/1.1"; bsize:8;
http.user_agent; content:"Mozilla/5.0"; bsize:11; http.host; content:"suricata.io"; bsize:11; classtype:bad-unknown;
sid:25; rev:1;)

In versions of HTTP prior to version 2 a server response could look like:

Example HTTP Response:

HTTP/1.1 200 OK

Content-Type: text/html
Content-Length: 258

Date: Thu, 14 Dec 2023 20:22:41 GMT
Server: nginx/0.8.54

Connection: Close

Example signature that would alert on the above response.

alert http SEXTERNAL_NET any -> $SHOME_NET any (msg:"HTTP Stat Code Example"; flow:established,to_client;
http.stat_code; content:"200"; bsize:8; http.content_type; content:"text/html"; bsize:9; classtype:bad-unknown; sid:30;
rev:1;)

Request Keywords:
¢ file.name
* http.accept
e http.accept_enc
* http.accept_lang
* http.host
* http.host.raw
o http.method

* http.referer

8.13. HTTP Keywords 105

Suricata User Guide, Release 8.0.0

http.request_body
http.request_header
http.request_line
http.uri

http.uri.raw
http.user_agent

urilen

Response Keywords:

Request or Response Keywords:

file.data

http.location
http.response_body
http.response_header
http.response_line
http.server
http.stat_code

http.stat_msg

http.connection
http.content_len
http.content_type
http.cookie
http.header
http.header.raw
http.header_names
http.protocol

http.start

8.13.2 Normalization

There are times when Suricata performs formatting/normalization changes to traffic that is seen.

106

Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Duplicate Header Names

non

If there are multiple values for the same header name, they are concatenated with a comma and space (", ") between
each value. More information can be found in RFC 2616 https://www.rfc-editor.org/rfc/rfc2616.html#section-4.2

In the example below, notice that the User-Agent header, regardless of the letter casing is evaluated as the same header.
The normalized header evaluation leads to the concatenated header values as described in the RFC above.

Example Duplicate HTTP Header:

GET / HTTP/1.1

Host: suricata.io
User-Agent: Mozilla/5.0
User-agent: Chrome/121.0.0

alert http SHOME_NET -> $EXTERNAL_NET (msg:"Example Duplicate Header"; flow:established,to_server;
http.user_agent; content:"Mozilla/5.0, Chrome/121.0.0"; classtype:bad-unknown; sid:103; rev:1;)

8.13.3 file.name

The file.name keyword can be used with HTTP requests.
It is possible to use any of the Payload Keywords with the £ile.name keyword.

Example HTTP Request:

GET /picture.jpg HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http SEXTERNAL_NET any -> $SHOME_NET any (msg:"HTTP file.name Example"; flow:established,to_client;
file.name; content:"picture.jpg"; classtype:bad-unknown; sid:129; rev:1;)

Note: Additional information can be found at File Keywords

8.13.4 http.accept

The http.accept keyword is used to match on the Accept field that can be present in HTTP request headers.
It is possible to use any of the Payload Keywords with the http.accept keyword.
Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Accept: */*

Host: suricata.io

alert http $SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Accept Example"; flow:established,to_server;
http.accept; content:"*/*"; bsize:3; classtype:bad-unknown; sid:91; rev:1;)

Note: http.accept does not include the leading space or trailing \r\n

8.13. HTTP Keywords 107

https://www.rfc-editor.org/rfc/rfc2616.html#section-4.2

Suricata User Guide, Release 8.0.0

Note: http.accept can have additional formatting/normalization applied to buffer contents, see Normalization for
additional details.

8.13.5 http.accept_enc

The http.accept_enc keyword is used to match on the Accept-Encoding field that can be present in HTTP request
headers.

It is possible to use any of the Payload Keywords with the http.accept_enc keyword.

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Accept-Encoding: gzip, deflate
Host: suricata.io

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Accept-Encoding Example";
flow:established,to_server; http.accept_enc; content:"gzip, deflate"; bsize:13; classtype:bad-unknown; sid:92;
rev:1;)

Note: http.accept_enc does not include the leading space or trailing \r\n

Note: http.accept_enc can have additional formatting/normalization applied to buffer contents, see Normalization
for additional details.

8.13.6 http.accept_lang

The http.accept_lang keyword is used to match on the Accept-Language field that can be present in HTTP request
headers.

It is possible to use any of the Payload Keywords with the http.accept_lang keyword.

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Accept-Language: en-US
Host: suricata.io

alert http $HOME_NET any -> S$EXTERNAL_NET any (msg:"HTTP Accept-Encoding Example";
flow:established,to_server; http.accept_lang; content:"en-US"; bsize:5; classtype:bad-unknown; sid:93; rev:1;)

Note: http.accept_lang does not include the leading space or trailing \r\n

Note: http.accept_lang canhave additional formatting/normalization applied to buffer contents, see Normalization
for additional details.

108 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.13.7 http.host

Matching on the HTTP host name has two options in Suricata, the http.host and the http.host.raw sticky buffers.

It is possible to use any of the Payload Keywords with both http.host keywords.

Note: The http.host keyword normalizes the host header contents. If a host name has uppercase characters, those
would be changed to lowercase.

Normalization Example:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: SuRiCaTa.Io

In the above example the host buffer would contain suricata.io.

alert http SHOME_NET any -> $SEXTERNAL_NET any (msg:"HTTP Host Example"; flow:established,to_server;
http.host; content:"suricata.io"; bsize:11; classtype:bad-unknown; sid:123; rev:1;)

Note: The nocase keyword is no longer allowed since the host names are normalized to contain only lowercase letters.

Note: http.host does not contain the port associated with the host (i.e. suricata.io:1234). To match on the host and
port or negate a host and port use http.host.raw.

Note: http.host does not include the leading space or trailing \r\n

Note: The http.host and http.host.raw buffers are populated from either the URI (if the full URI is present in
the request like in a proxy request) or the HTTP Host header. If both are present, the URI is used.

Note: http.host can have additional formatting/normalization applied to buffer contents, see Normalization for
additional details.

8.13.8 http.host.raw

The http.host.raw buffer matches on HTTP host content but does not have any normalization performed on the
buffer contents (see http.host)

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: SuRiCaTa.Io:8445

alert http SHOME_NET any -> SEXTERNAL_NET any (msg:"HTTP Host Raw Example"; flow:established,to_server;
http.host.raw; content:"SuRiCaTa.lo|3a|8445"; bsize:16; classtype:bad-unknown; sid:124; rev:1;)

8.13. HTTP Keywords 109

Suricata User Guide, Release 8.0.0

Note: http.host.raw does not include the leading space or trailing \r\n

Note: The http.host and http.host.raw buffers are populated from either the URI (if the full URI is present in
the request like in a proxy request) or the HTTP Host header. If both are present, the URI is used.

Note: http.host.raw can have additional formatting/normalization applied to buffer contents, see Normalization
for additional details.

8.13.9 http.method

The http.method keyword matches on the method/verb used in an HTTP request. HTTP request methods can be any
of the following:

* GET

« POST

« HEAD

* OPTIONS

* PUT

* DELETE

* TRACE

* CONNECT

* PATCH
It is possible to use any of the Payload Keywords with the http.method keyword.
Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http SHOME_NET any -> SEXTERNAL_NET any (msg:"HTTP Request Example"; flow:established,to_server;
http.method; content:"GET"; classtype:bad-unknown; sid:2; rev:1;)

8.13.10 http.referer

The http.referer keyword is used to match on the Referer field that can be present in HT TP request headers.
It is possible to use any of the Payload Keywords with the http.referer keyword.
Example HTTP Request:

GET / HTTP/1.1
Host: suricata.io
Referer: https://suricata.io

110 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

alert http SHOME_NET any -> SEXTERNAL_NET any (msg:"HTTP Referer Example"; flow:established,to_server;
http.referer; content:"http|3a 2f 2f|suricata.io"; bsize:19; classtype:bad-unknown; sid:200; rev:1;)

Note: http.referer does not include the leading space or trailing \r\n

Note: http.referer can have additional formatting/normalization applied to buffer contents, see Normalization for
additional details.

8.13.11 http.request_body

The http.request_body keyword is used to match on the HTTP request body that can be present in an HTTP request.
It is possible to use any of the Payload Keywords with the http.request_body keyword.
Example HTTP Request:

POST /suricata.php HTTP/1.1

Content-Type: application/x-www-form-urlencoded
Host: suricata.io

Content-Length: 23

Connection: Keep-Alive

Suricata request body

alert http $HOME_NET any -> S$EXTERNAL_NET any (msg:"HTTP Request Body Example";
flow:established,to_server; http.request_body; content:"Suricata request body"; classtype:bad-unknown; sid:115;
rev:1;)

Note: How much of the request/client body is inspected is controlled in the libhtp configuration section via the
request-body-limit setting.

Note: http.request_body replaces the previous keyword name, http_client_body. http_client_body can
still be used but it is recommended that rules be converted to use http.request_body.

8.13.12 http.request_header

The http.request_header keyword is used to match on the name and value of a HTTP/1 or HTTP/2 request.

It is possible to use any of the Payload Keywords with the http.request_header keyword.

n,on

For HTTP/2, the header name and value get concatenated by ": " (colon and space). The colon and space are commonly
noted with the hexadecimal format |3a 20| within signatures.

"non

To detect if an HTTP/2 header name contains a ":" (colon), the keyword http2.header_name can be used.

Example HTTP/1 Request:

8.13. HTTP Keywords 111

Suricata User Guide, Release 8.0.0

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http SHOME_NET any -> $SEXTERNAL_NET any (msg:"HTTP Request Example"; flow:established,to_server;
http.request_header; content:"Host|3a 20|suricata.io"; classtype:bad-unknown; sid:126; rev:1;)

Note: http.request_header does not include the trailing \r\n

8.13.13 http.request_line

The http.request_line keyword is used to match on the entire contents of the HTTP request line.

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http SHOME_NET any -> $SEXTERNAL_NET any (msg:"HTTP Request Example"; flow:established,to_server;
http.request_line; content:"GET /index.html HTTP/1.1"; bsize:24; classtype:bad-unknown; sid:60; rev:1;)

Note: http.request_line does not include the trailing \r\n

8.13.14 http.uri

Matching on the HTTP URI buffer has two options in Suricata, the http.uri and the http.uri.raw sticky buffers.
It is possible to use any of the Payload Keywords with both http.uri keywords.

The http.uri keyword normalizes the URI buffer. For example, if a URI has two leading //, Suricata will normalize
the URI to a single leading /.

Normalization Example:

GET //index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

In this case //index.html would be normalized to /index.html.

Normalized HTTP Request Example:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP URI Example"; flow:established,to_server;
http.uri; content:"/index.html"; bsize:11; classtype:bad-unknown; sid:3; rev:1;)

112 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.13.15 http.uri.raw

The http.uri.raw buffer matches on HTTP URI content but does not have any normalization performed on the buffer
contents. (see http.uri)

Abnormal HTTP Request Example:

GET //index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http SHOME_NET any -> SEXTERNAL_NET any (msg:"HTTP URI Raw Example"; flow:established,to_server;
http.uri.raw; content:"//index.html"; bsize:12; classtype:bad-unknown; sid:4; rev:1;)

Note: The http.uri.raw keyword/buffer does not allow for spaces.

Example Request:

GET /example spaces HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

http.uri.raw would be populated with /example
http.protocol would be populated with spaces HTTP/1.1

Reference: https://redmine.openinfosecfoundation.org/issues/2881

8.13.16 http.user_agent

The http.user_agent keyword is used to match on the User-Agent field that can be present in HTTP request headers.
It is possible to use any of the Payload Keywords with the http.user_agent keyword.

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Cookie: PHPSESSION=123
Host: suricata.io

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP User-Agent Example";
flow:established,to_server; http.user_agent; content:"Mozilla/5.0"; bsize:11; classtype:bad-unknown; sid:90;
rev:1;)

Note: http.user_agent does not include the leading space or trailing \r\n

Note: Using the http.user_agent generally provides better performance than using htp.header.

Note: http.user_agent can have additional formatting/normalization applied to buffer contents, see Normalization
for additional details.

8.13. HTTP Keywords 113

https://redmine.openinfosecfoundation.org/issues/2881

Suricata User Guide, Release 8.0.0

8.13.17 urilen

The urilen keyword is used to match on the length of the normalized request URL. It is possible to use the < and >
operators, which indicate respectively less than and larger than.

urilen uses an unsigned 64-bit integer.
The urilen keyword does not require a content match on the hzp.uri buffer or the http.uri.raw buffer.

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http SHOME_NET any -> SEXTERNAL_NET any (msg:"HTTP Request"; flow:established,to_server; urilen:11;
http.method; content:"GET"; classtype:bad-unknown; sid:40; rev:1;)

The above signature would match on any HTTP GET request that has a URI length of 11, regardless of the content or
structure of the URL

The following signatures would all alert on the example request above as well and show the different urilen options.

alert http SHOME_NET any -> $SEXTERNAL_NET any (msg:"urilen greater than 10"; flow:established,to_server;
urilen:>10; classtype:bad-unknown; sid:41; rev:1;)

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"urilen less than 12"; flow:established,to_server;
urilen:<12; classtype:bad-unknown; sid:42; rev:1;)

alert http $HOME_NET any -> S$EXTERNAL NET any (msg:"urilen greater/less than example";
flow:established,to_server; urilen:10<>12; classtype:bad-unknown; sid:43; rev:1;)

8.13.18 http.location

The http.location keyword is used to match on the HTTP response location header contents.
It is possible to use any of the Payload Keywords with the http.location keyword.

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54
Location: suricata.io

alert http SEXTERNAL_NET any -> $SHOME_NET any (msg:"HTTP Location Example"; flow:established,to_client;
http.location; content:"suricata.io"; bsize:11; classtype:bad-unknown; sid:122; rev:1;)

Note: http.location does not include the leading space or trailing \r\n

Note: http.location can have additional formatting/normalization applied to buffer contents, see Normalization
for additional details.

114 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.13.19 http.response_body

The http.response_body keyword is used to match on the HTTP response body.
It is possible to use any of the Payload Keywords with the http.response_body keyword.

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54

Server response body

alert http $EXTERNAL_NET any -> S$HOME_NET any (msg:"HTTP Response Body Example";
flow:established,to_client; http.response_body; content:"Server response body"; classtype:bad-unknown; sid:120;
rev:1;)

Note: http.response_body will match on gzip decoded data just like file.data does.

Note: How much of the response/server body is inspected is controlled in your libhtp configuration section via the
response-body-limit setting.

Note: http.response_body replaces the previous keyword name, http_server_body. http_server_body can
still be used but it is recommended that rules be converted to use http.response_body.

8.13.20 http.response_header

The http.response_header keyword is used to match on the name and value of an HTTP/1 or HTTP/2 request.

It is possible to use any of the Payload Keywords with the http.response_header keyword.

n,on

For HTTP/2, the header name and value get concatenated by ": " (colon and space). The colon and space are commonly
noted with the hexadecimal format |3a 20| within signatures.

non

To detect if an HTTP/2 header name contains a ":" (colon), the keyword http2.header_name can be used.

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54
Location: suricata.io

alert http SEXTERNAL_NET any -> SHOME_NET any (msg:"HTTP Response Example"; flow:established,to_client;
http.response_header; content:"Location|3a 20|suricata.io"; classtype:bad-unknown; sid:127; rev:1;)

8.13. HTTP Keywords 115

Suricata User Guide, Release 8.0.0

8.13.21 http.response_line

The http.response_line keyword is used to match on the entire HTTP response line.
It is possible to use any of the Payload Keywords with the http.response_line keyword.

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Response Line Example";
flow:established,to_client; http.response_line; content:"HTTP/1.1 200 OK"; classtype:bad-unknown; sid:119;
rev:1;)

Note: http.response_line does not include the trailing \r\n

8.13.22 http.server

The http.server keyword is used to match on the HTTP response server header contents.
It is possible to use any of the Payload Keywords with the http.server keyword.

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54

alert http SEXTERNAL_NET any -> $SHOME_NET any (msg:"HTTP Server Example"; flow:established,to_client;
http.server; content:"nginx/0.8.54"; bsize:12; classtype:bad-unknown; sid:121; rev:1;)

Note: http.server does not include the leading space or trailing \r\n

Note: http.server can have additional formatting/normalization applied to buffer contents, see Normalization for
additional details.

8.13.23 http.stat_code

The http.stat_code keyword is used to match on the HTTP status code that can be present in an HTTP response.
It is possible to use any of the Payload Keywords with the http.stat_code keyword.

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54

116 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Stat Code Response Example";
flow:established,to_client; http.stat_code; content:"200"; classtype:bad-unknown; sid:117; rev:1;)

Note: http.stat_code does not include the leading or trailing space

8.13.24 http.stat_msg

The http.stat_msg keyword is used to match on the HTTP status message that can be present in an HTTP response.

For HTTP/2, an empty buffer is returned by Suricata. See rfc 7540 section 8.1.2.4. about Response Pseudo-Header
Fields.

It is possible to use any of the Payload Keywords with the http.stat_msg keyword.

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Stat Message Response Example";
flow:established,to_client; http.stat_msg; content:"OK"; classtype:bad-unknown; sid:118; rev:1;)

Note: http.stat_msg does not include the leading space or trailing \r\n

Note: http.stat_msg will always be empty when used with HTTP/2

8.13.25 file.data

With file.data, the HTTP response body is inspected, just like with http.response_body. file.data also works
for HTTP request body and can be used in protocols other than HTTP.

It is possible to use any of the Payload Keywords with the file.data keyword.

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54

Server response body

alert http SEXTERNAL_NET any -> $SHOME_NET any (msg:"HTTP file.data Example"; flow:established,to_client;
file.data; content:"Server response body"; classtype:bad-unknown; sid:128; rev:1;)

The body of an HTTP response can be very large, therefore the response body is inspected in definable chunks.

How much of the response/server body is inspected is controlled in the [libhtp configuration section via the
response-body-limit setting.

8.13. HTTP Keywords 117

Suricata User Guide, Release 8.0.0

Note: If the HTTP body is a flash file compressed with 'deflate’ or 'lzma’, it can be decompressed and file.data can
match on the decompressed data. Flash decompression must be enabled under 'libhtp' configuration:

Decompress SWF files.

2 types: 'deflate', 'lzma', 'both' will decompress deflate and lzma
compress-depth:

Specifies the maximum amount of data to decompress,

set 0 for unlimited.

decompress-depth:

Specifies the maximum amount of decompressed data to obtain,
set 0 for unlimited.

swf-decompression:

enabled: yes

type: both

compress-depth: 0

decompress-depth: 0

HFHOoR R OH W W R R

Note: file.data replaces the previous keyword name, file_data. file_data can still be used but it is recom-
mended that rules be converted to use file.data.

Note: If an HTTP body is using gzip or deflate, file.data will match on the decompressed data.

Note: Negated matching is affected by the chunked inspection. E.g. 'content:!"<html";' could not match on the first
chunk, but would then possibly match on the 2nd. To avoid this, use a depth setting. The depth setting takes the body
size into account. Assuming that the response-body-minimal-inspect-size is bigger than 1k, 'content:!"<html";
depth:1024;' can only match if the pattern '<html' is absent from the first inspected chunk.

Note: Additional information can be found at File Keywords

Note: file.data supports multiple buffer matching, see Multiple Buffer Matching.

8.13.26 http.connection

The http.connection keyword is used to match on the Connection field that can be present in HTTP request or
response headers.

It is possible to use any of the Payload Keywords with the http.connection keyword.

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Accept-Language: en-US

(continues on next page)

118 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

(continued from previous page)

Host: suricata.io
Connection: Keep-Alive

alert http $SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Connection Example";
flow:established,to_server; http.connection; content:"Keep-Alive"; bsize:10; classtype:bad-unknown; sid:94;
rev:1;)

Note: http.connection does not include the leading space or trailing \r\n

Note: http.connection can have additional formatting/normalization applied to buffer contents, see Normalization
for additional details.

8.13.27 http.content_len

The http.content_len keyword is used to match on the Content-Length field that can be present in HTTP request or
response headers. Use flow:to_server or flow:to_client to force inspection of the request or response respec-
tively.

It is possible to use any of the Payload Keywords with the http.content_len keyword.
Example HTTP Request:

POST /suricata.php HTTP/1.1

Content-Type: multipart/form-data; boundary=--------------- 123
Host: suricata.io

Content-Length: 100

Connection: Keep-Alive

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54
Connection: Close
Content-Length: 20

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Content-Length Request Example";
flow:established,to_server; http.content_len; content:"100"; bsize:3; classtype:bad-unknown; sid:97; rev:1;)

alert http $SEXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Content-Length Response Example";
flow:established,to_client; http.content_len; content:"20"; bsize:2; classtype:bad-unknown; sid:98; rev:1;)

To do numeric evaluation of the content length, byre_test can be used.

If we want to match on an HTTP request content length equal to and greater than 100 we could use the following
signature.

alert http SHOME_NET any -> SEXTERNAL_NET any (msg:"HTTP Content-Length Request Byte Test Example";
flow:established,to_server; http.content_len; byte_test:0,>=,100,0,string,dec; classtype:bad-unknown; sid:99; rev:1;)

Note: http.content_len does not include the leading space or trailing \r\n

8.13. HTTP Keywords 119

Suricata User Guide, Release 8.0.0

8.13.28 http.content_type

The http.content_type keyword is used to match on the Content-Type field that can be present in HTTP request or
response headers. Use flow:to_server or flow:to_client to force inspection of the request or response respec-
tively.

It is possible to use any of the Payload Keywords with the http.content_type keyword.
Example HTTP Request:

POST /suricata.php HTTP/1.1

Content-Type: multipart/form-data; boundary=--------------- 123
Host: suricata.io

Content-Length: 100

Connection: Keep-Alive

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54
Connection: Close

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Content-Type Request Example";
flow:established,to_server; http.content_type; content:"multipart/form-data|3b 20|"; startswith; classtype:bad-
unknown; sid:95; rev:1;)

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Content-Type Response Example";
flow:established,to_client; http.content_type; content: "text/html"; bsize:9; classtype:bad-unknown; sid:96; rev:1;)

Note: http.content_type does not include the leading space or trailing \r\n

Note: http.content_type can have additional formatting/normalization applied to buffer contents, see Normaliza-
tion for additional details.

8.13.29 http.cookie

The http.cookie keyword is used to match on the cookie field that can be present in HTTP request (Cookie) or HTTP
response (Set-Cookie) headers.

It is possible to use any of the Payload Keywords with both http.header keywords.
Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Cookie: PHPSESSION=123
Host: suricata.io

alert http SHOME_NET any -> $SEXTERNAL_NET any (msg:"HTTP Cookie Example"; flow:established,to_server;
http.cookie; content:"PHPSESSIONID=123"; bsize: 14; classtype:bad-unknown; sid:80; rev:1;)

120 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Note: Cookies are passed in HTTP headers but Suricata extracts the cookie data to http. cookie and will not match
cookie content put in the http.header sticky buffer.

Note: http.cookie does not include the leading space or trailing \r\n

Note: http.cookie can have additional formatting/normalization applied to buffer contents, see Normalization for
additional details.

8.13.30 http.header

Matching on HTTP headers has two options in Suricata, the http.header and the http.header.raw.
It is possible to use any of the Payload Keywords with both http.header keywords.

The http.header keyword normalizes the header contents. For example if header contents contain trailing white-
space or tab characters, those would be removed.

To match on non-normalized header data, use the http.header.raw keyword.

Normalization Example:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0 \r\n
Host: suricata.io

‘Would be normalized to Mozilla/5.0\r\n
Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http SHOME_NET any -> SEXTERNAL_NET any (msg:"HTTP Header Example 1"; flow:established,to_server;
http.header; content:"User-Agent|3a 20|Mozilla/5.0|0d Oa|"; classtype:bad-unknown; sid:70; rev:1;)

alert http SHOME_NET any -> SEXTERNAL_NET any (msg:"HTTP Header Example 2"; flow:established,to_server;
http.header; content:"Host|3a 20|suricata.io|Od Oal"; classtype:bad-unknown; sid:71; rev:1;)

alert http SHOME_NET any -> $SEXTERNAL_NET any (msg:"HTTP Header Example 3"; flow:established,to_server;
http.header; content:"User-Agent|3a 20|Mozilla/5.0/0d Oa|"; startswith; content:"Host|3a 20|suricata.iol0d Oal";
classtype:bad-unknown; sid:72; rev:1;)

Note: There are headers that will not be included in the http.header buffer, specifically the /tp.cookie buffer.

Note: http.header can have additional formatting/normalization applied to buffer contents, see Normalization for
additional details.

8.13. HTTP Keywords 121

Suricata User Guide, Release 8.0.0

8.13.31 http.header.raw

The http.header.raw buffer matches on HTTP header content but does not have any normalization performed on
the buffer contents (see http.header)

Abnormal HTTP Header Example:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
User-Agent: Chrome
Host: suricata.io

alert http $HOME_NET any -> S$EXTERNAL_NET any (msg:"HTTP Header Raw Example";
flow:established,to_server; http.header.raw; content:"User-Agent|3a 20|Mozilla/5.0|0d Oa|"; content:"User-Agent|3a
20|Chrome|0d Oal"; classtype:bad-unknown; sid:73; rev:1;)

Note: http.header.raw can have additional formatting applied to buffer contents, see Normalization for additional
details.

8.13.32 http.header_names

The http.header_names keyword is used to match on the names of the headers in an HTTP request or response. This
is useful for checking for a header's presence, absence and/or header order. Use flow:to_server or flow:to_client
to force inspection of the request or response respectively.

It is possible to use any of the Payload Keywords with the http.header_names keyword.
Example HTTP Request:

GET / HTTP/1.1
Host: suricata.io
Connection: Keep-Alive

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54

Examples to match exactly on header order:

alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Header Names Request Example";
flow:established,to_server; http.header_names; content:"|0d Oa|Host|0d Oa|Connection|0d Oa Od Oa|"; bsize:22;
classtype:bad-unknown; sid:110; rev:1;)

alert http $SEXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Header Names Response Example";
flow:established,to_client; http.header_names; content:"|0d OalContent-Type|Od OalServer|0d Oa 0d a0|"; bsize:26;
classtype:bad-unknown; sid:111; rev:1;)

Examples to match on header existence:

alert http $SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Header Names Request Example 2";
flow:established,to_server; http.header_names; content:"|0d OalHost|0d Oal|"; classtype:bad-unknown; sid:112; rev:1;)

122 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Header Names Response Example 2";
flow:established,to_client; http.header_names; content:"|0d Oa|Content-Type|Od Oa|"; classtype:bad-unknown; sid:113;
rev:1;)

Examples to match on header absence:
alert http SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Header Names Request Example 3";

flow:established,to_server; http.header_names; content:!"|0d OalUser-Agent|0d Oa]"; classtype:bad-unknown; sid:114;
rev:1;)

alert http $SEXTERNAL_NET any -> $HOME_NET any (msg:"HTTP Header Names Response Example 3";
flow:established,to_client; http.header_names; content:!"|0d Oa|Date|0d Oa|"; classtype:bad-unknown; sid:115; rev:1;)

Example to check for the User-Agent header and that the Host header is after User-Agent but not necessarily directly
after.

alert http $SHOME_NET any -> $EXTERNAL_NET any (msg:"HTTP Header Names Request Example 4";
flow:established,to_server; http.header_names; content:"|0d OalHost|0d Oa|"; content:"User-Agent|0d Oa|"; distance:-
2; classtype:bad-unknown; sid:114; rev:1;)

Note: http.header_names starts with a \r\n and ends with an extra \r\n.

Note: http.header_names can have additional formatting/normalization applied to buffer contents, see Normaliza-
tion for additional details.

8.13.33 http.protocol

The http.protocol keyword is used to match on the protocol field that is contained in HTTP requests and responses.

For HTTP/2, the constant string "HTTP/2" is used. See rfc 7540 section 8.1.2.4. about Response Pseudo-Header
Fields.

It is possible to use any of the Payload Keywords with the http.protocol keyword.

Note: http.protocol does not include the leading space or trailing \r\n

Example HTTP Request:

GET /index.html HTTP/1.1
User-Agent: Mozilla/5.0
Host: suricata.io

alert http SHOME_NET any -> $SEXTERNAL_NET any (msg:"HTTP Protocol Example"; flow:established,to_server;
http.protocol; content:"HTTP/1.1"; bsize:9; classtype:bad-unknown; sid:50; rev:1;)

8.13. HTTP Keywords 123

Suricata User Guide, Release 8.0.0

8.13.34 http.start

The http.start keyword is used to match on the start of an HTTP request or response. This will contain the re-
quest/response line plus the request/response headers. Use flow:to_server or flow:to_client to force inspection
of the request or response respectively.

It is possible to use any of the Payload Keywords with the http.start keyword.
Example HTTP Request:

GET / HTTP/1.1
Host: suricata.io
Connection: Keep-Alive

Example HTTP Response:

HTTP/1.1 200 OK
Content-Type: text/html
Server: nginx/0.8.54

alert http $HOME_NET any -> S$EXTERNAL_NET any (msg:"HTTP Start Request Example";
flow:established,to_server; http.start; content:"POST / HTTP/1.1/0d 0Oa]Host|0d Oa|Connection|0d Oa Od Oa|";
classtype:bad-unknown; sid:101; rev:1;)

alert http S$EXTERNAL_NET any -> S$HOME_NET any (msg:"HTTP Start Response Example";
flow:established,to_client; http.start; content:"HTTP/1.1 200 OK]|0d Oa|Content-Type|0d OalServer|0d Oa 0d a0|";
classtype:bad-unknown; sid:102; rev:1;)

Note: http.start contains the normalized headers and is terminated by an extra \r\n to indicate the end of the
headers.

8.14 File Keywords

Suricata comes with several rule keywords to match on various file properties. They depend on properly configured
File Extraction.

8.14.1 file.data

The file.data sticky buffer matches on contents of files that are seen in flows that Suricata evaluates. The various
payload keywords can be used (e.g. startswith, nocase and bsize) with file.data.

Example:

alert smtp any any -> any any (msg:'"smtp app layer file.data example"; \
file.data; content:"example file content"; sid:1; rev:1)

alert http any any -> any any (msg:"http app layer file.data example"; \
file.data; content:"example file content"; sid:2; rev:1)

alert http2 any any -> any any (msg:"http2 app layer file.data example"; \
file.data; content:"example file content"; sid:3; rev:1;)

(continues on next page)

124 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

(continued from previous page)

alert nfs any any -> any any (msg:'"nfs app layer file.data example"; \
file.data; content:" "; sid:5; rev:1)

alert ftp-data any any -> any any (msg:"ftp app layer file.data example"; \
file.data; content:"example file content"; sid:6; rev:1;)

alert tcp any any -> any any (msg:"tcp file.data example"; \
file.data; content:"example file content"; sid:4; rev:1)

Note file_data is the legacy notation but can still be used.

8.14.2 file.name

file.name is a sticky buffer that is used to look at filenames that are seen in flows that Suricata evaluates. The various
payload keywords can be used (e.g. startswith, nocase and bsize) with file.name.

Example:

file.name; content:"examplefilename";

file.name supports multiple buffer matching, see Multiple Buffer Matching.

Note filename can still be used. A notable difference between file.name and filename is that filename assumes
nocase by default. In the example below the two signatures are considered the same.

Example:

filename: "examplefilename";

file.name; content:"examplefilename"; nocase;

8.14.3 fileext

fileext is used to look at individual file extensions that are seen in flows that Suricata evaluates.

Example:

fileext:"pdf";

Note: fileext does not allow partial matches. For example, if a PDF file (.pdf) is seen by a Suricata signature with
fileext:"pd"; the signature will not produce an alert.

Note: fileext assumes nocase by default. This means that a file with the extension .PDF will be seen the same as if
the file had an extension of .pdf.

Note: fileext and file.name can both be used to match on file extensions. In the example below the two signatures
are considered the same.

Example:

fileext:"pdf";

file.name; content:".pdf"; nocase; endswith;

8.14. File Keywords 125

Suricata User Guide, Release 8.0.0

Note: While " fileeext™™ and file.name can both be used to match on file extensions, file.name allows for partial
matching on file extensions. The following would match on a file with the extension of .pd as well as .pdf.

Example:

file.name; content:".pd";

8.14.4 file.magic

Matches on the information libmagic returns about a file.

Example:

file.magic; content:"executable for MS Windows";

Note filemagic can still be used. The only difference between file.magic and file.magic is that filemagic
assumes nocase by default. In the example below the two signatures are considered the same.

Example:

filemagic:"executable for MS Windows";

file.magic; content:"executable for MS Windows"; nocase;

Note: Suricata currently uses its underlying operating systems version/implementation of libmagic. Different versions
and implementations of libmagic do not return the same information. Additionally there are varying Suricata per-
formance impacts based on the version and implementation of libmagic. Additional information about Suricata and
libmagic can be found here: https://redmine.openinfosecfoundation.org/issues/437

file.magic supports multiple buffer matching, see Multiple Buffer Matching.

8.14.5 filestore

Stores files to disk if the signature matched.

Syntax:

filestore:<direction>,<scope>;

direction can be:
* request/to_server: store a file in the request / to_server direction
* response/to_client: store a file in the response / to_client direction
* both: store both directions
scope can be:
* file: only store the matching file (for filename,fileext,filemagic matches)
* tx: store all files from the matching HTTP transaction
¢ ssn/flow: store all files from the TCP session/flow.

If direction and scope are omitted, the direction will be the same as the rule and the scope will be per file.

126 Chapter 8. Suricata Rules

https://redmine.openinfosecfoundation.org/issues/437

Suricata User Guide, Release 8.0.0

8.14.6 filemd5

Match file MD5 against list of MDS5 checksums.

Syntax:

filemd5:[!]filename;

The filename is expanded to include the rule dir. In the default case it will become /etc/suricata/rules/filename. Use
the exclamation mark to get a negated match. This allows for white listing.

Examples:

filemd5:md5-blacklist;
filemd5: !md5-whitelist;

File format

The file format is simple. It's a text file with a single mdS5 per line, at the start of the line, in hex notation. If there is
extra info on the line it is ignored.

Output from md5sum is fine:

2£8d0355f0032c3e6311c6408d7c2dc2 util-path.c
b9cf5cf347a70e02fde975fc4e117760 util-pidfile.c
02aaa6bc3f4dbae65f5889eeb8f2bbb8d util-pool.c
dd5fclee7£2£f96b5£12d1a854007a818 util-print.c

Just MD5's are good as well:

2£8d0355f0032c3e6311c6408d7c2dc2
b9cf5cf347a70e02fde975fc4el17760
02aaa6c3f4dbae65f5889eeb8£2bbb8d
dd5fclee7£2f96b5£12d1a854007a818

Memory requirements
Each MD5 uses 16 bytes of memory. 20 Million MD5's use about 310 MiB of memory.
See also: https://blog.inliniac.net/2012/06/09/suricata-md5-blacklisting/

8.14.7 filesha1

Match file SHA1 against list of SHA1 checksums.

Syntax:

fileshal:[!]filename;

The filename is expanded to include the rule dir. In the default case it will become /etc/suricata/rules/filename. Use
the exclamation mark to get a negated match. This allows for white listing.

Examples:

fileshal:shal-blacklist;
fileshal:!shal-whitelist;

8.14. File Keywords 127

https://blog.inliniac.net/2012/06/09/suricata-md5-blacklisting/

Suricata User Guide, Release 8.0.0

File format
Same as md5 file format.

8.14.8 filesha256

Match file SHA256 against list of SHA256 checksums.

Syntax:

filesha256:[!]filename;

The filename is expanded to include the rule dir. In the default case it will become /etc/suricata/rules/filename. Use
the exclamation mark to get a negated match. This allows for white listing.

Examples:

filesha256:sha256-blacklist;
filesha256:!sha256-whitelist;

File format

Same as md5 file format.

8.14.9 filesize

Match on the size of the file as it is being transferred.
filesize uses an unsigned 64-bit integer.

Syntax:

filesize:<value>;

Possible units are KB, MB and GB, without any unit the default is bytes.

Examples:

filesize:100; # exactly 100 bytes

filesize:100<>200; # greater than 100 and smaller than 200
filesize:>100MB; # greater than 100 megabytes
filesize:<100MB; # smaller than 100 megabytes

Note: For files that are not completely tracked because of packet loss or stream.reassembly.depth being reached on the
"greater than" is checked. This is because Suricata can know a file is bigger than a value (it has seen some of it already),
but it can't know if the final size would have been within a range, an exact value or smaller than a value.

128 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.15 DNS Keywords

Suricata supports sticky buffers as well as keywords for efficiently matching on specific fields in DNS messages.

Note that sticky buffers are expected to be followed by one or more Payload Keywords.

8.15.1 dns.opcode

This keyword matches on the opcode found in the DNS header flags.

dns.opcode uses an unsigned 8-bit integer.

Syntax

dns.opcode: [!]<number>
dns.opcode: [!]<numberl>-<number2>

Examples

Match on DNS requests and responses with opcode 4:

dns.opcode:4;

Match on DNS requests where the opcode is NOT 0:

dns.opcode:!0;

Match on DNS requests where the opcode is between 7 and 15, exclusively:
dns.opcode:7-15;
Match on DNS requests where the opcode is not between 7 and 15:

dns.opcode:!7-15;

8.15.2 dns.rcode

This keyword matches on the rcode field found in the DNS header flags.
dns.rcode uses an unsigned 8-bit integer. It can also be specified by text from the enumeration.

Currently, Suricata only supports rcode values in the range [0-15], while the current DNS version supports rcode values
from [0-23] as specified in RFC 6895.

We plan to extend the rcode values supported by Suricata according to RFC 6895 as tracked by the ticket: https:
//redmine.openinfosecfoundation.org/issues/6650

8.15. DNS Keywords 129

https://www.iana.org/assignments/dns-parameters/dns-parameters.xhtml#dns-parameters-6
https://redmine.openinfosecfoundation.org/issues/6650
https://redmine.openinfosecfoundation.org/issues/6650

Suricata User Guide, Release 8.0.0

Syntax

dns.rcode: [!]<number>
dns.rcode: [!]<numberl>-<number2>

Examples

Match on DNS requests and responses with rcode 4:

dns.rcode:4;

Match on DNS requests and responses where the rcode is NOT 0:

dns.rcode:!0;

8.15.3 dns.rrtype

This keyword matches on the rrtype (integer) found in the DNS message.
dns.rrtype uses an unsigned 16-bit integer.

It can also be specified by text from the enumeration.

Syntax

dns.rrtype: [!]<number>

Examples

Match on DNS requests and responses with rrtype 4:

dns.rrtype:4;

Match on DNS requests and responses where the rrtype is NOT O:

dns.rrtype:!0;

8.15.4 dns.query

dns.query is a sticky buffer that is used to inspect DNS query names in DNS request messages. Example:

alert dns any any -> any any (msg:"Test dns.query option"; dns.query; content:'google";.
—nocase; sid:1;)

Being a sticky buffer, payload keywords such as content are to be used after dns.query:

dns_query; content: "abc";pcre: /abc/;

130 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

The dns. query keyword affects all following contents, until pkt_data is used or it reaches the end of the rule.

Note: dns.query is equivalent to the older dns_query.

Note: dns.query will only match on DNS request messages, to also match on DNS response message, see
dns.queries.rrname.

dns.queries.rrname supports Multiple Buffer Matching.

Normalized Buffer

Buffer contains literal domain name

* <length> values (as seen in a raw DNS request) are literal '.' characters

* no leading <length> value

* No terminating NULL (0x00) byte (use a negated relative isdataat to match the end)
Example DNS request for "mail.google.com" (for readability, hex values are encoded between pipes):

DNS query on the wire (snippet):

|04 |mail |06 |google|03|com|00 |

dns. query buffer:

mail.google.com

8.15.5 dns.queries.rrname
dns.queries.rrname is a sticky buffer that is used to look at the name field in DNS query (question) resource records.
It is nearly identical to dns. query but supports both DNS requests and responses.

dns.queries.rrname will look at both requests and responses, so £low is recommended to confine to a specific
direction.

The buffer being matched on contains the complete re-assembled resource name, for example "www.suricata.io".
dns.queries.rrname supports Multiple Buffer Matching.

dns.queries.rrname was introduced in Suricata 8.0.0.

8.15.6 dns.answers.rrname

dns.answers.rrname is a sticky buffer that is used to look at the name field in DNS answer resource records.

dns.answers.rrname will look at both requests and responses, so flow is recommended to confine to a specific
direction.

The buffer being matched on contains the complete re-assembled resource name, for example "www.suricata.io".
dns.answers.rrname supports Multiple Buffer Matching.

dns.answers.rrname was introduced in Suricata 8.0.0.

8.15. DNS Keywords 131

Suricata User Guide, Release 8.0.0

8.15.7 dns.authorities.rrname

dns.authorities.rrname is a sticky buffer that is used to look at the rrname field in DNS authority resource records.

dns.authorities.rrname will look at both requests and responses, so £1ow is recommended to confine to a specific
direction.

The buffer being matched on contains the complete re-assembled resource name, for example "www.suricata.io".
dns.authorities.rrname supports Multiple Buffer Matching.

dns.authorities.rrname was introduced in Suricata 8.0.0.

8.15.8 dns.additionals.rrname
dns.additionals.rrname is a sticky buffer that is used to look at the rrname field in DNS additional resource
records.

dns.additionals.rrname will look at both requests and responses, so £1ow is recommended to confine to a specific
direction.

The buffer being matched on contains the complete re-assembled resource name, for example "www.suricata.io".
dns.additionals.rrname supports Multiple Buffer Matching.

dns.additionals.rrname was introduced in Suricata 8.0.0.

8.15.9 dns.response.rrname

dns.response.rrname is a sticky buffer that is used to look at all name and rdata fields of DNS response (answer)
resource records that are represented as a resource name (hostname). It supports inspecting all DNS response sections.
Example:

alert dns any any -> any any (msg:"Test dns.response.rrname option"; \
dns.response.rrname; content:'google"; nocase; sid:1;)

rdata field matching supports a subset of types that contain domain name structured data, for example:
"www.suricata.io". The list of types inspected is:

* CNAME

* PTR

e MX

* NS

* SOA (mname data: primary name server)
The buffer being matched on contains the complete re-assembled resource name, for example "www.suricata.io".
dns.response.rrname supports Multiple Buffer Matching.

dns.response.rrname was introduced in Suricata 8.0.0.

132 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.16 mDNS Keywords

Suricata supports sticky buffers for efficiently matching on specific fields in mDNS (Multicast DNS) messages.

Note that sticky buffers are expected to be followed by one or more Payload Keywords.

8.16.1 mdns.queries.rrname

mdns.queries.rrname is a sticky buffer that is used to look at the name field in mDNS query resource records.
The buffer being matched on contains the complete re-assembled resource name, for example "host.local".
mdns.queries.rrname supports Multiple Buffer Matching.

Example:

alert udp any any -> any 5353 (msg:"mDNS query for .local domain"; \
mdns.queries.rrname; content:".local"; sid:1;)

8.16.2 mdns.answers.rrname

mdns.answers.rrname is a sticky buffer that is used to look at the name field in mDNS answer resource records.
The buffer being matched on contains the complete re-assembled resource name, for example "printer.local".
mdns. answers.rrname supports Multiple Buffer Matching.

Example:

alert udp any 5353 -> any any (msg:"mDNS answer for printer.local'; \
mdns.answers.rrname; content:''printer.local"; sid:2;)

8.16.3 mdns.authorities.rrname

mdns.authorities.rrname is a sticky buffer that is used to look at the rrname field in mDNS authority resource
records.

The buffer being matched on contains the complete re-assembled resource name, for example "device.local".
mdns.authorities.rrname supports Multiple Buffer Matching.

Example:

alert udp any 5353 -> any any (msg:"mDNS authority record check"; \
mdns.authorities.rrname; content:"auth.local"; sid:3;)

8.16. mDNS Keywords 133

Suricata User Guide, Release 8.0.0

8.16.4 mdns.additionals.rrname

mdns.additionals.rrname is a sticky buffer that is used to look at the rrname field in mDNS additional resource
records.

The buffer being matched on contains the complete re-assembled resource name, for example "service.local".
mdns.additionals.rrname supports Multiple Buffer Matching.

Example:

alert udp any any -> any 5353 (msg:"mDNS additional record check™; \
mdns.additionals.rrname; content:"_companion-link._tcp.local"; nocase; sid:4;)

8.16.5 mdns.response.rrname

mdns.response.rrname is a sticky buffer that is used to inspect all the rrname fields in a response, in the queries,
answers, additionals and authorities. Additionally it will also inspect rdata fields that have the same format as an rrname
(hostname).

rdata types that will be inspected are:
« CNAME
* PTR
* MX
* NS
* SOA

Example:

alert udp any 5353 -> any any (msg:"mDNS answer data match"; \
mdns.response.rrname; content:"Apple TV"; sid:5;)

8.17 SSL/TLS Keywords

Suricata comes with several rule keywords to match on various properties of TLS/SSL handshake. Matches are string
inclusion matches.

8.17.1 tis.cert_subject

Match TLS/SSL certificate Subject field.

Examples:

tls.cert_subject; content:"CN=*.googleusercontent.com"; isdataat:!l,relative;
tls.cert_subject; content:"google.com"; nocase; pcre:"/google\.com$/";

tls.cert_subject is a 'sticky buffer".
tls.cert_subject can be used as fast_pattern.

tls.cert_subject supports multiple buffer matching, see Multiple Buffer Matching.

134 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

tls.subject

Legacy keyword to match TLS/SSL certificate Subject field.

example:

tls.subject:"CN=*.googleusercontent.com"

Case sensitive, can't use 'nocase', or other modifiers.

Note: tls.cert_subject replaces the following legacy keywords: tls_cert_subject and tls.subject. It's
recommended that rules be converted to use the new one.

8.17.2 tls.cert_issuer

Match TLS/SSL certificate Issuer field.

Examples:

tls.cert_issuer; content:"WoSign"; nocase; isdataat:!l,relative;
tls.cert_issuer; content:"StartCom"; nocase; pcre:"/StartCom$/";

tls.cert_issuer is a 'sticky buffer'.
tls.cert_issuer can be used as fast_pattern.
tls.issuerdn

Legacy keyword to match TLS/SSL certificate IssuerDN field

example:

tls.issuerdn:!"CN=Google-Internet-Authority"

Case sensitive, can't use 'nocase', or other modifiers.

Note: tls.cert_issuer replaces the following legacy keywords: tls_cert_issuer and tls.issuerdn. It's rec-
ommended that rules be converted to use the new one.

8.17.3 tls.cert_serial

Match on the serial number in a certificate.

Example:

alert tls any any -> any any (msg:"match cert serial"; \
tls.cert_serial; content:"5C:19:B7:B1:32:3B:1C:A1"; sid:200012;)

tls.cert_serial is a 'sticky buffer'.
tls.cert_serial can be used as fast_pattern.

tls.cert_serial replaces the previous keyword name: tls_cert_serial. You may continue to use the previous
name, but it's recommended that rules be converted to use the new name.

8.17. SSL/TLS Keywords 135

Suricata User Guide, Release 8.0.0

8.17.4 tls.cert_fingerprint

Match on the SHA-1 fingerprint of the certificate.

Example:

alert tls any any -> any any (msg:'"match cert fingerprint"; \
tls.cert_fingerprint; \
content:"4a:a3:66:76:82:cb:6b:23:bb:c3:58:47:23:a4:63:a7:78:a4:al1:18"; \
sid:200023;)

tls.cert_fingerprint is a 'sticky buffer'.
tls.cert_fingerprint can be used as fast_pattern.

tls.cert_fingerprint replaces the previous keyword name: tls_cert_fingerprint may continue to use the
previous name, but it's recommended that rules be converted to use the new name.

8.17.5 tls.sni

Match TLS/SSL Server Name Indication field.

Examples:

tls.sni; content:"oisf.net"; nocase; isdataat:!1,relative;
tls.sni; content:"oisf.net"; nocase; pcre:"/oisf.net$/";

tls.sni is a 'sticky buffer'.
tls.sni can be used as fast_pattern.

tls.sni replaces the previous keyword name: tls_sni. You may continue to use the previous name, but it's recom-
mended that rules be converted to use the new name.

8.17.6 tls.subjectalthame

Match TLS/SSL Subject Alternative Name field.

Examples:

tls.subjectaltname; content:"|73 75 72 69 63 61 74 61 2e 69 6f|";

tls.subjectaltname is a 'sticky buffer'.
tls.subjectaltname can be used as fast_pattern.

tls.subjectaltname supports multiple buffer matching, see Multiple Buffer Matching.

136 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.17.7 tls_cert_notbefore

Match on the NotBefore field in a certificate.

Example:

alert tls any any -> any any (msg:'"match cert NotBefore"; \
tls_cert_notbefore:1998-05-01<>2008-05-01; sid:200005;)

8.17.8 tls_cert notafter

Match on the NotAfter field in a certificate.

Example:

alert tls any any -> any any (msg:"match cert NotAfter"; \
tls_cert_notafter:>2015; sid:200006;)

8.17.9 tls_cert_expired

Match returns true if certificate is expired. It evaluates the validity date from the certificate.

Usage:

tls_cert_expired;

8.17.10 tils_cert_valid

Match returns true if certificate is not expired. It only evaluates the validity date. It does not do cert chain validation.
It is the opposite of tls_cert_expired.

Usage:

tls_cert_valid;

8.17.11 tls.certs

Do a "raw" match on each of the certificates in the TLS certificate chain.

Example:

alert tls any any -> any any (msg:'match bytes in TLS cert"; tls.certs; \
content:" |06 09 2a 86|"; sid:200070;)

tls.certs is a 'sticky buffer'.
tls.certs can be used as fast_pattern.

tls.certs supports multiple buffer matching, see Multiple Buffer Matching.

8.17. SSL/TLS Keywords 137

Suricata User Guide, Release 8.0.0

8.17.12 tls.version

Match on negotiated TLS/SSL version.
Supported values: "1.0", "1.1", "1.2", "1.3"
It is also possible to match versions using a hex string.

Examples:

tls.version:1.2;
tls.version:0x7£f12;

The first example matches TLSv1.2, whilst the last example matches TLSv1.3 draft 16.

8.17.13 ssl_version

Match version of SSL/TLS record.
Supported values "sslv2", "sslv3", "tIs1.0", "tIs1.1", "tls1.2", "tls1.3"

Example:

alert tls any any -> any any (msg:"match TLSv1.2"; \
ssl_version:tlsl.2; sid:200030;)

It is also possible to match on several versions at the same time.

Example:

alert tls any any -> any any (msg:"match SSLv2 and SSLv3"; \
ssl_version:sslv2,sslv3; sid:200031;)

8.17.14 tis.fingerprint

match TLS/SSL certificate SHA1 fingerprint

example:

tls.fingerprint:!"£3:40:21:48:70:2c:31:bc:b5:aa:22:ad:63:d6:bc:2e:b3:46:e2:5a"

Case sensitive, can't use 'nocase’'.

The tls.fingerprint buffer is lower case so you must use lower case letters for this to match.

8.17.15 tls.store

store TLS/SSL certificate on disk. The location can be specified in the output.tis-store.certs-log-dir parameter of the
yaml configuration file, cf TLS parameters and certificates logging (tls.log)..

138 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.17.16 ssl_state
The ssl_state keyword matches the state of the SSL connection. The possible states are client_hello,

server_hello, client_keyx, server_keyx and unknown. You can specify several states with | (OR) to check
for any of the specified states.

8.17.17 tls.random

Matches on the 32 bytes of the TLS random field from the client hello or server hello records.

Example:

alert tls any any -> any any (msg:"TLS random test"; \
tls.random; content:"|9b ce 7a 5e 57 5d 77 02 07 c2 9d be 24 01 cc f0 5d cd el d2 a5.
86 9c 4a 3e ee 38 db 55 la d9 bc|"; sid: 200074;)

tls.random is a sticky buffer.

8.17.18 tls.random_time

Matches on the first 4 bytes of the TLS random field from the client hello or server hello records.

Example:

alert tls any any -> any any (msg:"TLS random_time test"; \
tls.random_time; content:"|9b ce 7a 5e|"; sid: 200075;)

tls.random_time is a sticky buffer.

8.17.19 tls.random_bytes

Matches on the last 28 bytes of the TLS random field from the client hello or server hello records.

Example:

alert tls any any -> any any (msg:"TLS random_bytes test"; \
tls.random_bytes; content:"|57 5d 77 02 07 c2 9d be 24 01 cc f0 5d cd el d2 a5 86 9c.
—4a 3e ee 38 db 55 la d9 bc|"; sid: 200076;)

tls.random_bytes is a sticky buffer.

8.17.20 tls.cert_chain_len

Matches on the TLS certificate chain length.
tls.cert_chain_len uses an unsigned 32-bit integer.
tls.cert_chain_len supports <, >, <>, / and using an exact value.

Example:

8.17. SSL/TLS Keywords 139

Suricata User Guide, Release 8.0.0

alert tls any any

tls.cert_chain_len:

alert tls any any

tls.cert_chain_len:

alert tls any any

tls.cert_chain_len:

alert tls any any

tls.cert_chain_len:

alert tls any any

tls.cert_chain_len:

-> any any (msg:"cert chain exact value"; \
1; classtype:misc-activity; sid:1; rev:1;)

-> any any (msg:"cert chain less than value"; \

<2; classtype:misc-activity; sid:2; rev:1;)

-> any any (msg:"cert chain greater than value"; \

>0; classtype:misc-activity; sid:2; rev:1;)

-> any any (msg:"cert chain greater than less than value";\

0<>2; classtype:misc-activity; sid:3; rev:1;)

-> any any (msg:"cert chain not value"; \
12; classtype:misc-activity; sid:4; rev:1;)

8.17.21 tls.alpn

Matches on the ALPN buffers.

Example:

alert tls any any -> any any (msg:"TLS ALPN test"; \
tls.alpn; content:"http/1.1"; sid:1;)

tls.alpn is a sticky buffer.

8.18 SSH Keywords

Suricata has several rule keywords to match on different elements of SSH connections.

8.18.1 Hooks

The available hooks for SSH are:

Request (to_server) side:

* request_in_progress

e request_banner_wait_eol

* request_banner_done

e request_finished

Response (to_client) side:

e response_in_progress

* response_banner_wait_eol

¢ response_banner_done

e response_finished

140

Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.18.2 Frames

The SSH parser supports the following frames:
¢ ssh.record_hdr
¢ ssh.record_data
e ssh.record_pdu

These are header + data = pdu for SSH records, after the banner and before encryption. The SSH record header is 6
bytes long : 4 bytes length, 1 byte passing, 1 byte message code.

Example:

alert ssh any any -> any any (msg:"hdr frame new keys"; frame:ssh.record.hdr; content: "|15|"; endswith; bsize: 6;
sid:2;)

This rule matches like Wireshark ssh.message_code == 0x15.

8.18.3 ssh.proto

Match on the version of the SSH protocol used. ssh.proto is a sticky buffer, and can be used as a fast pattern.
ssh.proto replaces the previous buffer name: ssh_proto. You may continue to use the previous name, but it's
recommended that existing rules be converted to use the new name.

Format:

ssh.proto;

Example:
alert ssh any any -> any any (msg:"match SSH protocol version"; ssh.proto; content:"2.0"; sid:1000010;)

The example above matches on SSH connections with SSH version 2.0.

8.18.4 ssh.software

Match on the software string from the SSH banner. ssh.software is a sticky buffer, and can be used as fast pattern.

Format:

ssh.software;

Example:
alert ssh any any -> any any (msg:"match SSH software string"; ssh.software; content:"openssh"; nocase; sid:1000020;)

The example above matches on SSH connections where the software string contains "openssh".

8.18. SSH Keywords 141

Suricata User Guide, Release 8.0.0

8.18.5 ssh.hassh

Match on hassh (md5 of of hassh algorithms of client).

Example:

alert ssh any any -> any any (msg:"match hassh"; \
ssh.hassh; content:"ec7378cla92f5a8dde7e8b7alddf33d1";\
sid:1000010;)

ssh.hassh is a 'sticky buffer".
ssh.hassh can be used as fast_pattern.

8.18.6 ssh.hassh.string

Match on Hassh string (hassh algorithms of client).

Example:

alert ssh any any -> any any (msg:"match hassh-string"; \
ssh.hassh.string; content:"none,zlib@openssh.com,zlib"; \
sid:1000030;)

ssh.hassh.string is a 'sticky buffer'.
ssh.hassh.string can be used as fast_pattern.

8.18.7 ssh.hassh.server

Match on hassh (md5 of hassh algorithms of server).

Example:

alert ssh any any -> any any (msg:'"match SSH hash-server"; \
ssh.hassh.server; content:"b12d2871a1189eff20364c£5333619ee"; \
sid:1000020;)

ssh.hassh.server is a 'sticky buffer'.

ssh.hassh.server can be used as fast_pattern.

8.18.8 ssh.hassh.server.string

Match on hassh string (hassh algorithms of server).
Example::

alert ssh any any -> any any (msg:''match SSH hash-server-string'';
ssh.hassh.server.string; content:"umac-64-etm @ openssh.com,umac-128-etm @openssh.com";
sid:1000040;)

ssh.hassh.server.string is a 'sticky buffer'.

ssh.hassh.server.string can be used as fast_pattern.

142 Chapter 8. Suricata Rules

mailto:umac-64-etm@openssh.com
mailto:128-etm@openssh.com

Suricata User Guide, Release 8.0.0

8.19 JA3/JA4 Keywords

Suricata comes with JA3 (https://github.com/salesforce/ja3) and JA4 (https://github.com/FoxIO-LLC/ja4) integration.
JA3 and JA4 are used to fingerprint TLS and QUIC clients.

Support must be enabled in the Suricata config file (set app-layer.protocols.tls.ja{3,4}-fingerprints to
yes). If it is not explicitly disabled (no) , it will be enabled if a loaded rule requires it. Note that JA3/JA4 support can
also be disabled at compile time; it is possible to use the requires: feature ja{3,4}; keyword to skip rules if
no JA3/JA4 support is present.

8.19.1 ja3.hash

Match on JA3 hash (md5).

Example:

alert tls any any -> any any (msg:"match JA3 hash"; \
ja3.hash; content:"e7eca2baf4458d095b7f45da28c16c34"; \
sid:100001;)

ja3.hash is a 'sticky buffer'.
ja3.hash can be used as fast_pattern.

ja3.hash replaces the previous keyword name: ja3_hash. You may continue to use the previous name, but it's
recommended that rules be converted to use the new name.

8.19.2 ja3.string

Match on JA3 string.

Example:

alert tls any any -> any any (msg:"match JA3 string"; \
ja3.string; content:"19-20-21-22"; \
sid:100002;)

ja3.string is a 'sticky buffer'.
ja3.string can be used as fast_pattern.

ja3.string replaces the previous keyword name: ja3_string. You may continue to use the previous name, but it's
recommended that rules be converted to use the new name.

8.19.3 ja3s.hash

Match on JA3S hash (md5).

Example:

alert tls any any -> any any (msg:"match JA3S hash"; \
ja3s.hash; content:"b26c652e0a402a24b5ca2a660e84£9d5"; \
sid:100003;)

8.19. JA3/JA4 Keywords 143

https://github.com/salesforce/ja3
https://github.com/FoxIO-LLC/ja4

Suricata User Guide, Release 8.0.0

ja3s.hash is a 'sticky buffer".

ja3s.hash can be used as fast_pattern.

8.19.4 ja3s.string

Match on JA3S string.

Example:

alert tls any any -> any any (msg:"match on JA3S string"; \
ja3s.string; content:"771,23-35"; sid:100004;)

ja3s.string is a 'sticky buffer'.
ja3s.string can be used as fast_pattern.

8.19.5 jad.hash

Match on JA4 hash (e.g. q13d0®310h3_55b375c5d22e_cd85d2d88918).

Example:

alert quic any any -> any any (msg:"match JA4 hash"; \
ja4.hash; content:"ql13d0®310h3_55b375c5d22e_cd85d2d88918"; \
sid:100001;)

ja4.hash is a 'sticky buffer'.

ja4.hash can be used as fast_pattern.

8.20 Modbus Keyword

The modbus keyword can be used for matching on various properties of Modbus requests.

There are three ways of using this keyword:
* matching on functions properties with the setting "function";

* matching on directly on data access with the setting "access";

* matching on unit identifier with the setting "unit" only or with the previous setting "function" or "access".

With the setting function, you can match on:

* an action based on a function code field and a sub-function code when applicable;

* one of three categories of Modbus functions;
* public functions that are publicly defined (setting "public")

* user-defined functions (setting "user")

* reserved functions that are dedicated to proprietary extensions of Modbus (keyword "reserved")

* one of the two sub-groups of public functions:

— assigned functions whose definition is already given in the Modbus specification (keyword "assigned");

— unassigned functions, which are reserved for future use (keyword "unassigned").

144

Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Syntax:

modbus: function <value>
modbus: function <value>, subfunction <value>
modbus: function [!] <assigned | unassigned | public | user | reserved | all>

Sign '!' is negation

Examples:

Write File record function
Force Listen Only Mode (Diagnostics) function
defined by Modbus Application Protocol.

modbus: function 21

modbus: function 4, subfunction 4
modbus: function assigned
—.Specification V1.1b3

modbus: function public # validated by the Modbus.org community
modbus: function user # internal use and not supported by the specification
modbus: function reserved # used by some companies for legacy products and not.

—,available for public use

modbus: function !reserved every function but reserved function

With the access setting, you can match on:
¢ atype of data access (read or write);
* one of primary tables access (Discretes Input, Coils, Input Registers and Holding Registers);
 arange of addresses access;

e a written value.

Syntax:

modbus: access <read | write>

modbus: access read <discretes | coils | input | holding>

modbus: access read <discretes | coils | input | holding>, address <value>
modbus: access write < coils | holding>

modbus: access write < coils | holding>, address <value>

modbus: access write < coils | holding>, address <value>, value <value>

With _<value>_ setting matches on the address or value as it is being accessed or written as follows:

address

address 100<>200 # greater

100

exactly address 100

than address 100 and smaller than address 200

address >100 # greater than address 100

address <100 # smaller than address 100

Examples:

modbus: access read # Read access

modbus: access write # Write access

modbus: access read input # Read access to Discretes Input.,
—table

modbus: access write coils # Write access to Coils table
modbus: access read discretes, address <100 # Read access at address smaller.,

—than 100 of Discretes Input table

modbus: access write holding, address 500, value >200

—address 500 of Holding Registers table

Write value greater than 200 at.

8.20. Modbus Keyword

145

Suricata User Guide, Release 8.0.0

With the setting unit, you can match on:

* a MODBUS slave address of a remote device connected on the sub-network behind a bridge or a gateway. The
destination IP address identifies the bridge itself and the bridge uses the MODBUS unit identifier to forward the
request to the right slave device.

Syntax:

modbus: unit <value>

modbus: unit <value>, function <value>

modbus: unit <value>, function <value>, subfunction <value>

modbus: unit <value>, function [!] <assigned | unassigned | public | user | reserved |.
—all>

modbus: unit <value>, access <read | write>

modbus: unit <value>, access read <discretes | coils | input | holding>

modbus: unit <value>, access read <discretes | coils | input | holding>, address <value>
modbus: unit <value>, access write < coils | holding>

modbus: unit <value>, access write < coils | holding>, address <value>

modbus: unit <value>, access write < coils | holding>, address <value>, value <value>

With _<value>_ setting matches on the address or value as it is being accessed or written as follows:

unit 10 # exactly unit identifier 10

unit 10<>20 # greater than unit identifier 10 and smaller than unit identifier 20

unit >10 # greater than unit identifier 10

unit <10 # smaller than unit identifier 10

Examples:

modbus: unit 10 # Unit identifier.
10

modbus: unit 10, function 21 # Unit identifier.,
10 and write File record function

modbus: unit 10, function 4, subfunction 4 # Unit identifier.
.10 and force Listen Only Mode (Diagnostics) function

modbus: unit 10, function assigned # Unit identifier.
10 and assigned function

modbus: unit 10, function !reserved # Unit identifier.,
10 and every function but reserved function

modbus: unit 10, access read # Unit identifier,
10 and Read access

modbus: unit 10, access write coils # Unit identifier.
10 and Write access to Coils table

modbus: unit >10, access read discretes, address <100 # Greater than.,
—unit identifier 10 and Read access at address smaller than 100 of Discretes Input table
modbus: unit 10<>20, access write holding, address 500, value >200 # Greater than.

—unit identifier 10 and smaller than unit identifier 20 and Write value greater than.
200 at address 500 of Holding Registers table

(cf. http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf)

Note: Address of read and write are starting at 1. So if your system is using a start at 0, you need to add 1 the address
values.

Note: According to MODBUS Messaging on TCP/IP Implementation Guide V1.0b, it is recommended to keep the
TCP connection opened with a remote device and not to open and close it for each MODBUS/TCP transaction. In that
case, it is important to set the depth of the stream reassembling as unlimited (stream.reassembly.depth: 0)

146 Chapter 8. Suricata Rules

http://www.modbus.org/docs/Modbus_Application_Protocol_V1_1b3.pdf

Suricata User Guide, Release 8.0.0

Note: According to MODBUS Messaging on TCP/IP Implementation Guide V1.0b, the MODBUS slave device ad-
dresses on serial line are assigned from 1 to 247 (decimal). Address O is used as broadcast address.

(cf. http://www.modbus.org/docs/Modbus_Messaging Implementation_Guide_V1_0b.pdf)

Paper and presentation (in french) on Modbus support are available : http:/www.ssi.gouv.fr/agence/publication/
detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/

8.21 DCERPC Keywords

Following keywords can be used for matching on fields in headers and payloads of DCERPC packets over UDP, TCP
and SMB.

8.21.1 dcerpc.iface

Match on the value of the interface UUID in a DCERPC header. If any_frag option is given, the match shall be done
on all fragments. If it's not, the match shall only happen on the first fragment.

The format of the keyword:

dcerpc.iface:<uuid>;

dcerpc.iface:<uuid>, [>,<,!,=]<iface_version>;
dcerpc.iface:<uuid>,any_frag;

dcerpc.iface:<uuid>, [>,<,!,=]<iface_version>,any_frag;
Examples:

dcerpc.iface:367abb81-9844-35f1-ad32-98£f038001003;
dcerpc.iface:367abb81-9844-35f1-ad32-98£f038001003,!10;
dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003,any_~frag;
dcerpc.iface:367abb81-9844-35f1-ad32-98f038001003,>1,any_frag;

ET Open rule example:

alert tcp any any -> $HOME_NET any (msg:"ET NETBIOS DCERPC WMI Remote Process Execution";
flow:to_server,established; dce_iface:00000143-0000-0000-c000-000000000046; classtype:bad-unknown;
sid:2027167; rev:1; metadata:affected_product Windows_XP_Vista_7_8_10_Server_32_64_Bit, attack_target
Client_Endpoint, created_at 2019_04_09, deployment Internal, former_category NETBIOS, signature_severity
Informational, updated_at 2019_04_09;)

8.21.2 dcerpc.opnum

Match on one or many operation numbers and/or operation number range within the interface in a DCERPC header.

The format of the keyword:

dcerpc.opnum:<ul6>;

dcerpc.opnum: [>,<,!,=]<ul6>;
dcerpc.opnum:<ul6>,<ul6>,<ul6>....;
dcerpc.opnum:<ul6>-<ul6>;

Examples:

8.21. DCERPC Keywords 147

http://www.modbus.org/docs/Modbus_Messaging_Implementation_Guide_V1_0b.pdf
http://www.ssi.gouv.fr/agence/publication/detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/
http://www.ssi.gouv.fr/agence/publication/detection-dintrusion-dans-les-systemes-industriels-suricata-et-le-cas-modbus/

Suricata User Guide, Release 8.0.0

dcerpc.opnum:15;
dcerpc.opnum:>10;
dcerpc.opnum:12,24,62,61;
dcerpc.opnum:12,18-24,5;
dcerpc.opnum:12-14,12,121,62-78;

8.21.3 dcerpc.stub_data

Match on the stub data in a given DCERPC packet. It is a 'sticky buffer'".

Example:

dcerpc.stub_data; content:"123456";

8.21.4 Additional information

More information on the protocol can be found here:

* DCERPC: https://pubs.opengroup.org/onlinepubs/9629399/chap1.htm

8.22 DHCP keywords

8.22.1 dhcp.leasetime

DHCP lease time (integer).
dhcp.leasetime uses an unsigned 64-bit integer.

Syntax:

dhcp.leasetime: [op]<number>

The time can be matched exactly, or compared using the _op_ setting:

dhcp.leasetime:3 # exactly 3
dhcp.leasetime:<3 # smaller than 3
dhcp.leasetime:>=2 # greater or equal than 2

Signature example:

alert dhcp any any -> any any (msg:"small DHCP lease time (<3)"
—sid:1; rev:1;)

; dhcp.leasetime:<3;.

148

Chapter 8. Suricata Rules

https://pubs.opengroup.org/onlinepubs/9629399/chap1.htm

Suricata User Guide, Release 8.0.0

8.22.2 dhcp.rebinding_time

DHCP rebinding time (integer).
dhcp.rebinding_time uses an unsigned 64-bit integer.

Syntax:

dhcp.rebinding_time: [op]<number>

The time can be matched exactly, or compared using the _op_ setting:

dhcp.rebinding_time:3 # exactly 3
dhcp.rebinding_time:<3 # smaller than 3
dhcp.rebinding_time:>=2 # greater or equal than 2

Signature example:

alert dhcp any any -> any any (msg:"small DHCP rebinding time (<3)"; dhcp.rebinding_time:
»<3; sid:1; rev:l;)

8.22.3 dhcp.renewal_time

DHCP renewal time (integer).
dhcp.renewal_time uses an unsigned 64-bit integer.

Syntax:

dhcp.renewal_time: [op]<number>

The time can be matched exactly, or compared using the _op_ setting:

dhcp.renewal_time:3 # exactly 3
dhcp.renewal_time:<3 # smaller than 3
dhcp.renewal_time:>=2 # greater or equal than 2

Signature example:

alert dhcp any any -> any any (msg:"small DHCP renewal time (<3)"; dhcp.renewal_time:<3;.
—sid:1; rev:1;)

8.23 DNP3 Keywords

The DNP3 keywords can be used to match on fields in decoded DNP3 messages. The keywords are based on Snort's
DNP3 keywords and aim to be 100% compatible.

8.23. DNP3 Keywords 149

Suricata User Guide, Release 8.0.0

8.23.1 dnp3_func

This keyword will match on the application function code found in DNP3 request and responses. It can be specified as
the integer value or the symbolic name of the function code.

Syntax

dnp3_func:<value>;

Where value is one of:
* An integer value between 0 and 255 inclusive.
¢ Function code name:

confirm

— read

— write

— select

— operate

— direct_operate

— direct_operate_nr
— immed_freeze

— immed_freeze nr
— freeze_clear

— freeze clear_nr

— freeze_at_time

— freeze_at_time_nr
— cold_restart

— warm_restart

— initialize_data

— initialize_appl

— start_appl

— stop_appl

— save_config

— enable_unsolicited
— disable_unsolicited
— assign_class

— delay_measure

— record_current_time

— open_file

150 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

close_file
delete_file
get_file_info
authenticate_file
abort_file
activate_config
authenticate_req
authenticate_err

response

unsolicited_response

authenticate_resp

8.23.2 dnp3_ind

This keyword matches on the DNP3 internal indicator flags in the response application header.

Syntax

dnp3_ind:<flag>{,<flag>...}

Where flag is the name of the internal indicator:

all_stations
class_1_events
class_2_events
class_3_events
need_time
local_control
device_trouble

device_restart

no_func_code_support

object_unknown

parameter_error

event_buffer_overflow

already_executing
config_corrupt
reserved_2

reserved_1

This keyword will match of any of the flags listed are set. To match on multiple flags (AND type match), use dnp3_ind

for each flag that must be set.

8.23. DNP3 Keywords

151

Suricata User Guide, Release 8.0.0

Examples

dnp3_ind:all_stations;

dnp3_ind:class_1_events,class_2_events;

8.23.3 dnp3_obj

This keyword matches on the DNP3 application data objects.

Syntax

dnp3_obj:<group>,<variation>

Where <group> and <variation> are integer values between 0 and 255 inclusive.

8.23.4 dnp3_data

This keyword will cause the following content options to match on the re-assembled application buffer. The reassembled
application buffer is a DNP3 fragment with CRCs removed (which occur every 16 bytes), and will be the complete
fragment, possibly reassembled from multiple DNP3 link layer frames.

Syntax

dnp3_data;

Example

dnp3_data; content:"|c3 06]|";

8.24 ENIP/CIP Keywords

8.24.1 enip_command

For the ENIP command, we are matching against the command field found in the ENIP encapsulation.

Examples:

enip_command:99;
enip_command:list_identity;

enip_command uses an unsigned 16-bits integer. It can also be specified by text from the enumeration.

152 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.24.2 cip_service

For the CIP Service, we use a maximum of 3 comma separated values representing the Service, Class and Attribute.
These values are described in the CIP specification. CIP Classes are associated with their Service, and CIP Attributes
are associated with their Service. If you only need to match up until the Service, then only provide the Service value.
If you want to match to the CIP Attribute, then you must provide all 3 values.

Examples:

cip_service:75
cip_service:16,246,6

(cf. http://read.pudn.com/downloads166/ebook/763211/EIP-CIP-V1-1.0.pdf)

Information on the protocol can be found here: http:/literature.rockwellautomation.com/idc/groups/literature/
documents/wp/enet-wp001_-en-p.pdf

8.24.3 enip.status

For the ENIP status, we are matching against the status field found in the ENIP encapsulation. It uses a 32-bit unsigned
integer as value.

enip.status uses an unsigned 32-bits integer. It can also be specified by text from the enumeration.

Examples:

enip.status:100;
enip.status:>106;
enip.status:invalid_cmd;

8.24.4 enip.protocol_version

Match on the protocol version in different messages. It uses a 16-bit unsigned integer as value.
enip.protocol_version uses an unsigned 16-bits integer.

Examples:

enip.protocol_version:1;
enip.protocol_version:>1;

8.24.5 enip.cip_attribute

Match on the cip attribute in different messages. It uses a 32-bit unsigned integer as value.
This allows to match without needing to match on cip.service.
enip.cip_attribute uses an unsigned 32-bits integer.

Examples:

enip.cip_attribute:1;
enip.cip_attribute:>1;

8.24. ENIP/CIP Keywords 153

http://read.pudn.com/downloads166/ebook/763211/EIP-CIP-V1-1.0.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-wp001_-en-p.pdf
http://literature.rockwellautomation.com/idc/groups/literature/documents/wp/enet-wp001_-en-p.pdf

Suricata User Guide, Release 8.0.0

8.24.6 enip.cip_instance

Match on the cip instance in CIP request path. It uses a 32-bit unsigned integer as value.

enip.cip_instance uses an unsigned 32-bits integer.

Examples:

enip.cip_instance:1;
enip.cip_instance:>1;

8.24.7 enip.cip_class

Match on the cip class in CIP request path. It uses a 32-bit unsigned integer as value.

enip.cip_class uses an unsigned 32-bits integer.
This allows to match without needing to match on cip.service.

Examples:

enip.cip_class:1;
enip.cip_class:>1;

8.24.8 enip.cip_extendedstatus

Match on the cip extended status, if any is present. For multiple service packet, will match on any of the seen statuses.

It uses a 16-bit unsigned integer as value.
enip.cip_extendedstatus uses an unsigned 16-bits integer.

Examples:

enip.cip_extendedstatus:1;
enip.cip_extendedstatus:>1;

8.24.9 enip.revision

Match on the revision in identity message. It uses a 16-bit unsigned integer as value.
enip.revision uses an unsigned 16-bits integer.

Examples:

enip.revision:1;
enip.revision:>1;

154

Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.24.10 enip.identity_status

Match on the status in identity message (not in ENIP header). It uses a 16-bit unsigned integer as value.
enip.identity_status uses an unsigned 16-bits integer.

Examples:

enip.identity_status:1;
enip.identity_status:>1;

8.24.11 enip.state

Match on the state in identity message. It uses an 8-bit unsigned integer as value.
enip.state uses an unsigned 8-bits integer.

Examples:

enip.state:1;
enip.state:>1;

8.24.12 enip.serial

Match on the serial in identity message. It uses a 32-bit unsigned integer as value.
enip.serial uses an unsigned 32-bits integer.

Examples:

enip.serial:1;
enip.serial:>1;

8.24.13 enip.product_code

Match on the product code in identity message. It uses a 16-bit unsigned integer as value.
enip.product_code uses an unsigned 16-bits integer.

Examples:

enip.product_code:1;
enip.product_code:>1;

8.24.14 enip.device_type

Match on the device type in identity message. It uses a 16-bit unsigned integer as value.
enip.device_type uses an unsigned 16-bits integer.

Examples:

enip.device_type:1;
enip.device_type:>1;

8.24. ENIP/CIP Keywords 155

Suricata User Guide, Release 8.0.0

8.24.15 enip.vendor_id

Match on the vendor id in identity message. It uses a 16-bit unsigned integer as value.
enip.vendor_id uses an unsigned 16-bits integer.

Examples:

enip.vendor_id:1;
enip.vendor_id:>1;

8.24.16 enip.product_name

Match on the product name in identity message.

Examples:

enip.product_name; pcre:"/A123[0-9]1%/";
enip.product_name; content:'swordfish";

enip.product_name is a 'sticky buffer' and can be used as fast_pattern.

8.24.17 enip.service_name

Match on the service name in list services message.

Examples:

enip.service_name; pcre:"/A123[0-9]1%/";
enip.service_name; content:'"swordfish";

enip.service_name is a 'sticky buffer' and can be used as fast_pattern.

8.24.18 enip.capabilities

Match on the capabilities in list services message. It uses a 16-bit unsigned integer as value.
enip.capabilities uses an unsigned 16-bits integer.

Examples:

enip.capabilities:1;
enip.capabilities:>1;

8.24.19 enip.cip_status

Match on the cip status (one of them in case of multiple service packet). It uses an 8-bit unsigned integer as value.
enip.cip_status uses an unsigned 8-bits integer.

Examples:

enip.cip_status:1;
enip.cip_status:>1;

156 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.25 FTP/FTP-DATA Keywords

8.25.1 ftpdata_command

Filter ftp-data channel based on command used on the FTP command channel. Currently supported commands are
RETR (get on a file) and STOR (put on a file).

Syntax:

ftpdata_command: (retr|stor)

Signature Example:

alert ftp-data any any -> any any (msg:"FTP store password"; filestore; filename:"password"; ftpdata_command:stor;
sid:3; rev:1;)

8.25.2 ftpbounce

Detect FTP bounce attacks.

Syntax:

ftpbounce

8.25.3 file.name

The file.name keyword can be used at the FTP application level.
Signature Example:

alert ftp-data any any -> any any (msg:"FTP file.name usage"; file.name; content:"file.txt"; classtype:bad-unknown;
sid:1; rev:1;)

For additional information on the file.name keyword, see File Keywords.

8.25.4 ftp.command

This keyword matches on the command name from an FTP client request. £tp.command is a sticky buffer and can be
used as a fast pattern.

Syntax:

ftp.command; content: <command>;

Signature Example:
alert ftp any any -> any any (ftp.command; content:"PASS"; sid: 1;)
Examples of commands are:

» USER

* PASS

* PORT

e EPRT

8.25. FTP/FTP-DATA Keywords 157

Suricata User Guide, Release 8.0.0

* PASV
« RETR

8.25.5 ftp.command_data

This keyword matches on the command data from a FTP client request. £tp.command_data is a sticky buffer and can
be used as a fast pattern.

Syntax:

ftp.command_data; content: <command_data>;

Signature Example:
alert ftp any any -> any any (ftp.command_data; content:"anonymous"; sid: 1;)

The ftp.command_data matches the data associated with an FTP command. Consider the following FTP command
examples:

USER anonymous
RETR temp.txt
PORT 192,168,0,13,234,10

Example rules for each of the preceding FTP commands and command data.

alert ftp any any -> any any (ftp.command; content: "USER"; ftp.command_data; content:"anonymous"; sid: 1;)
alert ftp any any -> any any (ftp.command_data; content:"anonymous"; sid: 1;)

alert ftp any any -> any any (ftp.command_data; content:"temp.txt"; sid: 2;)

alert ftp any any -> any any (ftp.command_data; content:"192,168,0,13,234,10"; sid: 3;)

8.25.6 ftp.completion_code

This keyword matches on an FTP completion code string. Note that there may be multiple reply strings for an FTP
command and hence, multiple completion code values to check. ftp.completion_code is a sticky buffer and can be
used as a fast pattern. Do not include the response string in the content to match upon (see examples).

Syntax:

ftp.completion_code; content: <quoted-completion-code>;

Signature Example:

alert ftp any any -> any any (ftp.completion_code; content:"226"; sid: 1;)

Note: FTP commands can return multiple reply strings. Specify a single completion code for each ftp.
completion_code keyword.

This example shows an FTP command (RETR) followed by an FTP reply with multiple response strings.

RETR temp.txt
150 Opening BINARY mode data connection for temp.txt (1164 bytes).
226 Transfer complete.

158 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Because there are multiple completion codes and responses, the rule can match on ftp.reply and the ftp.
completion_code. Suricata cannot guarantee that these come from the same response, however.

Signature Examples:

alert ftp any any -> any any (ftp.reply; content:"Opening BINARY mode data connection for temp.";
ftp.completion_code; content: "150"; sid: 1;)

alert ftp any any -> any any (ftp.completion_code; content: "226"; sid: 2;)

alert ftp any any -> any any (ftp.reply; content: "Transfer complete."; ftp.completion_code; content: "226"; sid: 3;)

8.25.7 ftp.dynamic_port

This keyword matches on the dynamic port negotiated during an FTP session with the following FTP commands:
e IPv4: PORT and EPRT
» [Pv6: PASV and EPSV

Syntax:

ftp.dynamic_port: <port-spec>;

port-spec can be one of the following:

e > (greater than)

¢ < (less than)

* >=(greater than or equal)

e <= (less than or equal)

* argl-arg2 (exclusive range)
Signature Example:
alert ftp any any -> any any (ftp.dynamic_port: 59914; sid: 1;)
These rules are will also alert on port 59914:
alert ftp any any -> any any (ftp.dynamic_port: 59913-59915; sid: 1;)
alert ftp any any -> any any (ftp.dynamic_port: =59914; sid: 1;)
Example rules combining ftp.dynamic_port with f£tp.command
alert ftp any any -> any any (ftp.command; content: "PORT"; ftp.dynamic_port: 59914; sid: 1;)

alert ftp any any -> any any (ftp.command; content: "EPSV"; ftp.dynamic_port: 58612; sid: 1;)

8.25.8 ftp.mode

This keyword matches on whether the FTP session is dynamic or passive. In active mode sessions, the server establishes
the data channel. In passive mode, the client establishes the data channel. Active mode sessions are established in part
with the PORT (EPRT for IPv6) command; passive mode sessions use PASV (EPSV for IPv6).

Syntax:

ftp.mode: active|passive;

8.25. FTP/FTP-DATA Keywords 159

Suricata User Guide, Release 8.0.0

Signature Example:

alert ftp any any -> any any (ftp.mode: active; sid: 1;)

alert ftp any any -> any any (ftp.mode: passive; sid: 1;)

Example rules combining ftp.command with ftp.mode

alert ftp any any -> any any (ftp.command; content: "PORT"; ftp.mode: active; sid:1;)

alert ftp any any -> any any (ftp.command; content: "PASV"; ftp.mode: passive; sid:1;)

8.25.9 ftp.reply

This keyword matches on an FTP reply string. Note that there may be multiple reply strings for an FTP command.
ftp.reply is a sticky buffer and can be used as a fast pattern. Do not include the completion code in the content to
match upon (see examples).

Syntax:

ftp.reply; content: <reply-string>;

Note: FTP commands can return multiple reply strings. Specify a single reply for each ftp.reply keyword.

This example shows an FTP command (RETR) followed by an FTP reply with multiple response strings.

RETR temp.txt
150 Opening BINARY mode data connection for temp.txt (1164 bytes).
226 Transfer complete.

Signature Example:
alert ftp any any -> any any (ftp.reply; content:"Please specify the password."; sid: 1;)
alert ftp any any -> any any (ftp.reply; content:"Opening BINARY mode data connection for temp."; sid: 1;)

alert ftp any any -> any any (ftp.reply; content:"Transfer complete."; sid: 2;)

8.25.10 ftp.reply_received

This keyword matches on whether an FTP reply string was received. EVE logs with the FTP event_type include a field
named reply_received. Use this keyword to alert when a reply is (is not) received. ftp.reply_received is not a
sticky buffer and uses a different syntax to express its value.

Note: Specify the match value without using quotes, e.g., use yes instead of "yes".

Syntax:

ftp.reply_received: yes|on|true|l|no|off|false|0;

Signature Example:
alert ftp any any -> any any (ftp.reply_received: yes; sid: 1;)

alert ftp any any -> any any (ftp.reply_received: no; sid: 1;)

160 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.26 Kerberos Keywords

8.26.1 krb5_msg_type
This keyword allows to match the Kerberos messages by its type (integer). It is possible to specify the following values
defined in RFC4120:
* 10 (AS-REQ)
* 11 (AS-REP)
* 12 (TGS-REQ)
* 13 (TGS-REP)
* 30 (ERROR)
Syntax:

krb5_msg_type:<number>

Signature examples:

alert krb5 any any -> any any (msg:"Kerberos 5 AS-REQ message"; krb5_msg_type:10; sid:3;.
~rev:l;)
alert krb5 any any -> any any (msg:"Kerberos 5 AS-REP message"; krb5_msg_type:11; sid:4;.
~rev:l;)
alert krb5 any any -> any any (msg:"Kerberos 5 TGS-REQ message"; krb5_msg_type:12; sid:5;
< rev:l;)
alert krb5 any any -> any any (msg:"Kerberos 5 TGS-REP message"; krb5_msg_type:13; sid:6;
- rev:l;)
alert krb5 any any -> any any (msg:"Kerberos 5 ERROR message"; krb5_msg_type:30; sid:7;.
~rev:l;)

Note: AP-REQ and AP-REP are not currently supported since those messages are embedded in other application
protocols.

8.26.2 krb5_cname

Kerberos client name, provided in the ticket (for AS-REQ and TGS-REQ messages).

If the client name from the Kerberos message is composed of several parts, the name is compared to each part and the
match will succeed if any is identical.

Comparison is case-sensitive.

Syntax:

krb5_cname; content:'name";

Signature example:

alert krb5 any any -> any any (msg:"Kerberos 5 des server name"; krb5_cname; content:'des

~"; sid:4; rev:1;)

8.26. Kerberos Keywords 161

Suricata User Guide, Release 8.0.0

krb5_cname is a 'sticky buffer'.
krb5_cname can be used as fast_pattern.

krb5. cname supports multiple buffer matching, see Multiple Buffer Matching.

8.26.3 krb5 sname

Kerberos server name, provided in the ticket (for AS-REQ and TGS-REQ messages) or in the error message.

If the server name from the Kerberos message is composed of several parts, the name is compared to each part and the
match will succeed if any is identical.

Comparison is case-sensitive.

Syntax:

krb5_sname; content:'"name";

Signature example:

alert krb5 any any -> any any (msg:"Kerberos 5 krbtgt server name"; krb5_sname; content:
~"krbtgt"; sid:5; rev:1;)

krb5_sname is a 'sticky buffer'.
krb5_sname can be used as fast_pattern.

krb5. sname supports multiple buffer matching, see Multiple Buffer Matching.

8.26.4 krb5 err _code

Kerberos error code (integer). This field is matched in Kerberos error messages only.
For a list of error codes, refer to RFC4120 section 7.5.9.

Syntax:

krb5_err_code:<number>

Signature example:

alert krb5 any any -> any any (msg:"Kerberos 5 error C_PRINCIPAL_UNKNOWN"; krb5_err_
—code:6; sid:6; rev:1;)

8.26.5 krb5.weak_encryption (event)

Event raised if the encryption parameters selected by the server are weak or deprecated. For example, using a key size
smaller than 128, or using deprecated ciphers like DES.

Syntax:

app-layer-event:krb5.weak_encryption

Signature example:

162 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

alert krb5 any any -> any any (msg:"SURICATA Kerberos 5 weak encryption parameters";.
—flow:to_client; app-layer-event:krb5.weak_encryption; classtype:protocol-command-
—decode; sid:2226001; rev:1;)

8.26.6 krb5.malformed_data (event)

Event raised in case of a protocol decoding error.

Syntax:

app-layer-event:krb5.mal formed_data

Signature example:

alert krb5 any any -> any any (msg:"SURICATA Kerberos 5 malformed request data"; flow:to_
—sserver; app-layer-event:krb5.malformed_data; classtype:protocol-command-decode;..
—51d:2226000; rev:1;)

8.26.7 krbb.ticket_encryption

Kerberos ticket encryption (enumeration).
For a list of encryption types, refer to RFC3961 section 8.

Syntax:

krb5.ticket_encryption: (!)"weak" or (space or comma)-separated list of integer or.
—string values for an encryption type

Signature example:

alert krb5 any any -> any any (krb5.ticket_encryption: weak; sid:1;)
alert krb5 any any -> any any (krb5.ticket_encryption: 23; sid:2;)
alert krb5 any any -> any any (krb5.ticket_encryption: rc4-hmac,rc4-hmac-exp; sid:3;)

8.27 SMB Keywords

SMB keywords used in both SMB1 and SMB2 protocols.

8.27.1 smb.named_pipe

Match on SMB named pipe in tree connect.

Examples:

smb.named_pipe; content:"IPC"; endswith;
smb.named_pipe; content:"strange'; nocase; pcre:"/really$/";

smb.named_pipe is a 'sticky buffer'.

smb .named_pipe can be used as fast_pattern.

8.27. SMB Keywords 163

Suricata User Guide, Release 8.0.0

8.27.2 smb.share

Match on SMB share name in tree connect.

Examples:

smb.share; content:'"shared"; endswith;
smb.share; content:"strange"; nocase; pcre:'"/really$/";

smb. share is a 'sticky buffer'.
smb . share can be used as fast_pattern.

8.27.3 smb.ntimssp_user

Match on SMB ntlmssp user in session setup.

Examples:

smb.ntlmssp_user; content:"doe"; endswith;
smb.ntlmssp_user; content:"doe"; nocase; pcre:"/j(ohn|ane).*doe$/";

smb.ntlmssp_user is a 'sticky buffer'.
smb.ntlmssp_user can be used as fast_pattern.

8.27.4 smb.ntimssp_domain

Match on SMB ntlmssp domain in session setup.

Examples:

smb.ntlmssp_domain; content:"home"; endswith;
smb.ntlmssp_domain; content:"home"; nocase; pcre:"/home(sweet)*$/";

smb.ntlmssp_domain is a 'sticky buffer'.

smb.ntlmssp_domain can be used as fast_pattern.

8.27.5 smb.version

Keyword to match on the SMB version seen in an SMB transaction.

Signature Example:

alert smb SHOME_NET any -> any any (msg:"SMBv1 version rule"; smb.version:1; sid:1;)
alert smb $SHOME_NET any -> any any (msg:"SMBV2 version rule"; smb.version:2; sid:2;)

164 Chapter 8

. Suricata Rules

Suricata User Guide, Release 8.0.0

Matching in transition from SMBv1 to SMBv2
In the initial protocol negotiation request, a client supporting SMBv1 and SMBV2 can send an initial SMBv1 request
and receive a SMBvV2 response from server, indicating that SMBv2 will be used.

This first SMBv2 response made by the server will match as SMBvV1, since the entire transaction will be considered a
SMBvV1 transaction.

Will smb.version match SMBv3 traffic?
Yes, it will match SMBv3 messages using smb.version:2;, which will match SMBv2 and SMBv3, since they use the
same version identifier in the SMB header.

This keyword will use the Protocol ID specified in SMB header to determine the version. Here is a summary of the
Protocol ID codes:

e 0xffSMB is SMBv1 header
e 0xfeSMB is SMBv2 normal header (can be sync or async)
* 0xfdSMB is SMBv2 transform header. This is only valid for the SMB 3.x dialect family.

e 0xfcSMB is SMBv2 transform compression header (can be chained or unchained). These ones require the use
of the 3.1.1 dialect.

The Protocol ID in the header distinguishes only SMBv1 and SMBV2 since they are completely different protocols with
entirely different message formats, types and implementations.

On the other hand, SMBv3 is more like an extension of SMBv2. When using SMBv2 we can select one of the following
dialects for the conversation between client and server:

202
e 2.1
* 3.0
* 3.02
* 3.1.1

We say we are using SMBv3 when we select a 3.x dialect for the conversation, so you can use SMB 3.0, SMB 3.0.2
or SMB 3.1.1. The higher you choose, the more capabilities you have, but the message syntax and message command
number remains the same.

SMB version and dialect are separate components. In the case of SMBvV3 for instance, the SMB version will be 2 but
the dialect will be 3.x. Dialect specification is not available currently via keyword.

8.27.6 file.name

The file.name keyword can be used at the SMB application level.
Signature Example:

alert smb any any -> any any (msg:"SMB file.name usage"; file.name; content:"file.txt"; classtype:bad-unknown; sid:1;
rev:1;)

For additional information on the file.name keyword, see File Keywords.

8.27. SMB Keywords 165

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb/3c0848a6-efe9-47c2-b57a-f7e8217150b9
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/5cd64522-60b3-4f3e-a157-fe66f1228052
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/fb188936-5050-48d3-b350-dc43059638a4
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/ea4560b7-90da-4803-82b5-344754b92a79
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/d6ce2327-a4c9-4793-be66-7b5bad2175fa
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/d6ce2327-a4c9-4793-be66-7b5bad2175fa
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/aa880fe8-ebed-4409-a474-ec6e0ca0dbcb
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-smb2/793db6bb-25b4-4469-be49-a8d7045ba3a6

Suricata User Guide, Release 8.0.0

8.28 SNMP keywords

8.28.1 snmp.version

SNMP protocol version (integer). Expected values are 1, 2 (for version 2c) or 3.
snmp.version uses an, :ref:” unsigned 32-bits integer <rules-integer-keywords>".

Syntax:

snmp . version: [op] <number>

The version can be matched exactly, or compared using the _op_ setting:

snmp .version: 3 # exactly 3
snmp . version:<3 # smaller than 3
snmp.version:>=2 # greater or equal than 2

Signature example:

alert snmp any any -> any any (msg:"old SNMP version (<3)"; snmp.version:<3; sid:1;.
~rev:1;)

8.28.2 snmp.community
SNMP community strings are like passwords for SNMP messages in version 1 and 2c. In version 3, the community
string is likely to be encrypted. This keyword will not match if the value is not accessible.

The default value for the read-only community string is often "public", and "private" for the read-write community
string.

Comparison is case-sensitive.

Syntax:

snmp . community; content:'private";

Signature example:

alert snmp any any -> any any (msg:"SNMP community private"; snmp.community; content:
<"private"; sid:2; rev:1l;)

snmp . community is a 'sticky buffer'.

snmp . community can be used as fast_pattern.

166 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.28.3 snmp.usm

SNMP User-based Security Model (USM) is used in version 3. It corresponds to the user name.

Comparison is case-sensitive.

Syntax:

snmp.usm; content:"admin";

Signature example:

alert snmp any any -> any any (msg:"SNMP usm admin"; snmp.usm; content:"admin"; sid:2;.
—rev:1;)

snmp . usm is a 'sticky buffer'.

snmp . usm can be used as fast_pattern.

8.28.4 snmp.pdu_type

SNMP PDU type (integer).

snmp.pdu_type uses an, :ref:” unsigned 32-bits integer <rules-integer-keywords>".

Common values are:

e 0:
1:

o 1 N B W

GetRequest

GetNextRequest

: Response

: SetRequest

: TrapV1 (obsolete, was the old Trap-PDU in SNMPv1)
: GetBulkRequest

: InformRequest

: TrapV2

: Report

This keyword will not match if the value is not accessible within (for ex, an encrypted SNMP v3 message).

Syntax:

snmp . pdu_type : <number>

Signature example:

alert snmp any any -> any any (msg:"SNMP response"; snmp.pdu_type:2; sid:3; rev:1;)

8.28. SNMP keywords 167

Suricata User Guide, Release 8.0.0

8.29 Base64 keywords

Suricata supports decoding base64 encoded data from buffers and matching on the decoded data.

This is achieved by using two keywords, base64_decode and base64_data. Both keywords must be used in order to
generate an alert.

8.29.1 base64 decode

Decodes base64 data from a buffer and makes it available for the base64_data function.
We recommend using the base64 transform instead -- see from_base64.

Syntax:

base64_decode:bytes <value>, offset <value>, relative;

The bytes option specifies how many bytes Suricata should decode and make available for base64_data. This number
is limited to 64KiB. The decoding will stop at the end of the buffer.

The offset option specifies how many bytes Suricata should skip before decoding. Bytes are skipped relative to the
start of the payload buffer if the relative is not set.

The relative option makes the decoding start relative to the previous content match. Default behavior is to start at
the beginning of the buffer. This option makes offset skip bytes relative to the previous match.

Note: Regarding relative and base64_decode:

The content match that you want to decode relative to must be the first match in the stream.

Note: base64_decode follows RFC 4648 by default i.e. encounter with any character that is not found in the base64
alphabet leads to rejection of that character and the rest of the string.

See Redmine Bug 5223: https://redmine.openinfosecfoundation.org/issues/5223 and RFC 4648: https://www.
rfc-editor.org/rfc/rfc4648#section-3.3

8.29.2 base64 data

base64_data is a sticky buffer.

Enables content matching on the data previously decoded by base64_decode.

8.29.3 Example

Here is an example of a rule matching on the base64 encoded string "test" that is found inside the http_uri buffer.

It starts decoding relative to the known string "somestring" with the known offset of 1. This must be the first occurrence
of "somestring" in the buffer.

Example:

168 Chapter 8. Suricata Rules

https://redmine.openinfosecfoundation.org/issues/5223
https://www.rfc-editor.org/rfc/rfc4648#section-3.3
https://www.rfc-editor.org/rfc/rfc4648#section-3.3

Suricata User Guide, Release 8.0.0

Buffer content:
http_uri = "GET /en/somestring&dGVzdAo=¬_base64"

Rule:

alert http any any -> any any (msg:"Example"; http.uri; content:'"somestring"; \
base64_decode:bytes 8, offset 1, relative; \
base64_data; content:"test"; sid:10001; rev:1;)

Buffer content:
http_uri = "GET /en/somestring&dGVzdAo=¬_base64"

Rule:

alert http any any -> any any (msg:"Example"; content:"somestring"; http_uri; \
base64_decode:bytes 8, offset 1, relative; \
base64_data; content:"test"; sid:10001; rev:1;)

Note: base64_data cannot be used with fast_pattern and will result in a rule load error.

8.30 SIP Keywords

The SIP keywords are implemented as sticky buffers and can be used to match on fields in SIP messages.

As described in RFC3261, common header field names can be represented in a short form. In such cases, the header
name is normalized to its regular form to be matched by its corresponding sticky buffer.

Keyword Direction
sip.method Request
sip.uri Request
sip.request_line Request
sip.stat_code Response
sip.stat_msg Response
sip.response_line Response
sip.protocol Both
sip.from Both
sip.to Both
sip.via Both
sip.user_agent Both
sip.content_type Both
sip.content_length | Both

8.30. SIP Keywords 169

Suricata User Guide, Release 8.0.0

8.30.1 sip.method

This keyword matches on the method found in a SIP request.

Syntax

sip.method; content:<method>;

Examples of methods are:
* INVITE
* BYE
REGISTER
CANCEL
*« ACK
OPTIONS

Examples

sip.method; content:"INVITE";

8.30.2 sip.uri

This keyword matches on the uri found in a SIP request.

Syntax

sip.uri; content:<uri>;

Where <uri> is an uri that follows the SIP URI scheme.

Examples

sip.uri; content:"sip:sip.url.org";

8.30.3 sip.request_line

This keyword forces the whole SIP request line to be inspected.

170

Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Syntax

sip.request_line; content:<request_line>;

Where <request_line> is a partial or full line.

Examples

sip.request_line; content:"REGISTER sip:sip.url.org SIP/2.0"

8.30.4 sip.stat_code

This keyword matches on the status code found in a SIP response.

Syntax

sip.stat_code; content:<stat_code>

Where <status_code> belongs to one of the following groups of codes:
* 1xx - Provisional Responses
* 2xx - Successful Responses
* 3xx - Redirection Responses
* 4xx - Client Failure Responses
* 5xx - Server Failure Responses

* 6xx - Global Failure Responses

Examples

sip.stat_code; content:"100";

8.30.5 sip.stat_msg

This keyword matches on the status message found in a SIP response.

Syntax

sip.stat_msg; content:<stat_msg>

Where <stat_msg> is a reason phrase associated to a status code.

8.30. SIP Keywords 171

Suricata User Guide, Release 8.0.0

Examples

sip.stat_msg; content:"Trying";

8.30.6 sip.response_line

This keyword forces the whole SIP response line to be inspected.

Syntax

sip.response_line; content:<response_line>;

Where <response_line> is a partial or full line.

Examples

sip.response_line; content:"SIP/2.0 100 OK"

8.30.7 sip.protocol

This keyword matches the protocol field from a SIP request or response line.

If the response line is 'SIP/2.0 100 OK', then this buffer will contain 'SIP/2.0'

Syntax

sip.protocol; content:<protocol>

Where <protocol> is the SIP protocol version.

Example

sip.protocol; content:"SIP/2.0"

8.30.8 sip.from

This keyword matches on the From field that can be present in SIP headers. It matches both the regular and short forms,
though it cannot distinguish between them.

172 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Syntax

sip.from; content:<from>

Where <from> is the value of the From header.

Example

sip.from; content:"user"

8.30.9 sip.to

This keyword matches on the To field that can be present in SIP headers. It matches both the regular and short forms,
though it cannot distinguish between them.

Syntax

sip.to; content:<to>

Where <to> is the value of the To header.

Example

sip.to; content:"user"

8.30.10 sip.via

This keyword matches on the Via field that can be present in SIP headers. It matches both the regular and short forms,
though it cannot distinguish between them.

Syntax

sip.via; content:<via>

Where <via> is the value of the Via header.

Example

sip.via; content:"SIP/2.0/UDP"

8.30. SIP Keywords 173

Suricata User Guide, Release 8.0.0

8.30.11 sip.user_agent

This keyword matches on the User-Agent field that can be present in SIP headers.

Syntax

sip.user_agent; content:<user_agent>

Where <user_agent> is the value of the User-Agent header.

Example

sip.user_agent; content:"Asterisk"

8.30.12 sip.content_type

This keyword matches on the Content-Type field that can be present in SIP headers. It matches both the regular and
short forms, though it cannot distinguish between them.

Syntax

sip.content_type; content:<content_type>

Where <content_type> is the value of the Content-Type header.

Example

sip.content_type; content:"application/sdp"

8.30.13 sip.content_length

This keyword matches on the Content-Length field that can be present in SIP headers. It matches both the regular and
short forms, though it cannot distinguish between them.

Syntax

sip.content_length; content:<content_length>

Where <content_length> is the value of the Content-Length header.

174 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Example

sip.content_length; content:"200"

8.31 SDP Keywords

The SDP keywords are implemented as sticky buffers and can be used to match on fields in SDP messages.

Keyword Direction
sdp.origin Both
sdp.session_name Both
sdp.session_info Both
sdp.uri Both
sdp.email Both
sdp.connection_data Both
sdp.bandwidth Both
sdp.time Both
sdp.repeat_time Both
sdp.timezone Both
sdp.encryption_key Both
sdp.attribute Both
sdp.media.media Both
sdp.media.session_info Both
sdp.media.connection_data | Both
sdp.media.encryption_key | Both

8.31.1 sdp.origin

This keyword matches on the originator found in an SDP request or response.

Syntax

sdp.origin; content:<origin>;

Where <origin> is an originator that follows the SDP Origin (0=) scheme.

Examples

sdp.origin; content:"SIPPS 105015165 105015162 IN IP4 192.168.1.2";

8.31. SDP Keywords

175

Suricata User Guide, Release 8.0.0

8.31.2 sdp.session_name

This keyword matches on the session name found in an SDP request or response.

Syntax

sdp.session_name; content:<session_name>;

Where <session_name> is a name that follows the SDP Session name (s=) scheme.

Examples

sdp.session_name; content:"SIP call";

8.31.3 sdp.session_info

This keyword matches on the session information found in an SDP request or response.

Syntax

sdp.session_info; content:<session_info>;

Where <session_info> is a description that follows the SDP Session information (i=) scheme.

Examples

sdp.session_info; content:"Session Description Protocol";

8.31.4 sdp.uri

This keyword matches on the URI found in an SDP request or response.

Syntax

sdp.uri; content:<uri>;

Where <uri> is a URI (u=) that the follows the SDP scheme.

176 Chapter 8

. Suricata Rules

Suricata User Guide, Release 8.0.0

Examples

sdp.uri; content:"https://www.sdp.proto"

8.31.5 sdp.email

This keyword matches on the email found in an SDP request or response.

Syntax

sdp.email; content:<email>

Where <email> is an email address (e=) that follows the SDP scheme.

Examples

sdp.email; content:"j.doe@example.com (Jane Doe)";

8.31.6 sdp.phone_number

This keyword matches on the phone number found in an SDP request or response.

Syntax

sdp.phone_number; content:<phone_number>

Where <phone_number> is a phone number (p=) that follows the SDP scheme.

Examples

sdp.phone_number; content:"+1 617 555-6011 (Jane Doe)";

8.31.7 sdp.connection_data

This keyword matches on the connection found in an SDP request or response.

8.31. SDP Keywords

177

Suricata User Guide, Release 8.0.0

Syntax

sdp.connection_data; content:<connection_data>;

Where <connection_data> is a connection (c=) that follows the SDP scheme.

Examples

sdp.connection_data; content:"IN IP4 192.168.1.2"

8.31.8 sdp.bandwidth

This keyword matches on the bandwidths found in an SDP request or response.

Syntax

sdp.bandwidth; content:<bandwidth>

Where <bandwidth> is a bandwidth (b=) that follows the SDP scheme.

Example

sdp.bandwidth; content:"AS:64"

8.31.9 sdp.time

This keyword matches on the time found in an SDP request or response.

Syntax

sdp.time; content:<time>

Where <time> is a time (t=) that follows the SDP scheme.

Example

sdp.time; content:"3034423619 3042462419"

178 Chapter 8

. Suricata Rules

Suricata User Guide, Release 8.0.0

8.31.10 sdp.repeat_time

This keyword matches on the repeat time found in an SDP request or response.

Syntax

sdp.repeat_time; content:<repeat_time>

Where <repeat_time> is a repeat time (r=) that follows the SDP scheme.

Example

sdp.repeat_time; content:"604800 3600 O 90000"

8.31.11 sdp.timezone

This keyword matches on the timezone found in an SDP request or response.

Syntax

sdp.timezone; content:<timezone>

Where <timezone> is a timezone (z=) that follows the SDP scheme.

Example

sdp.timezone; content: 2882844526 -1h 2898848070 0"

8.31.12 sdp.encryption_key

This keyword matches on the encryption key found in an SDP request or response.

Syntax

sdp.encryption_key; content:<encryption_key>

Where <encryption_key> is a key (k=) that follows the SDP scheme.

8.31. SDP Keywords 179

Suricata User Guide, Release 8.0.0

Example

sdp.encryption_key; content:"prompt"

8.31.13 sdp.attribute

This keyword matches on the attributes found in an SDP request or response.

Syntax

sdp.attribute; content:<attribute>

Where <attribute> is an attribute (a=) that follows the SDP scheme.

Example

sdp.attribute; content:"sendrecv"

8.31.14 sdp.media.media

This keyword matches on the Media subfield of a Media description field found in an SDP request or response.

Syntax

sdp.media.media; content:<media>

Where <media> is a media (m=) that follows the SDP scheme.

Example

sdp.media.media; content:"audio 30000 RTP/AVP ® 8 97 2 3"

8.31.15 sdp.media.session_info

This keyword matches on the Session information subfield of a Media description field found in an SDP request or
response.

180 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Syntax

sdp.media.session_info; content:<session_info>

Where <session_info> is a description (i=) that follows the SDP scheme.

Example

sdp.media.session_info; content:"Session Description Protocol"”

8.31.16 sdp.media.connection_data

This keyword matches on the Connection data subfield of a Media description field found in an SDP request or response.

Syntax

sdp.media.connection_data; content:<connection_data>

Where <connection_data> is a connection (c=) that follows the SDP scheme.

Example

sdp.media.connection_data; content:"IN IP4 192.168.1.2"

8.31.17 sdp.media.encryption_key

This keyword matches on the Encryption key subfield of a Media description field found in an SDP request or response.

Syntax

sdp.media.encryption_key; content:<encryption_key>

Where <encryption_key> is a key (k=) that follows the SDP scheme.

Example

sdp.media.encryption_key; content:"prompt"

8.31. SDP Keywords 181

Suricata User Guide, Release 8.0.0

8.32 RFB Keywords

The rfb.name and rfb.sectype keywords can be used for matching on various properties of RFB (Remote Frame-
buffer, i.e. VNC) handshakes.

8.32.1 rfb.name

Match on the value of the RFB desktop name field.

Examples:

rfb.name; content:"Alice's desktop";
rfb.name; pcre:"/.* \(screen [0-9]\)$/";

rfb.name is a 'sticky buffer'.

rfb.name can be used as fast_pattern.

8.32.2 rfb.secresult

Match on the value of the RFB security result, e.g. ok, fail, toomany or unknown.
rfb.secresult uses an unsigned 32-bit integer.

Examples:

rfb.secresult: ok;
rfb.secresult: !0;
rfb.secresult: unknown;

8.32.3 rfb.sectype

Match on the value of the RFB security type field, e.g. 2 for VNC challenge-response authentication, ® for no authen-
tication, and 30 for Apple's custom Remote Desktop authentication.

rfb.sectype uses an unsigned 32-bit integer.
This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:
e > (greater than)
¢ < (less than)
* >=(greater than or equal)
* <= (less than or equal)

Examples:

rfb.sectype:2;
rfb.sectype:>=3;

182 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.32.4 Additional information

More information on the protocol can be found here: https://tools.ietf.org/html/rfc6143

8.33 MQTT Keywords

Various keywords can be used for matching on fields in fixed and variable headers of MQTT messages as well as
payload values.

8.33.1 mqtt.protocol_version

Match on the value of the MQTT protocol version field in the fixed header.
mgqtt.protocol_version uses an unsigned 8-bit integer.

The format of the keyword:

mgtt.protocol_version:<min>-<max>;
mgtt.protocol_version: [<|>]<number>;
mgtt.protocol_version:<value>;

Examples:

mgqtt.protocol_version:5;

8.33.2 mqtt.type

Match on the MQTT message type (also: control packet type). Valid values are :
* CONNECT
¢ CONNACK
e PUBLISH
* PUBACK
* PUBREC
¢ PUBREL
* PUBCOMP
* SUBSCRIBE
* SUBACK
* UNSUBSCRIBE
* UNSUBACK
* PINGREQ
¢ PINGRESP
* DISCONNECT
e AUTH
¢ UNASSIGNED

8.33. MQTT Keywords 183

https://tools.ietf.org/html/rfc6143

Suricata User Guide, Release 8.0.0

where UNASSIGNED refers to message type code 0.
mgqtt.type uses an unsigned 8-bits integer.

Examples:

mqtt.type:CONNECT;
mgtt.type:PUBLISH;
mgtt.type:2;

8.33.3 mqtt.flags
Match on a combination of MQTT header flags, separated by commas (,). Flags may be prefixed by ! to indicate
negation, i.e. a flag prefixed by ! must not be set to match.
mgqtt.flags uses an unsigned 8-bits integer
Valid flags are:
¢ dup (duplicate message)
* retain (message should be retained on the broker)

Examples:

mqtt.flags:dup, !'retain;
mqtt.flags:retain;

8.33.4 mqtt.qos

Match on the Quality of Service request code in the MQTT fixed header. Valid values are:
* 0 (fire and forget)
1 (at least one delivery)
* 2 (exactly one delivery)

Examples:

mgtt.qos:0;
mgtt.qos:2;

8.33.5 mqtt.reason_code

Match on the numeric value of the reason code that is used in MQTT 5.0 for some message types. Please refer to the
specification for the meaning of these values, which are often specific to the message type in question.
mgqtt.reason_code uses an unsigned S-bits integer.

Examples:

match on attempts to unsubscribe from a non-subscribed topic
mgtt.type:UNSUBACK; mqtt.reason_code:17;

match on publications that were accepted but there were no subscribers

(continues on next page)

184 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

(continued from previous page)

mgtt.type:PUBACK; mgtt.reason_code:16;

match on connection attempts by banned clients
mgtt.CONNACK; mgtt.reason_code:138;

match on failed connection attempts due to bad credentials
mqgtt.CONNACK; mgtt.reason_code:134;

match on connections terminated by server shutdowns
mqgtt.DISCONNECT; mgtt.reason_code:139;

This keyword is also available under the alias mqtt.connack.return_code for completeness.

8.33.6 mqtt.connack.session_present

Match on the MQTT CONNACK session_present flag. Values can be yes, true, no or false.

Examples:

mqgtt.CONNACK; mqtt.connack.session_present:true;

8.33.7 mqtt.connect.clientid

Match on the self-assigned client ID in the MQTT CONNECT message.

Examples:

mgtt.connect.clientid; pcre:"/*mosq.*/";
mgtt.connect.clientid; content:"myclient";

mqtt.connect.clientid is a 'sticky buffer' and can be used as fast_pattern.

8.33.8 mqtt.connect.flags
Match on a combination of MQTT CONNECT flags, separated by commas (,). Flags may be prefixed by ! to indicate
negation, i.e. a flag prefixed by ! must not be set to match.
mgqtt.connect.flags uses an unsigned 8-bits integer
Valid flags are:
* username (message contains a username)
» password (message contains a password)
* will (message contains a will definition)
e will_retain (will should be retained on broker)
¢ clean_session (start with a clean session)

Examples:

8.33. MQTT Keywords 185

Suricata User Guide, Release 8.0.0

mqtt.connect.flags:username,password, !will;
mqtt.connect.flags:username, ! password;
mqtt.connect.flags:clean_session;

8.33.9 mqtt.connect.password

Match on the password credential in the MQTT CONNECT message.

Examples:

mqgtt.connect.password; pcre:"/A123[0-9]*/";
mqgtt.connect.password; content:"swordfish";

mqtt.connect.password is a 'sticky buffer' and can be used as fast_pattern.

8.33.10 mqtt.connect.protocol_string

Match on the protocol string in the MQTT CONNECT message. In contrast to mqtt.protocol_version this is a
property that is only really relevant in the initial CONNECT communication and never used again; hence it is organized

under mgqtt.connect.

Examples:

mgtt.connect.protocol_string; content:"MQTT";
mqgtt.connect.protocol_string; content:"MQIsdp";

mgtt.connect.protocol_string is a 'sticky buffer' and can be used as fast_pattern.

8.33.11 mqtt.connect.username

Match on the username credential in the MQTT CONNECT message.

Examples:

mgtt.connect.username; content:"benson";

mqtt.connect.username is a 'sticky buffer' and can be used as fast_pattern.

8.33.12 mqtt.connect.willmessage

Match on the will message in the MQTT CONNECT message, if a will is defined.

Examples:

mgtt.connect.willmessage; pcre:"/Afoobal[rz]/";
mqtt.connect.willmessage; content:"hunter2";

mqtt.connect.willmessage is a 'sticky buffer' and can be used as fast_pattern.

186 Chapter 8

. Suricata Rules

Suricata User Guide, Release 8.0.0

8.33.13 mgqtt.connect.willtopic

Match on the will topic in the MQTT CONNECT message, if a will is defined.

Examples:

mgtt.connect.willtopic; pcre:"/Ahunter[0-9]/";

mgtt.connect.willtopic is a 'sticky buffer' and can be used as fast_pattern.

8.33.14 mqtt.publish.message

Match on the payload to be published in the MQTT PUBLISH message.

Examples:

mgtt.type:PUBLISH; mqtt.publish.message; pcre:"/uid=[0-9]+/";
match on published JPEG images
mqtt.type:PUBLISH; mqtt.publish.message; content:"|FF D8 FF EO|"; startswith;

mqtt.publish.message is a 'sticky buffer' and can be used as fast_pattern.

8.33.15 mqtt.publish.topic

Match on the topic to be published to in the MQTT PUBLISH message.

Examples:

mgtt.publish.topic; content:"mytopic";

mqtt.publish.topic is a 'sticky buffer' and can be used as fast_pattern.

8.33.16 mqtt.subscribe.topic

Match on any of the topics subscribed to in a MQTT SUBSCRIBE message.

Examples:

mgtt.subscribe.topic; content:"mytopic";

mgtt.subscribe. topic is a 'sticky buffer' and can be used as fast_pattern.

mqtt.subscribe. topic supports multiple buffer matching, see Multiple Buffer Matching.

8.33.17 mqtt.unsubscribe.topic

Match on any of the topics unsubscribed from in a MQTT UNSUBSCRIBE message.

Examples:

mgtt.unsubscribe.topic; content:"mytopic";

mqtt.unsubscribe.topic is a 'sticky buffer' and can be used as fast_pattern.

mqtt.unsubscribe.topic supports multiple buffer matching, see Multiple Buffer Matching.

8.33. MQTT Keywords

187

Suricata User Guide, Release 8.0.0

8.33.18 Additional information

More information on the protocol can be found here:
* MQTT 3.1: https://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
e MQTT 3.1.1: https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
e MQTT 5.0: https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

8.34 IKE Keywords

The keywords
e ike.init_spi
e jike.resp_spi
e ike.chosen_sa_attribute
e ike.exchtype
e ike.vendor
e ike.key_exchange_payload
e ike.key_exchange_payload_length
¢ ike.nonce_payload
e ike.nonce_payload_length

can be used for matching on various properties of IKE connections.

8.34.1 ike.init_spi, ike.resp_spi

Match on an exact value of the Security Parameter Index (SPI) for the Initiator or Responder.

Examples:

ike.init_spi; content:"18fe9b731£9f8034";
ike.resp_spi; content:"a®0b8ef0902bb8ec";

ike.init_spi and ike.resp_spi are 'sticky buffer".

ike.init_spi and ike.resp_spi can be used as fast_pattern.

8.34.2 ike.chosen_sa_attribute

Match on an attribute value of the chosen Security Association (SA) by the Responder. Supported for IKEv1
are: alg_enc, alg_hash, alg_auth, alg_dh, alg_prf, sa_group_type, sa_life_type, sa_life_duration,
sa_key_length and sa_field_size. IKEv2 supports alg_enc, alg_auth, alg_prf and alg_dh.

If there is more than one chosen SA the event MultipleServerProposal is set. The attributes of the first SA are used
for this keyword.

Examples:

188 Chapter 8. Suricata Rules

https://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
https://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html

Suricata User Guide, Release 8.0.0

ike.chosen_sa_attribute:alg_hash=2;
ike.chosen_sa_attribute:sa_key_length=128;

8.34.3 ike.exchtype

Match on the value of the Exchange Type.
ike.exchtype uses an unsigned 8-bit integer.
This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:
e > (greater than)
¢ < (less than)
* >=(greater than or equal)
¢ <= (less than or equal)
e argl-arg2 (range)

Examples:

ike.exchtype:5;
ike.exchtype:>=2;

8.34.4 ike.vendor

Match a vendor ID against the list of collected vendor IDs.

Examples:

ike.vendor:4a131c81070358455c5728f20e954521;

ike.vendor supports multiple buffer matching, see Multiple Buffer Matching.

8.34.5 ike.key_exchange_payload

Match against the public key exchange payload (e.g. Diffie-Hellman) of the server or client.

Examples:

ike.key_exchange_payload; content:"|6d026d5616c45be®5e5b898411e9|"

ike.key_exchange_payload is a 'sticky buffer'.

ike.key_exchange_payload can be used as fast_pattern.

8.34. IKE Keywords 189

Suricata User Guide, Release 8.0.0

8.34.6 ike.key_exchange_payload_length

Match against the length of the public key exchange payload (e.g. Diffie-Hellman) of the server or client.
ike.key_exchange_payload_length uses an unsigned 32-bit integer.
This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:

e > (greater than)

¢ < (less than)

* >=(greater than or equal)

¢ <= (less than or equal)

e argl-arg2 (range)

Examples:

ike.key_exchange_payload_length:>132

8.34.7 ike.nonce_payload

Match against the nonce of the server or client.

Examples:

ike.nonce_payload; content:"|6d026d5616c45be05e5b898411e9|"

ike.nonce_payload is a 'sticky buffer'.

ike.nonce_payload can be used as fast_pattern.

8.34.8 ike.nonce_payload_length

Match against the length of the nonce of the server or client.
ike.nonce_payload_length uses an unsigned 32-bit integer.
This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:
e > (greater than)
¢ < (less than)
* >=(greater than or equal)
e <= (less than or equal)
e argl-arg2 (range)

Examples:

ike.nonce_payload_length:132
ike.nonce_payload_length:>132

190 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.34.9 Additional information

More information on the protocol and the data contained in it can be found here: https://tools.ietf.org/html/rfc2409

8.35 HTTP2 Keywords

HTTP2 frames are grouped into transactions based on the stream identifier it it is not 0. For frames with stream identifier
0, whose effects are global for the connection, a transaction is created for each frame.

8.35.1 Frames
The HTTP2 parser supports the following frames (as defined by Suricata) which are created for each HTTP2 frame (as
defined by the HTTP2 RFC) :

* http2.hdr

* http2.data

* http2.pdu

8.35.2 http2.frametype

Match on the frame type present in a transaction.

Examples:

http2.frametype: GOAWAY;

8.35.3 http2.errorcode

Match on the error code in a GOWAY or RST_STREAM frame

Examples:

http2.errorcode: NO_ERROR;
http2.errorcode: INADEQUATE_SECURITY;

8.35.4 http2.priority

Match on the value of the HTTP2 priority field present in a PRIORITY or HEADERS frame.
http2.priority uses an unsigned 8-bit integer.
This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:
e > (greater than)
¢ < (less than)
* x-y (range between values x and y)

Examples:

8.35. HTTP2 Keywords 191

https://tools.ietf.org/html/rfc2409

Suricata User Guide, Release 8.0.0

http2.priority:2;
http2.priority:>100;
http2.priority:32-64;

8.35.5 http2.window

Match on the value of the HTTP2 value field present in a WINDOWUPDATE frame.
http2.window uses an unsigned 32-bit integer.
This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:
* > (greater than)
¢ < (less than)
* x-y (range between values x and y)

Examples:

http2.window:1;
http2.window:<100000;

8.35.6 http2.size_update
Match on the size of the HTTP2 Dynamic Headers Table. More information on the protocol can be found here: https:
/ltools.ietf.org/html/rfc754 1#section-6.3
http2.size_update uses an unsigned 64-bit integer.
This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:
* > (greater than)
¢ < (less than)
* x-y (range between values x and y)

Examples:

http2.size_update:1234;
http2.size_update:>4096;

8.35.7 http2.settings

Match on the name and value of a HTTP2 setting from a SETTINGS frame.

This keyword takes a numeric argument after a colon and supports additional qualifiers, such as:
* > (greater than)
¢ < (less than)
* x-y (range between values x and y)

Examples:

192 Chapter 8. Suricata Rules

https://tools.ietf.org/html/rfc7541#section-6.3
https://tools.ietf.org/html/rfc7541#section-6.3

Suricata User Guide, Release 8.0.0

http2.settings:SETTINGS_ENABLE_PUSH=0;
http2.settings:SETTINGS_HEADER_TABLE_SIZE>4096;

8.35.8 http2.header_name

Match on the name of a HTTP2 header from a HEADER frame (or PUSH_PROMISE or CONTINUATION).

Examples:

http2.header_name; content:"agent";

http2.header_name is a 'sticky buffer'.
http2.header_name can be used as fast_pattern.

http2.header_name supports multiple buffer matching, see Multiple Buffer Matching.

8.35.9 Additional information

More information on the protocol can be found here: https://tools.ietf.org/html/rfc7540

8.36 Quic Keywords

Suricata implements initial support for Quic by parsing the Quic version.
Suricata also derives a CYU hash for earlier versions of Quic.

Quic app-layer parsing must be enabled in the Suricata config file (set 'app-layer.protocols.quic.enabled' to 'yes').

8.36.1 quic.cyu.hash

Match on the CYU hash

Examples:

alert quic any any -> any any (msg:"QUIC CYU HASH"; \
quic.cyu.hash; content:"7b3cebladc974ad360cfa634e8d0a730"; \
sid:1;)

quic.cyu.hash supports multiple buffer matching, see Multiple Buffer Matching.

8.36.2 quic.cyu.string

Match on the CYU string

Examples:

alert quic any any -> any any (msg:"QUIC CYU STRING"; \

quic.cyu.string; content:"46,PAD-SNI-VER-CCS-UAID-TCID-PDMD-SMHL-ICSL-NONP-MIDS-SCLS-
—,CSCT-COPT-IRTT-CFCW-SFCW"; \

sid:2;)

8.36. Quic Keywords 193

https://tools.ietf.org/html/rfc7540

Suricata User Guide, Release 8.0.0

quic.cyu.string supports multiple buffer matching, see Multiple Buffer Matching.

8.36.3 quic.version

Sticky buffer for matching on the Quic header version in long headers.

Examples:

alert quic any any -> any any (msg:"QUIC VERSION"; \
quic.version; content:"Q046"; \
sid:33)

8.36.4 Additional information
More information on CYU Hash can be found here: https://engineering.salesforce.com/
gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f

More information on the protocol can be found here: https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport- 17

8.37 NFS Keywords

8.37.1 file.name

The file.name keyword can be used at the NFS application level.
Signature Example:

alert nfs any any -> any any (msg:"NFS file.name usage"; file.name; content:"file.txt"; classtype:bad-unknown; sid:1;
rev:1;)

For additional information on the file.name keyword, see File Keywords.

8.38 SMTP Keywords

8.38.1 file.name

The file.name keyword can be used at the SMTP application level.
Signature Example:

alert smtp any any -> any any (msg:"SMTP file.name usage"; file.name; content:"winmail.dat"; classtype:bad-
unknown; sid:1; rev:1;)

For additional information on the file.name keyword, see File Keywords.

194 Chapter 8. Suricata Rules

https://engineering.salesforce.com/gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f
https://engineering.salesforce.com/gquic-protocol-analysis-and-fingerprinting-in-zeek-a4178855d75f
https://datatracker.ietf.org/doc/html/draft-ietf-quic-transport-17

Suricata User Guide, Release 8.0.0

8.38.2 smtp.helo

SMTP helo is the parameter passed to the first HELO command from the client. This keyword matches per transaction,
so it can match more than once per flow, even if the helo occured only once at the beginning of the flow.

Syntax:

smtp.helo; content:"localhost";

Signature example:

alert smtp any any -> any any (msg:"SMTP helo localhost"; smtp.helo; content:"localhost";
— sid:2; rev:1;)

smtp.helo is a 'sticky buffer'.
smtp.helo can be used as fast_pattern.

This keyword maps to the eve.json log field smtp.helo

8.38.3 smtp.mail_from

SMTP mail from is the parameter passed to the first MAIL FROM command from the client.

Syntax:

smtp.mail_from; content:"spam";

Signature example:

alert smtp any any -> any any (msg:"SMTP mail from spam"; smtp.mail_from; content:'"spam";
< sid:2; rev:1;)

smtp.mail_from is a 'sticky buffer'.
smtp.mail_from can be used as fast_pattern.

This keyword maps to the eve.json log field smtp.mail_from

8.38.4 smtp.rcpt_to

SMTP rcpt to is the one of the parameters passed to one RCPT TO command from the client.

Syntax:

smtp.rcpt_to; content:'sensitive@target";

Signature example:

alert smtp any any -> any any (msg:"SMTP rcpt to sensitive"; smtp.rcpt_to; content:
—"sensitive@target"; sid:2; rev:1;)

smtp.rcpt_to is a 'sticky buffer'.
smtp.rcpt_to is a 'multi buffer'.
smtp.rcpt_to can be used as fast_pattern.

This keyword maps to the eve.json log field smtp.rcpt_to[]

8.38. SMTP Keywords 195

Suricata User Guide, Release 8.0.0

8.38.5 Frames

The SMTP parser supports the following frames:
e smtp.command_line
* smtp.response_line
e smtp.data

¢ smtp.stream

smtp.command_line

A single line from the client to the server. Multi-line commands will have a frame per line. Lines part of the SMTP
DATA transfer are excluded.

alert smtp any any -> any any (frame:smtp.command_line; content:"MAIL|20[FROM:"; startswith; sid:1;)
smtp.response_line

A single line from the server to the client. Multi-line commands will have a frame per line.

alert smtp any any -> any any (frame:smtp.response_line; content:"354 go ahead"; startswith; sid:1;)

smtp.data

A streaming buffer containing the DATA bytes sent from client to server.

alert smtp any any -> any any (frame:smtp.data; content:"Reply-To:"; startswith; content:"Subject"; distance:0; sid:1;)
smtp.stream

Streaming buffer of the entire TCP data for the SMTP session.

alert smtp any any -> any any (flow:to_client; frame:smtp.stream; content:"250 ok|0d 0a|354 go ahead"; sid:1;)

8.39 WebSocket Keywords

8.39.1 websocket.payload

A sticky buffer on the unmasked payload, limited by suricata.yaml config value websocket .max-payload-size.

Examples:

websocket.payload; pcre:"/A123[0-9]*/";
websocket.payload content:'"swordfish";

websocket.payload is a 'sticky buffer' and can be used as fast_pattern.

196 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.39.2 websocket.flags

Matches on the websocket flags. It uses a 8-bit unsigned integer as value. Only the four upper bits are used.

The value can also be a list of strings (comma-separated), where each string is the name of a specific bit like fin and
comp, and can be prefixed by ! for negation.

websocket.flags uses an unsigned 8-bits integer

Examples:

websocket.flags:128;
websocket.flags:&0x40=0x40;
websocket.flags:fin, !comp;

8.39.3 websocket.mask

Matches on the websocket mask if any. It uses a 32-bit unsigned integer as value (big-endian).
websocket.mask uses an unsigned 32-bits integer

Examples:

websocket.mask:123456;
websocket.mask:>0;

8.39.4 websocket.opcode

Matches on the websocket opcode. It uses a 8-bit unsigned integer as value. Only 16 values are relevant. It can also be
specified by text from the enumeration

websocket.opcode uses an unsigned 8-bits integer

Examples:

websocket.opcode:1;
websocket.opcode:>8;
websocket.opcode:ping;

8.40 Generic App Layer Keywords

8.40.1 app-layer-protocol

Match on the detected app-layer protocol.

Syntax:

app-layer-protocol: [!]<protocol>(,<mode>);

Examples:

8.40. Generic App Layer Keywords 197

Suricata User Guide, Release 8.0.0

app-layer-protocol:ssh;

app-layer-protocol:!tls;

app-layer-protocol: failed;

app-layer-protocol: 'http, final;

app-layer-protocol:http,to_server; app-layer-protocol:tls,to_client;
app-layer-protocol:http2,final; app-layer-protocol:httpl,original;
app-layer-protocol :unknown;

A special value 'failed’ can be used for matching on flows in which protocol detection failed. This can happen if Suricata
doesn't know the protocol or when certain 'bail out' conditions happen.

A special value 'unknown' can be used to match on a protocol being not yet known. It can not be negated.

The different modes are * direction : protocol recognized on the direction of the current packet * to_server : protocol
recognized in the direction to server * to_client : protocol recognized in the direction to client * either : tries to match
protocols found on both directions * final : final protocol chosen by Suricata for parsing * original : original protocol
(in case of protocol change)

By default, (if no mode is specified), the mode is direction.

Note: when negation is used, like 'http, it will not match on the "unknown" state in the flow.

Here is an example of a rule matching non-http traffic on port 80:

alert tcp any any -> any 80 (msg:"non-HTTP traffic over HTTP standard port"; flow:to_server; app-layer-
protocol: !http,final; sid:1;)

Bail out conditions

Protocol detection gives up in several cases:
* both sides are inspected and no match was found
* side A detection failed, side B has no traffic at all (e.g. FTP data channel)
* side A detection failed, side B has so little data detection is inconclusive

In these last 2 cases the app-layer-event:applayer_proto_detection_skipped is set.

8.40.2 app-layer-event

Match on events generated by the App Layer Parsers and the protocol detection engine.

Syntax:

app-layer-event:<event name>;

Examples:

app-layer-event:applayer_mismatch_protocol_both_directions;
app-layer-event:http.gzip_decompression_failed;

198 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Protocol Detection

applayer_mismatch_protocol_both_directions

The toserver and toclient directions have different protocols. For example a client talking HTTP to a SSH server.

applayer_wrong_direction_first_data
Some protocol implementations in Suricata have a requirement with regards to the first data direction. The HTTP parser

is an example of this.

https://redmine.openinfosecfoundation.org/issues/993

applayer_detect_protocol_only_one_direction

Protocol detection only succeeded in one direction. For FTP and SMTP this is expected.

applayer_proto_detection_skipped

Protocol detection was skipped because of Bail out conditions.

8.40.3 app-layer-state

Match on the detected app-layer protocol transaction state.

Syntax:

app-layer-state: [<>]<state>;

Examples:

app-layer-state:request_headers;
app-layer-state:>request_body;

8.41 Generic Decode Layer Keywords

8.41.1 decode-event

Match on events generated by the decode layer. Decode events are generated during the packet decoding phase that
indicate structural or invalid values for the Ethernet and layer 2 and layer 3 protocol data.

Syntax:

decode-event:<event name>;

Examples:

decode-event:ipv4.opt_duplicate
decode-event:ethernet.unknown_ethertype

8.41. Generic Decode Layer Keywords 199

https://redmine.openinfosecfoundation.org/issues/993

Suricata User Guide, Release 8.0.0

Decode Events

ethernet.unknown_ethertype

The ethertype value was not recognized by Suricata. Suricata recognizes the following ethertype values:

ETHERNET_TYPE_TIP
ETHERNET_TYPE_IPV6
ETHERNET_TYPE_VLAN
ETHERNET_TYPE_8021QINQ
ETHERNET_TYPE_8021AD
ETHERNET_TYPE_8021AH
ETHERNET_TYPE_ARP
ETHERNET_TYPE_MPLS_UNICAST
ETHERNET_TYPE_MPLS_MULTICAST
ETHERNET_TYPE_DCE
ETHERNET_TYPE_VNTAG
ETHERNET_TYPE_NSH
ETHERNET_TYPE_PPOE_SESS
ETHERNET_TYPE_PPOE_DISC

8.42 Xbits Keyword

Set, unset, toggle and check for bits stored per host or ip_pair.

Syntax:

xbits:<set|unset|isset|isnotset|toggle>,<name>,track <ip_src|ip_dst|ip_pair>;

xbits:<set|unset|isset|toggle>,<name>,track <ip_src|ip_dst|ip_pair> \
[,expire <seconds>];

xbits:<set|unset|isset|toggle>,<name>,track <ip_src|ip_dst|ip_pair> \
[,expire <seconds>];

8.42.1 Notes

* No difference between using hostbits and xbits with track ip_<src|dst>

* If you set on a client request and use track ip_dst, if you want to match on the server response, you check it
(isset) with track ip_src.

¢ To not alert, use noalert;
* the toggle option will flip the value of the xbits.
* See also:
— https://blog.inliniac.net/2014/12/21/crossing-the-streams-in-suricata/

— http://www.cipherdyne.org/blog/2013/07/crossing-the-streams-in-ids-signature-languages.html

200 Chapter 8. Suricata Rules

https://blog.inliniac.net/2014/12/21/crossing-the-streams-in-suricata/
http://www.cipherdyne.org/blog/2013/07/crossing-the-streams-in-ids-signature-languages.html

Suricata User Guide, Release 8.0.0

YAML settings

Bits that are stored per host are stored in the Host table. This means that host table settings affect hostsbits and xbits
per host.

Bits that are stored per IP pair are stored in the IPPair table. This means that ippair table settings, especially memcap,
affect xbits per ip_pair.

Threading

Due to subtle timing issues between threads the order of sets and checks can be slightly unpredictable.

Unix Socket

Hostbits can be added, removed and listed through the unix socket.

Add:

suricatasc -c "add-hostbit <ip> <bit name> <expire in seconds>"
suricatasc -c "add-hostbit 1.2.3.4 blacklist 3600"

If a hostbit is added for an existing hostbit, it's expiry timer is updated.

Remove:

suricatasc -c "remove-hosthit <ip> <bit name>"
suricatasc -c "remove-hostbit 1.2.3.4 blacklist"”

List:

suricatasc -c¢ "list-hosthit <ip>"
suricatasc -c¢ "list-hostbhit 1.2.3.4"

This results in:

{
"message":
{
"count": 1,
"hostbits":
[{
"expire": 89,
"name": "blacklist"
1]
1
"return": "OK"
}

8.42. Xbits Keyword 201

Suricata User Guide, Release 8.0.0

Examples

Creating a SSH blacklist

Below is an example of rules incoming to a SSH server.

The first 2 rules match on a SSH software version often used in bots. They drop the traffic and create an 'xbit' 'badssh’
for the source ip. It expires in an hour:

drop ssh any any -> $MYSERVER 22 (msg:"DROP libssh incoming"; \
flow:to_server,established; ssh.software; content:"libssh"; \
xbits:set, badssh, track ip_src, expire 3600; sid:4000000005;)

drop ssh any any -> $MYSERVER 22 (msg:"DROP PUTTY incoming"; \
flow:to_server,established; ssh.software; content:"PUTTY"; \

xbits:set, badssh, track ip_src, expire 3600; sid:4000000007;)

Then the following rule simply drops any incoming traffic to that server that is on that 'badssh' list:

drop ssh any any -> $MYSERVER 22 (msg:"DROP BLACKLISTED"; \
xbits:isset, badssh, track ip_src; sid:4000000006;)

8.43 Alert Keywords

In addition to the action, alerting behavior can be controlled in the rule body using the noalert and alert keywords.
Additionally, alerting behavior is controlled by Thresholding Keywords.

8.43.1 noalert

A rule that specifies noalert will not generate an alert when it matches, but rule actions will still be performed.
noalert is often used in rules that set a flowbit for common patterns.
noalert is meant for use with rule actions alert, drop, reject that all explicitly or implicitly include alert.

alert http any any -> any any (http.user_agent; content:"Mozilla/5.0"; startwith; endswith; flowbits:set,mozilla-ua;
noalert; sid:1;)

This example sets a flowbit "mozilla-ua" on matching, but does not generate an alert due to the presence of noalert.

Note: this option is also used as flowbits:noalert;, see Flow Keywords

8.43.2 alert

A rule that specifies alert will generate an alert, even if the rule action doesn't imply alerting.
This keyword can be used to implement an "alert then pass"-logic.
pass http any any -> any any (http.user_agent; content:"Mozilla/5.0"; startwith; endswith; alert; sid:1;)

This example would pass the rest of the HTTP flow with the Mozilla/5.0 user-agent, generating an alert for the "pass"
event.

202 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.44 Thresholding Keywords

Thresholding can be configured per rule and also globally, see Global-Thresholds.
Thresholds are tracked in a hash table that is sized according to configuration, see: Thresholding Settings.

IMPORTANT for both threshold and detection_filter keywords

Note: Rules that contain flowbits, flowints, etc will still have those actions performed when the rule contains one
of the threshold keywords. Those actions are not subject to the threshold limits.

Rule actions drop (IPS mode) and reject are applied to each packet (not only the one that meets the limit condition).

8.44.1 threshold

The threshold keyword can be used to control the rule's alert frequency. There are four threshold modes:
1. threshold
2. limit
3. both
4. backoff

Syntax:

threshold: type <threshold|limit|both|backoff>, track <by_src|by_dst|by_rule|by_both|by_
—flow>, count <N>, <seconds <T>|multiplier <M>>

Specify seconds to control the number of alerts per time period.

type "threshold"

This type sets a minimum threshold for a rule before it generates alerts.

A threshold setting with a count value of C will generate an alert the Cth time the alert matches. If seconds is
specified, an alert is generated when count matches have occurred within N seconds.

Syntax:

threshold: type threshold, track by_flow, count <C>, seconds <N>;

Example:

alert tcp !$SHOME_NET any -> SHOME_NET 25 (msg:"ET POLICY Inbound Frequent Emails - Possible Spambot
Inbound"; flow:established; content:"mail from|3a|"; nocase; threshold: type threshold, track by_src, count 10, seconds
60; reference:url,doc.emergingthreats.net/2002087; classtype:misc-activity; sid:2002087; rev:10;)

This signature generates an alert if there are 10 or more inbound emails from the same server within one minute.

8.44. Thresholding Keywords 203

Suricata User Guide, Release 8.0.0

type "limit"

The 1imit type prevents a flood of alerts by limiting the number of alerts. A limit with a count of N won't generate
more than N alerts.

Limit the number of alerts per time period by specifying seconds with count.

Syntax:

threshold: type limit, track by_dst, count <C>, seconds <N>;

Example:

alert http SHOME_NET any -> any any (msg:"ET INFO Internet Explorer 6 in use - Significant Security Risk";
flow:established,to_server; http.user_agent; content:"Mozilla/4.0 (compatible|3b] MSIE 6.0|3b|"; threshold: type limit,
track by_src, seconds 180, count 1; classtype:policy-violation; sid:2010706; rev:10; metadata:created_at 2010_07_30,
updated_at 2024_03_16;)

In this example, at most 1 alert is generated per host within a period of 3 minutes if "MSIE 6.0" is detected.
type "both"

This type combines threshold and 1imit to control when alerts are generated.

Syntax:

threshold: type both, track by_flow, count <C>, multiplier <M>;

Example:

alert tcp SHOME_NET 5060 -> SEXTERNAL_NET any (msg:"ET VOIP Multiple Unauthorized SIP Responses TCP";
flow:established,from_server; content:"SIP/2.0 401 Unauthorized"; depth:24; threshold: type both, track by_src, count
5, seconds 360; reference:url,doc.emergingthreats.net/2003194; classtype:attempted-dos; sid:2003194; rev:6;)

This rule will generate at most one alert every 6 minutes if there have been 5 or more occurrences of "SIP2.0 401
Unauthorized" responses.

The type backoff section describes the multiplier keyword.

type "backoff"

This type limits the alert output by using a backoff algorithm between alerts.

Note: backoff can only be used with track by_flow

Syntax:

threshold: type backoff, track by_flow, count <C>, multiplier <M>;

track: backoff is only supported for by_flow count: number of alerts before the first match generates an alert.
multiplier: value to multiply count with each time the next value is reached

A count of 1 with a multiplier of 10 would generate alerts for matching packets:

1, 10, 100, 1000, 10000, 100000, etc.

A count of 1 with a multiplier of 2 would generate alerts for matching packets:

204 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

1, 2, 4, 8, 16, 32, 64, etc.

A count of 5 with multiplier 5 would generate alerts for matching packets:

5, 25, 125, 625, 3125, 15625, etc

In the following example, the pkt_invalid_ack would only lead to alerts the 1st, 10th, 100th, etc.

alert tcp any any -> any any (stream-event:pkt_invalid_ack; threshold:type backoff, track by_flow, count 1, multiplier
10; sid:2210045; rev:2;)

track

Option | Tracks By

by_src source IP

by_dst destination IP

by_both | pair of src IP and dst IP
by_rule | signature id

by_flow | flow

8.44.2 detection_filter

The detection_filter keyword can be used to alert on every match after an initial threshold has been reached. It
differs from threshold with type threshold in that it generates an alert for each rule match after the initial threshold
has been reached, where the latter will reset its internal counter and alert each time the threshold has been reached.

Syntax:

detection_filter: track <by_src|by_dst|by_rule|by_both|by_flow>, count <N>, seconds <T>

Example:

alert http SEXTERNAL_NET any -> $HOME_NET any (msg:"ET WEB_SERVER WebResource.axd access
without t (time) parameter - possible ASP padding-oracle exploit"; flow:established,to_server; content:"GET";
http_method; content:"WebResource.axd"; http_uri; nocase; content:!"&t="; http_uri; nocase; content:!" &|3bjt=";
http_uri; nocase; detection_filter:track by_src,count 15,seconds 2; reference:url,netifera.com/research/; ref-
erence:url,www.microsoft.com/technet/security/advisory/2416728.mspx; classtype:web-application-attack;
sid:2011807; rev:5;)

This rule will generate alerts after 15 or more matches have occurred within 2 seconds.

8.45 IP Reputation Keyword

IP Reputation can be used in rules through a new rule keyword "iprep".

For more information about IP Reputation see /P Reputation Config and IP Reputation Format.

8.45. IP Reputation Keyword 205

Suricata User Guide, Release 8.0.0

8.45.1 iprep

The iprep directive matches on the IP reputation information for a host.

iprep:<side to check>,<category>,<operator>,<reputation score>

side to check: <any|src|dst|both>
category: the category short name
operator: <, <=, >, >=, =
reputation score: 0-127

Example:

alert ip $HOME_NET any -> any any (msg:"IPREP internal host talking to CnC server";.
—flow:to_server; iprep:dst,CnC,>,30; sid:1; rev:1;)

This rule will alert when a system in $HOME_NET acts as a client while communicating with any IP in the CnC category
that has a reputation score set to greater than 30.

isset and isnotset

isset and isnotset can be used to test reputation "membership"”

iprep:<side to check>,<category>,<isset|issnotset>

side to check: <anylsrc|dst|both>

category: the category short name

To test whether an IP is part of an iprep set at all, the isset can be used. It acts as a >=, ® statement.
drop ip SHOME_NET any -> any any (iprep:src,known-bad-hosts,isset; sid:1;)

In this example traffic to any IP with a score in known-bad-hosts would be blocked.

isnotset can be used to test if an IP is not a part of the set.

drop ip SHOME_NET any -> any any (iprep:src,trusted-hosts,isnotset; sid:1;)

In this example traffic for a host w/o a trust score would be blocked.

Compatibility with IP-only

The "iprep" keyword is compatible with "IP-only" rules. This means that a rule like:

alert ip any any -> any any (msg:"IPREP High Value CnC"; iprep:src,CnC,>,100; sid:1;.
—rev:1;)

will only be checked once per flow-direction.

206 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.46 IP Addresses Match

Matching on IP addresses can be done via the IP tuple parameters or via the iprep keywords (see /P Reputation Key-
word). Some keywords providing interaction with datasets are also available.

8.46.1 ip.src

The ip.src keyword is a sticky buffer to match on source IP address. It matches on the binary representation and is
compatible with datasets of types ip and ipv4.

Example:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"Inbound bad list"; flow:to_server; ip.
—src; dataset:isset,badips,type ip,load badips.list; sid:1; rev:1;)

8.46.2 ip.dst

The ip.dst keyword is a sticky buffer to match on destination IP address. It matches on the binary representation and is
compatible with the dataset of type ip and ipv4.

Example:

alert tcp $HOME_NET any -> any any (msg:"Outbound bad list"; flow:to_server; ip.dst;.
—.dataset:isset,badips,type ip,load badips.list; sid:1; rev:1;)

8.47 Config Rules

Config rules are rules that when matching, will change the configuration of Suricata for a flow, transaction, packet or
other unit.

Example:

config dns any any -> any any (dns.query; content:"suricata"; config: logging disable,.
—type tx, scope tx; sid:1;)

This example will detect if a DNS query contains the string suricata and if so disable the DNS transaction logging.
This means that eve.json records, but also Lua output, will not be generated/triggered for this DNS transaction.

Example:

config tcp:pre_flow any any <> any 666 (config: tracking disable, type flow, scope.
—packet; sid:1;)

This example skips flow tracking for any packet from or to tcp port 666.

8.46. IP Addresses Match 207

Suricata User Guide, Release 8.0.0

8.47.1 Keyword

The config rule keyword provides the setting and the scope of the change.

Syntax:

config:<subsys> <action>, type <type>, scope <scope>;

subsys can be set to:
* logging setting affects logging.
* tracking setting affects tracking.
type can be set to:
* tx sub type of the subsys. If subsys is set to logging, setting the fype to tx means transaction logging is affected.
* flow sub type of the subsys. If subsys is set to flow, setting the rype to flow means flow tracking is disabled.
scope can be set to:
* 1x setting affects the matching transaction.
* packet setting affects the matching packet.

The action in <subsys> is currently limited to disable.

8.47.2 Action

Config rules can, but don't have to, use the config rule action. The config rule action won't generate an alert when the
rule matches, but the rule actions will still be applied. It is equivalent to alert ... (noalert; ...).

8.48 Datasets

Using the dataset and datarep keyword it is possible to match on large amounts of data against any sticky buffer.

For example, to match against a DNS black list called dns-b1:

dns.query; dataset:isset,dns-bl;

These keywords are aware of transforms. So to look up a DNS query against a MDS5 black list:

dns.query; to_md5; dataset:isset,dns-bl;

8.48.1 Global config (optional)

Datasets can optionally be defined in the main config. Sets can also be declared from the rule syntax.

Example of sets for tracking unique values:

datasets:
ua-seen:
type: string
state: ua-seen.lst
dns-sha256-seen:

(continues on next page)

208 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

(continued from previous page)

type: sha256
state: dns-sha256-seen.lst

Rules to go with the above:

alert dns any any -> any any (msg:"dns list test"; dns.query; to_sha256; dataset:isset,dns-sha256-seen; sid:123; rev:1;)
alert http any any -> any any (msg: "http user-agent test"; http.user_agent; dataset:set,ua-seen; sid:234; rev:1;)

It is also possible to optionally define global default memcap and hashsize.

Example:

datasets:
defaults:
memcap: 100mb
hashsize: 2048
ua-seen:
type: string
load: ua-seen.lst

or define memcap and hashsize per dataset.

Example:

datasets:
ua-seen:
type: string
load: ua-seen.lst
memcap: 10mb
hashsize: 1024

Note: The hashsize should be close to the amount of entries in the dataset to avoid collisions. If it's set too low, this
could result in rather long startup time.

8.48.2 Rule keywords

dataset

Datasets are binary: something is in the set or it's not.

Syntax:

dataset:<cmd>,<name>,<options>;

dataset:<set|unset|isset|isnotset>,<name> \

[, type <string|md5|sha256|ipv4|ip>, save <file name>, load <file name>, state <file.
<name>, memcap <size>, hashsize <size>

, format <csv|json|ndjson>, context_key <output_key>, value_key <json_key>, array_
—key <json_path>,

remove_key] ;

8.48. Datasets 209

Suricata User Guide, Release 8.0.0

type <type>
the data type: string, md5, sha256, ipv4, ip

load <file name>
file name for load the data when Suricata starts up

state
sets file name for loading and saving a dataset

save <file name>
advanced option to set the file name for saving the in-memory data when Suricata exits.

memcap <size>
maximum memory limit for the respective dataset

hashsize <size>
allowed size of the hash for the respective dataset

format <type>
the format of the file: csv, json. Defaut to csv. See dataset with json format for json and ndjson option

context_key <key>
the key to use for the enrichment of the alert event for json format

value_key <key>
the key to use for the value of the alert for json format

array_key <key>
the key to use for the array of the alert for json format

remove_key
if set, the JSON object pointed by value key will be removed from the alert event

Note: 'type'is mandatory and needs to be set.

Note: 'load' and 'state’ or 'save' and 'state' cannot be mixed.

Example rules could look like:
1. Detect unique User-Agents:

alert http any any -> any any (msg:"LOCAL HTTP new UA"; http.user_agent; dataset:set,http-ua-seen, type string,
state http-ua-seen.csv; sid:8000001; rev:1;)

2. Detect unique TLDs:

alert dns SHOME_NET any -> any any (msg:"LOCAL DNS unique TLD"; dns.query; pcrexform:"\.(["\.]+)$";
dataset:set,dns-tld-seen, type string, state dns-tld-seen.csv; sid:8000002; rev:1;)

Following image is a pictorial representation of how the pcrexform works on domain names to find TLDs in the
dataset dns-tld-seen:

210 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

| AR Match
< www.xz-2-vc.neten | - |::> i

‘ dns.query ‘

dns-tld-seen

Notice how it is not possible to do certain operations alone with datasets (example 2 above), but, it is possible to use a
combination of other rule keywords. Keep in mind the cost of additional keywords though e.g. in the second example
rule above, negative performance impact can be expected due to pcrexform.

datarep

Data Reputation allows matching data against a reputation list.

Syntax:

datarep:<name>,<operator>,<value>, \
[, load <file name>, type <string|md5|sha256|ipv4|ip>, memcap <size>, hashsize <size>

-1;

Example rules could look like:

alert dns any any -> any any (dns.query; to_md5; datarep:dns_md5, >, 200, load dns_md5.
—rep, type md5, memcap 100mb, hashsize 2048; sid:1;)

alert dns any any -> any any (dns.query; to_sha256; datarep:dns_sha256, >, 200, load dns_
—»sha256.rep, type sha256; sid:2;)

alert dns any any -> any any (dns.query; datarep:dns_string, >, 200, load dns_string.rep,
< type string; sid:3;)

In these examples the DNS query string is checked against three different reputation lists. A MDS5 list, a SHA256 list,
and a raw string (buffer) list. The rules will only match if the data is in the list and the reputation value is higher than
200.

dataset with JSON

Dataset with JSON allows matching data against a set and output data attached to the matching value in the event.

There are two formats supported: json and ndjson. The difference is that json format is a single JSON object, while
ndjson is handling file with one JSON object per line. The ndjson format is useful for large files as the parsing is
done line by line.

Syntax:

dataset:<cmd>, <name>,<options>;

dataset:<isset|isnotset>,<name> \

[, type <string|md5|sha256|ipv4|ip>, load <file name>, format <json|ndjson>, memcap
—.<size>, hashsize <size>, context_key <json_key> \

, value_key <json_key>, array_key <json_path>];

Example rules could look like:

8.48. Datasets 211

Suricata User Guide, Release 8.0.0

alert http any any -> any any (msg:"IP match"; ip.dst; dataset:isset,bad_ips, type ip,.
—»load bad_ips.json, format json, context_key bad_ones, value_key ip; sid:8000001;)

In this example, the match will occur if the destination IP is in the set and the alert will have an alert.content.
bad_ones subobject that will contain the JSON data associated to the value (bad_ones coming from context_key
option).

When format is json or ndjson, the value_key is used to get the value in the line (ndjson format) or in the array
(json format). At least one single element needs to have the value_key present in the data file to have a successful
load. If array_key is present, Suricata will extract the corresponding subobject that has to be a JSON array and search
for element to add to the set in this array. This is only valid for json format.

If you don't want to have the value_key in the alert, you can use the remove_key option. This will remove the key
from the alert event.

See Dataset with JSON format for more information.

8.48.3 Rule Reloads

Sets that are defined in the yaml, or sets that only use state or save, are considered dynamic sets. These are not reloaded
during rule reloads.

Sets that are defined in rules using only load are considered static tests. These are not expected to change during
runtime. During rule reloads these are reloaded from disk. This reload is effective when the complete rule reload
process is complete.

8.48.4 Unix Socket

dataset-add

Unix Socket command to add data to a set. On success, the addition becomes active instantly.

Syntax:

dataset-add <set name> <set type> <data>

set name
Name of an already defined dataset

type
Data type: string, md5, sha256, ipv4, ip

data
Data to add in serialized form (base64 for string, hex notation for md5/sha256, string representation for ipv4/ip)

Example adding 'google.com' to set 'myset':

dataset-add myset string Z29vZ2xlLmNvbQ==

212 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

dataset-remove

Unix Socket command to remove data from a set. On success, the removal becomes active instantly.

Syntax:

dataset-remove <set name> <set type> <data>

set name
Name of an already defined dataset

type
Data type: string, md5, sha256, ipv4, ip

data
Data to remove in serialized form (base64 for string, hex notation for md5/sha256, string representation for
ipv4/ip)

dataset-clear

Unix Socket command to remove all data from a set. On success, the removal becomes active instantly.

Syntax:

dataset-clear <set name> <set type>

set name
Name of an already defined dataset

type
Data type: string, md5, sha256, ipv4, ip

dataset-lookup

Unix Socket command to test if data is in a set.

Syntax:

dataset-lookup <set name> <set type> <data>

set name
Name of an already defined dataset

type
Data type: string, md5, sha256, ipv4, ip

data
Data to test in serialized form (base64 for string, hex notation for md5/sha256, string notation for ipv4/ip)

Example testing if 'google.com' is in the set 'myset':

dataset-lookup myset string Z29vZ2x1LmNvbQ==

8.48. Datasets 213

Suricata User Guide, Release 8.0.0

dataset-dump

Unix socket command to trigger a dump of datasets to disk.

Syntax:

dataset-dump

dataset-add-json

Unix Socket command to add data to a set. On success, the addition becomes active instantly.

Syntax:

dataset-add-json <set name> <set type> <data> <json_info>

set name
Name of an already defined dataset

type
Data type: string, md5, sha256, ipv4, ip

data
Data to add in serialized form (base64 for string, hex notation for md5/sha256, string representation for ipv4/ip)

Example adding 'google.com' to set 'myset':

dataset-add-json myset string Z29vZ2x1LmNvbQ== {"city":"Mountain View"}

8.48.5 File formats

Datasets use a simple CSV format where data is per line in the file.

data types

string
in the file as base64 encoded string

mdS
in the file as hex encoded string

sha256
in the file as hex encoded string

ipvd
in the file as string

ip
in the file as string, it can be IPv6 or IPv4 address (standard notation or IPv4 in IPv6 one)

214 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

dataset

Datasets have a simple structure, where there is one piece of data per line in the file.

Syntax:

<data>

e.g. for ua-seen with type string:

TW96aWxsYS8OL jAgKGNvbXBhdGlibGU7ICk=

which when piped to base64 -d reveals its value:

Mozilla/4.0 (compatible;)

datarep

The datarep format follows the dataset, except that there are 1 more CSV field:

Syntax:

<data>,<value>

dataset with JSON enrichment

If format jsonis used in the parameters of a dataset keyword, then the loaded file has to contain a valid JSON object.

If value_key" option is present then the file has to contain a valid JSON object containing an array where the key
equal to value_key value is present.

For example, if the file file. json is like the following example (typical of return of REST API call)

{
"time": "2024-12-21",
"response": {
"threats":
[
{"host": "toto.com", "origin": "japan"},
{"host": "grenouille.com", "origin": "french"}
1
}
}

then the match to check the list of threats using dataset with JSON can be defined as

http.host; dataset:isset,threats,load file.json, context_key threat, value_key host,.
—,array_key response.threats;

If the signature matches, it will result in an alert with the following

{
"alert": {
"context": {

(continues on next page)

8.48. Datasets 215

Suricata User Guide, Release 8.0.0

(continued from previous page)

"threat": {
"host": "toto.com",
"origin": "japan"

}

8.48.6 File Locations

Dataset filenames configured in the suricata.yaml can exist anywhere on your filesytem.
When a dataset filename is specified in rule, the following rules are applied:

* For load, the filename is opened relative to the rule file containing the rule. Absolute filenames and parent
directory traversals are allowed.

* For save and state the filename is relative to $LOCALSTATEDIR/suricata/data. On many installs this will
be /var/lib/suricata/data, butrun suricata --build-info and check the value of --localstatedir
to verify this location onn your installation.

— Absolute filenames, or filenames containing parent directory traversal (. .) are not allowed unless the con-
figuration paramater datasets.allow-absolute-filenames is set to true.

8.48.7 Security

As datasets potentially allow a rule distributor write access to your system with save and state dataset rules, the
locations allowed are strict by default, however there are two dataset options to tune the security of rules utilizing
dataset filenames:

datasets:
rules:
Set to true to allow absolute filenames and filenames that use
".." components to reference parent directories in rules that specify

their filenames.
allow-absolute-filenames: false

Allow datasets in rules write access for "save" and

"state". This is enabled by default, however write access 1is
limited to the data directory.

allow-write: true

By setting datasets.rules.allow-write to false, all save and state rules will fail to load. This option is enabled
by default to preserve compatiblity with previous 6.0 Suricata releases, however may change in a future major release.

Pre-Suricata 6.0.13 behavior can be restored by setting datasets.rules.allow-absolute-filenames to true,
however allowing so will allow any rule to overwrite any file on your system that Suricata has write access to.

216 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.49 Lua Scripting for Detection

There are 2 ways that Lua can be used with detection. These are

lua rule keyword.

luaxform transform.

Note: Lua is disabled by default for use in rules, it must be enabled in the configuration file. See the security.lua
section of suricata.yaml and enable allow-rules.

8.49.1 Lua Rule Keyword

Syntax:

lua:[!]<scriptfilename>;

The script filename will be appended to your default rules location.

A Lua rule script has 2 required functions, an init function and match function, discussed below.

Additionally, the script will run in a limited sandbox by default.

Init function

function init (args)

end

local needs = {}
needs["http.request_line"] = tostring(true)
return needs

The init function registers the buffer(s) that need inspection. Currently the following are available:

packet -- entire packet, including headers
payload -- packet payload (not stream)
buffer -- the current sticky buffer
stream

dnp3

ssh

smtp

tls

http.uri

http.uri.raw

http.request_line

http.request_headers

http.request_headers.raw

8.49.

Lua Scripting for Detection

217

Suricata User Guide, Release 8.0.0

* http.request_body

* http.response_headers

* http.response_headers.raw
* http.response_body

All the HTTP buffers have a limitation: only one can be inspected by a script at a time.

Match function

function match(args)
a = tostring(args["http.request_line"])
if #a > 0 then
if a:find("APOST%s+/.*%.php%s+HTTP/1.0$") then
return 1
end
end

return 0
end

The script can return 1 or 0. It should return 1 if the condition(s) it checks for match, 0 if not.

Entire script:

function init (args)
local needs = {}
needs["http.request_line"] = tostring(true)
return needs

end

function match(args)
a = tostring(args["http.request_line"])
if #a > 0 then
if a:find("APOST%s+/.*%.php%s+HTTP/1.0$") then
return 1
end
end

return 0
end

return 0

218 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.49.2 Lua Transform: luaxform

More details in luaxform.

8.49.3 Lua Sandbox and Available functions

Lua rule scripts are run in a sandbox environment the applies the following restrictions:
* reduced libraries
* only allowed functions available
* instruction count limit
* memory allocation limit

The following table lists the library and functions available:

Pack- Functions

age

Name

base assert, ipairs, next, pairs, print, rawequal, rawlen, select, tonumber, tostring, type, warn, rawget, rawset,
error

table concat, insert, move, pack, remove, sort, unpack

string byte, char, dump, find, format, gmatch, gsub, len, lower, match, pack, packsize, rep, reverse, sub,
unpack, upper

math abs, acos, asin, atan, atan2, ceil, cos, cosh, deg, exp, floor, fmod, frexp, ldexp, log, log10, max, min,
modf, pow, rad, random, randomseed, sin, sinh, sqrt, tan, tanh, tointeger, type, ult

utf8 offset, len, codes, char, codepoint

Of note, the following standard libraries are not available:
¢ coroutine
 package
* input and output
* operating system facilities
e debug

This behavior can be modified via the security.lua section of Lua

Note: Suricata 8.0 has moved to Lua 5.4 and now has builtin support for bitwise and utf8 operations.

A comprehensive list of existing lua functions - with examples - can be found at Lua functions (some of them, however,
work only for the lua-output functionality).

8.49. Lua Scripting for Detection 219

Suricata User Guide, Release 8.0.0

8.50 Differences From Snort

This document is intended to highlight the major differences between Suricata and Snort that apply to rules and rule
writing.

Where not specified, the statements below apply to Suricata. In general, references to Snort refer to the version 2.9
branch.

8.50.1 Automatic Protocol Detection

* Suricata does automatic protocol detection of the following application layer protocols:
— dcerpc
— dnp3
— dns
- http
— imap (detection only by default; no parsing)
— pop3 (detection only by default; no parsing)
- ftp
— modbus (disabled by default; minimalist probe parser; can lead to false positives)
— smb
— smb?2 (disabled internally inside the engine)
— smtp
— ssh
— tIs (SSLv2, SSLv3, TLSv1, TLSv1.1 and TLSv1.2)

* In Suricata, protocol detection is port agnostic (in most cases). In Snort, in order for the http_inspect and
other preprocessors to be applied to traffic, it has to be over a configured port.

— Some configurations for app-layer in the Suricata yaml can/do by default specify specific destination ports
(e.g. DNS)

— You can look on 'any' port without worrying about the performance impact that you would have to
be concerned about with Snort.

o If the traffic is detected as HTTP by Suricata, the http_* buffers are populated and can be used, regardless of
port(s) specified in the rule.

* You don't have to check for the http protocol (i.e. alert http ...) to use the http_* buffers although it is
recommended.

* If you are trying to detect legitimate (supported) application layer protocol traffic and don't want to look on
specific port(s), the rule should be written as alert <protocol> ... with any in place of the usual protocol
port(s). For example, when you want to detect HTTP traffic and don't want to limit detection to a particular port
or list of ports, the rules should be written as alert http ... with any in place of $HTTP_PORTS.

— You can also use app-layer-protocol :<protocol>; inside the rule instead.

So, instead of this Snort rule:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS ...

220 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Do this for Suricata:

alert http $HOME_NET -> $EXTERNAL_NET any ...

Or:

alert tcp $HOME_NET any -> $EXTERNAL_NET any (app-layer-protocol:http;

8.50.2 urilen Keyword

* Ranges given in the urilen keyword are inclusive for Snort but not inclusive for Suricata.
Example: urilen:2<>10
— Snort interprets this as, "the URI length must be greater than or equal to 2, and less than or equal to 10".
— Suricata interprets this as "the URI length must be greater than 2 and less than 10".

— There is a request to have Suricata behave like Snort in future versions — https://redmine.
openinfosecfoundation.org/issues/1416

% Currently on hold
* By default, with Suricata, urilen applies to the normalized buffer
— Use , raw for raw buffer
— e.g.urilen:>20,raw;
* By default, with Snort, urilen applies to the raw buffer
— Use ,norm for normalized buffer

— e.g. urilen:>20,norm;

8.50.3 http_uri Buffer

* In Snort, the http_uri buffer normalizes '+' characters (0x2B) to spaces (0x20).

— Suricata can do this as well but you have to explicitly set query-plusspace-decode: yesinthe libhtp
section of Suricata's yaml file.

* https://redmine.openinfosecfoundation.org/issues/1035

* https://github.com/inliniac/suricata/pull/620

8.50.4 http_header Buffer

¢ In Snort, the http_header buffer includes the CRLF CRLF (0x0D 0x0A 0x0D 0x0A) that separates the end of
the last HTTP header from the beginning of the HTTP body. Suricata includes a CRLF after the last header in
the http_header buffer but not an extra one like Snort does. If you want to match the end of the buffer, use
either the http_raw_header buffer, arelative isdataat (e.g. isdataat:!1,relative) or a PCRE (although
PCRE will be worse on performance).

e Suricata will include CRLF CRLF at the end of the http_raw_header buffer like Snort does.

* Snort will include a leading CRLF in the http_header buffer of server responses (but not client requests).
Suricata does not have the leading CRLF in the http_header buffer of the server response or client request.

8.50. Differences From Snort 221

https://redmine.openinfosecfoundation.org/issues/1416
https://redmine.openinfosecfoundation.org/issues/1416
https://redmine.openinfosecfoundation.org/issues/1035
https://github.com/inliniac/suricata/pull/620

Suricata User Guide, Release 8.0.0

In the http_header buffer, Suricata will normalize HTTP header lines such that there is a single space (0x20)
after the colon (:") that separates the header name from the header value; this single space replaces zero or more
whitespace characters (including tabs) that may be present in the raw HTTP header line immediately after the
colon. If the extra whitespace (or lack thereof) is important for matching, use the http_raw_header buffer
instead of the http_header buffer.

Snort will also normalize superfluous whitespace between the header name and header value like Suricata does
but only if there is at least one space character (0x20 only so not 0x90) immediately after the colon. This means
that, unlike Suricata, if there is no space (or if there is a tab) immediately after the colon before the header value,
the content of the header line will remain unchanged in the http_header buffer.

When there are duplicate HTTP headers (referring to the header name only, not the value), the normalized buffer
(http_header) will concatenate the values in the order seen (from top to bottom), with a comma and space (",
") between each of them. If this hinders detection, use the http_raw_header buffer instead.

Example request:

GET /test.html HTTP/1.1
Content-Length: 44
Accept: */*
Content-Length: 55

The Content-Length header line becomes this in the http_header buffer:

Content-Length: 44, 55

The HTTP 'Cookie' and 'Set-Cookie' headers are NOT included in the http_header buffer; instead they are
extracted and put into their own buffer — http_cookie. See the http_cookie Buffer section.

The HTTP 'Cookie' and 'Set-Cookie' headers ARE included in the http_raw_header buffer so if you are trying
to match on something like particular header ordering involving (or not involving) the HTTP Cookie headers,
use the http_raw_header buffer.

If 'enable_cookie' is set for Snort, the HTTP Cookie header names and trailing CRLF (i.e. "Cookie: \r\n" and
"Set-Cooke \r\n") are kept in the http_header buffer. This is not the case for Suricata which removes the entire
"Cookie" or "Set-Cookie" line from the http_header buffer.

Other HTTP headers that have their own buffer (http_user_agent, http_host) are not removed from the
http_header buffer like the Cookie headers are.

When inspecting server responses and file_data is used, content matches in http_* buffers should come
before file_data unless you use pkt_data to reset the cursor before matching in http_* buffers. Snort will
not complain if you use http_* buffers after file_data is set.

8.50.5 http_cookie Buffer

The http_cookie buffer will NOT include the header name, colon, or leading whitespace. i.e. it will not include
"Cookie: " or "Set-Cookie: ".

The http_cookie buffer does not include a CRLF (0x0D 0x0A) at the end. If you want to match the end of the
buffer, use a relative isdataat or a PCRE (although PCRE will be worse on performance).

There is no http_raw_cookie buffer in Suricata. Use http_raw_header instead.

You do not have to configure anything special to use the 'http_cookie' buffer in Suricata. This is different from
Snort where you have to set enable_cookie in the http_inspect_server preprocessor config in order to
have the http_cookie buffer treated separate from the http_header buffer.

222

Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

* If Snort has 'enable_cookie' set and multiple "Cookie" or "Set-Cookie" headers are seen, it will concatenate them
together (with no separator between them) in the order seen from top to bottom.

* If a request contains multiple "Cookie" or "Set-Cookie" headers, the values will be concatenated in the Suricata

non

http_cookie buffer, in the order seen from top to bottom, with a comma and space (", ") between each of them.

Example request:

GET /test.html HTTP/1.1
Cookie: monster

Accept: */*

Cookie: elmo

Suricata http_cookie buffer contents:

monster, elmo

Snort http_cookie buffer contents:

monsterelmo

* Corresponding PCRE modifier: C (same as Snort)

8.50.6 New HTTP keywords

Suricata supports several HTTP keywords that Snort doesn't have.
Examples are http_user_agent, http_host and http_content_type.
See HTTP Keywords for all HTTP keywords.

8.50.7 byte_extract Keyword
* Suricata supports byte_extract from http_* buffers, including http_header which does not always work
as expected in Snort.

¢ In Suricata, variables extracted using byte_extract must be used in the same buffer, otherwise they will have
the value "0" (zero). Snort does allow cross-buffer byte extraction and usage.

* Be sure to always positively and negatively test Suricata rules that use byte_extract and byte_test to verify
that they work as expected.

8.50.8 byte_jump Keyword

* Suricata allows a variable name from byte_extract or byte_math to be specified for the nbytes value. The
value of nbytes must adhere to the same constraints as if it were supplied directly in the rule.

8.50. Differences From Snort 223

Suricata User Guide, Release 8.0.0

8.50.9 byte_math Keyword

* Suricata accepts dce as an endian value or as a separate keyword. endian dce or dce are equivalent.

* Suricata's rule parser rejects rules that repeat keywords in a single rule. E.g., byte_math: endian big,
endian little.

* Suricata's rule parser accepts rvalue values of 0 to the maximum uint32 value. Snort rejects rvalue values of
0 and requires values to be between [1..max-uint32 value].

e Suricata will never match if there's a zero divisor. Division by 0 is undefined.

8.50.10 byte_test Keyword
* Suricata allows a variable name from byte_extract or byte_math to be specified for the nbytes value. The
value of nbytes must adhere to the same constraints as though a value was directly supplied by the rule.

* Suricata allows a variable name from byte_extract to be specified for the nbytes value. The value of nbytes
must adhere to the same constraints as if it were supplied directly in the rule.

8.50.11 isdataat Keyword

* The rawbytes keyword is supported in the Suricata syntax but doesn't actually do anything.

» Absolute isdataat checks will succeed if the offset used is less than the size of the inspection buffer. This is
true for Suricata and Snort.

¢ For relative isdataat checks, there is a 1 byte difference in the way Snort and Suricata do the comparisons.

— Suricata will succeed if the relative offset is less than or equal to the size of the inspection buffer. This is
different from absolute isdataat checks.

— Snort will succeed if the relative offset is less than the size of the inspection buffer, just like absolute
isdataat checks.

— Example - to check that there is no data in the inspection buffer after the last content match:
% Snort: isdataat:!0®,relative;
% Suricata: isdataat:!1,relative;

* With Snort, the "inspection buffer" used when checking an isdataat keyword is generally the packet/segment
with some exceptions:

— With PAF enabled the PDU is examined instead of the packet/segment. When file_dataor base64_data
has been set, it is those buffers (unless rawbytes is set).

— With some preprocessors - modbus, gtp, sip, dce2, and dnp3 - the buffer can be particular portions of those
protocols (unless rawbytes is set).

— With some preprocessors - rpc_decode, ftp_telnet, smtp, and dnp3 - the buffer can be particular decoded
portions of those protocols (unless rawbytes is set).

* With Suricata, the "inspection buffer" used when checking an absolute isdataat keyword is the packet/segment
if looking at a packet (e.g. alert tcp-pkt...) or the reassembled stream segments.

* In Suricata, a relative isdataat keyword will apply to the buffer of the previous content match. So if the
previous content match is a http_* buffer, the relative isdataat applies to that buffer, starting from the end of
the previous content match in that buffer. Snort does not behave like this!

224 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

* For example, this Suricata rule looks for the string ".exe" at the end of the URI; to do the same thing in the
normalized URI buffer in Snort you would have to use a PCRE — pcre:"/\x2Eexe$/U";

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:".EXE File Download Request";.
—.flow:established, to_server; content:"GET"; http_method; content:".exe"; http_uri;.
—,isdataat:!1,relative; priority:3; sid:18332111;)

* If you are unclear about behavior in a particular instance, you are encouraged to positively and negatively test
your rules that use an isdataat keyword.

8.50.12 Relative PCRE

* You can do relative PCRE matches in normalized/special buffers with Suricata. Example:

content:".php?sign="; http_uri; pcre:"/A[a-zA-Z0-9] $/UR";

e With Snort you can't combine the "relative" PCRE option ('R') with other buffer options like normalized URI
('U") — you get a syntax error.

8.50.13 tls* Keywords

In addition to TLS protocol identification, Suricata supports the storing of certificates to disk, verifying the validity
dates on certificates, matching against the calculated SHA1 fingerprint of certificates, and matching on certain TLS/SSL
certificate fields including the following:

* Negotiated TLS/SSL version.
* Certificate Subject field.
¢ Certificate Issuer field.
¢ Certificate SNI Field
For details see SSL/TLS Keywords.

8.50.14 dns_query Keyword

* Sets the detection pointer to the DNS query.

Works like file_data does ("sticky buffer") but for a DNS request query.
» Use pkt_data to reset the detection pointer to the beginning of the packet payload.
See DNS Keywords for details.

8.50.15 IP Reputation and iprep Keyword
* Snort has the "reputation" preprocessor that can be used to define whitelist and blacklist files of IPs which are
used generate GID 136 alerts as well as block/drop/pass traffic from listed IPs depending on how it is configured.
* Suricata also has the concept of files with IPs in them but provides the ability to assign them:
— Categories
— Reputation score

* Suricata rules can leverage these IP lists with the iprep keyword that can be configured to match on:

8.50. Differences From Snort 225

Suricata User Guide, Release 8.0.0

— Direction

— Category

— Value (reputation score)
* Reputation
e [P Reputation Config
¢ [P Reputation Keyword

¢ [P Reputation Format

https://blog.inliniac.net/2012/11/21/ip-reputation-in-suricata/

8.50.16 Flowbits

 Suricata fully supports the setting and checking of flowbits (including the same flowbit) on the same
packet/stream. Snort does not always allow for this.

¢ In Suricata, flowbits:isset is checked after the fast pattern match but before other content matches. In
Snort, flowbits:isset is checked in the order it appears in the rule, from left to right.

* If there is a chain of flowbits where multiple rules set flowbits and they are dependent on each other, then the
order of the rules or the sid values can make a difference in the rules being evaluated in the proper order and
generating alerts as expected. See bug 1399 - https://redmine.openinfosecfoundation.org/issues/1399.

* Flow Keywords

8.50.17 flowbits:noalert;

A common pattern in existing rules is to use flowbits:noalert; to make sure a rule doesn't generate an alert if it
matches.

Suricata allows using just noalert; as well. Both have an identical meaning in Suricata.

8.50.18 Negated Content Match Special Case

 For Snort, a negated content match where the starting point for searching is at or beyond the end of the inspection
buffer will never return true.

— For negated matches, you want it to return true if the content is not found.

— This is believed to be a Snort bug rather than an engine difference but it was reported to Sourcefire and
acknowledged many years ago indicating that perhaps it is by design.

— This is not the case for Suricata which behaves as expected.

Example HTTP request:

POST /test.php HTTP/1.1
Content-Length: 9

user=suri

This rule snippet will never return true in Snort but will in Suricata:

226 Chapter 8. Suricata Rules

https://blog.inliniac.net/2012/11/21/ip-reputation-in-suricata/
https://redmine.openinfosecfoundation.org/issues/1399

Suricata User Guide, Release 8.0.0

content:!"snort"; offset:10; http_client_body;

8.50.19 File Extraction

* Suricata has the ability to match on files from FTP, HTTP and SMTP streams and log them to disk.

* Snort has the "file" preprocessor that can do something similar but it is experimental, development of it has been
stagnant for years, and it is not something that should be used in a production environment.

* Files can be matched on using a number of keywords including:

filename

— fileext
- filemagic
— filesize
— filemd5
— fileshal
— filesha256
— filesize
— See File Keywords for a full list.
e The filestore keyword tells Suricata to save the file to disk.

* Extracted files are logged to disk with meta data that includes things like timestamp, src/dst IP, protocol, src/dst
port, HTTP URI, HTTP Host, HTTP Referer, filename, file magic, md5sum, size, etc.

* There are a number of configuration options and considerations (such as stream reassembly depth and libhtp
body-limit) that should be understood if you want fully utilize file extraction in Suricata.

* File Keywords
e File Extraction
* https://blog.inliniac.net/2011/11/29/file-extraction-in-suricata/

* https://blog.inliniac.net/2014/11/11/smtp-file-extraction-in-suricata/

8.50.20 Lua Scripting

* Suricata has the 1ua keyword which allows for a rule to reference a Lua script that can access the packet, payload,
HTTP buffers, etc.

 Provides powerful flexibility and capabilities that Snort does not have.

* More details in: Lua Scripting for Detection

8.50. Differences From Snort 227

https://blog.inliniac.net/2011/11/29/file-extraction-in-suricata/
https://blog.inliniac.net/2014/11/11/smtp-file-extraction-in-suricata/

Suricata User Guide, Release 8.0.0

8.50.21 Fast Pattern

* Snort's fast pattern matcher is always case insensitive; Suricata's is case sensitive unless 'nocase' is set on the
content match used by the fast pattern matcher.

e Snort will truncate fast pattern matches based on the max-pattern-len config (default no limit) unless
fast_pattern:only is used in the rule. Suricata does not do any automatic fast pattern truncation cannot
be configured to do so.

e Just like in Snort, in Suricata you can specify a substring of the content string to be use as the fast pattern match.
e.g. fast_pattern:5,20;

¢ In Snort, leading NULL bytes (0x00) will be removed from content matches when determining/using the longest
content match unless fast_pattern is explicitly set. Suricata does not truncate anything, including NULL
bytes.

e Snort does not allow for all http_* buffers to be used for the fast pattern match (e.g. http_raw_¥*,
http_method, http_cookie, etc.). Suricata lets you use any 'http_*' buffer you want for the fast pattern match,
including http_raw_*' and " “http_cookie buffers.

* Suricata supports the fast_pattern:only syntax but technically it is not really implemented; the only is
silently ignored when encountered in a rule. It is still recommended that you use fast_pattern:only where
appropriate in case this gets implemented in the future and/or if the rule will be used by Snort as well.

* With Snort, unless fast_pattern is explicitly set, content matches in normalized HTTP Inspect buffers (e.g.
http content modifiers such http_uri, http_header, etc.) take precedence over non-HTTP Inspect content
matches, even if they are shorter. Suricata does the same thing and gives a higher 'priority' (precedence) to
http_* buffers (except for http_method, http_stat_code, and http_stat_msg).

e See Suricata Fast Pattern Determination Explained for full details on how Suricata automatically determines
which content to use as the fast pattern match.

* When in doubt about what is going to be use as the fast pattern match by Suricata, set fast_pattern ex-
plicitly in the rule and/or run Suricata with the --engine-analysis switch and view the generated file
(rules_fast_pattern.txt).

* Like Snort, the fast pattern match is checked before flowbits in Suricata.

» Using Hyperscan as the MPM matcher (mpm-algo setting) for Suricata can greatly improve performance, espe-
cially when it comes to fast pattern matching. Hyperscan will also take into account depth and offset when doing
fast pattern matching, something the other algorithms and Snort do not do.

* fast_pattern

8.50.22 Don't Cross The Streams

Suricata will examine network traffic as individual packets and, in the case of TCP, as part of a (reassembled) stream.
However, there are certain rule keywords that only apply to packets only (dsize, flags, ttl) and certain ones that
only apply to streams only (http_*) and you can't mix packet and stream keywords. Rules that use packet keywords
will inspect individual packets only and rules that use stream keywords will inspect streams only. Snort is a little more
forgiving when you mix these — for example, in Snort you can use dsize (a packet keyword) with http_* (stream
keywords) and Snort will allow it although, because of dsize, it will only apply detection to individual packets (unless
PAF is enabled then it will apply it to the PDU).

If dsize is in a rule that also looks for a stream-based application layer protocol (e.g. http), Suricata will not match on
the first application layer packet since dsize make Suricata evaluate the packet and protocol detection doesn't happen
until after the protocol is checked for that packet; subsequent packets in that flow should have the application protocol
set appropriately and will match rules using dsize and a stream-based application layer protocol.

228 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

If you need to check sizes on a stream in a rule that uses a stream keyword, or in a rule looking for a stream-based
application layer protocol, consider using the stream_size keyword and/or isdataat.

Suricata also supports these protocol values being used in rules and Snort does not:
* tcp-pkt — example:
— alert tcp-pkt ...
— This tells Suricata to only apply the rule to TCP packets and not the (reassembled) stream.
* tcp-stream— example:
— alert tcp-stream ...

— This tells Suricata to inspect the (reassembled) TCP stream only.

8.50.23 Alerts

* In Snort, the number of alerts generated for a packet/stream can be limited by the event_queue configuration.

¢ Suricata has an internal hard-coded limit of 15 alerts per packet/stream (and this cannot be configured); all rules
that match on the traffic being analyzed will fire up to that limit.

* Sometimes Suricata will generate what appears to be two alerts for the same TCP packet. This happens when
Suricata evaluates the packet by itself and as part of a (reassembled) stream.

8.50. Differences From Snort 229

Suricata User Guide, Release 8.0.0

8.50.24 Buffer Reference Chart

Buffer Snort 2.9.x Sup- | Suricata Sup- | PCRE Can be used | Suricata Fast Pattern Prior-
port? port? flag | as Fast Pat- | ity (lower number is higher
tern? priority)
content YES YES <none> YES 3
(no mod-
ifier)
http_methad YES YES M Suricata only 3
http_stat_cod€ES YES S Suricata only 3
http_stat_msYES YES Y Suricata only 3
uricon- YES but depre- | YES but depre- | U YES 2
tent cated, use http_uri | cated, use http_uri
instead instead
http_uri YES YES U YES 2
http_raw_uriYES YES I Suricata only 2
http_header YES YES H YES 2
http_raw_heddES YES D Suricata only 2
http_cooki¢ YES YES C Suricata only 2
http_raw_cpdkES NO (use | K NO n/a
http_raw_header
instead)
http_host | NO YES \W Suricata only 2
http_raw_hodfO YES Z Suricata only 2
http_client | b¥dS YES P YES 2
http_server| By YES Q Suricata only 2
http_user_agd¥d YES \Y% Suricata only 2
dns_query | NO YES n/a* | Suricata only 2
tls_sni NO YES n/a* Suricata only 2
tls_cert_issud¥O YES n/a* Suricata only 2
tls_cert_subjd® YES n/a* Suricata only 2
file_data YES YES n/a* YES 2

* Sticky buffer

8.51 Multiple Buffer Matching

Suricata 7 and newer now supports matching contents in multiple buffers within the same transaction.

For example a single DNS transaction that has two queries in it:

query 1: example.net query 2: something.com

Example rule:

alert dns SHOME_NET any -> $EXTERNAL_NET any (msg:"DNS Multiple Question Example Rule"; dns.query;
content: "example'; dns.query; content:".com'"; classtype:misc-activity; sid:1; rev:1;)

Within the single DNS query transaction, there are two queries and Suricata will set up two instances of a dns.query
buffer.

The first dns. query buffer will look for content:"example";

The second dns.query buffer will look for content:".com";

230 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

The example rule will alert on the example query since all the content matches are satisfied for the rule.
For matching multiple headers in HTTP2 traffic a rule using the new functionality would look like:

alert http2 any any -> any any (msg:"HTTP2 Multiple Header Buffer Example"; flow:established,to_server;
http.request_header; content:"method|3a 20|GET"; http.request_header; content: "authority|3a 20\example.com'’;
classtype:misc-activity; sid:1; rev:1;)

With HTTP2 there are multiple headers seen in the same flow record. We now have a way to write a rule in a more
efficient way using the multiple buffer capability.

Note Existing behavior when using sticky buffers still applies:
Example rule:

alert dns SHOME_NET any -> $8EXTERNAL_NET any (msg:"DNS Query Sticky Buffer Classic Example Rule";
dns.query; content:"example"; content:".net"; classtype:misc-activity; sid:1; rev:1;)

The above rule will alert on a single dns query containing "example.net" or "example.domain.net" since the rule content
matches are within a single dns. query buffer and all content match requirements of the rule are met.

Note: This is new behavior. In versions of Suricata prior to version 7 multiple statements of the same sticky buffer did
not make a second instance of the buffer. For example:

dns.query; content:"example"; dns.query; content:".com";
would be equivalent to:
dns.query; content:"example"; content:".com";

Using our example from above, the first query is for example.net which matches content:"example"; but does not match
content:".com";

The second query is for something.com which would match on the content:".com"; but not the content:"example";

So with the Suricata behavior prior to Suricata 7, the signature would not fire in this case since both content conditions
will not be met.

Multiple buffer matching is currently enabled for use with the following keywords:
* dns.answer.name
¢ dns.query.name
e dns.query
* email.received
e email.url
e file.data
e file.magic
e file.name
e http.request_header
e http.response_header
* http2.header_name
e ike.vendor
e krb5_cname
e krb5_sname

e ldap.request.attribute_type

8.51. Multiple Buffer Matching 231

Suricata User Guide, Release 8.0.0

e ldap.responses.attribute_type
e ldap.responses.dn

¢ ldap.responses.message
* mgtt.subscribe.topic

e mgtt.unsubscribe.topic
e quic.cyu.hash

* quic.cyu.string

* sip.content_length

e sip.content_type

e sip.from

* sip.to

e sip.ua

e sip.via

e smtp.rcpt_to

* tls.alpn

e tls.cert_subject

e tls.certs

* tls.subjectaltname

8.52 Tag

The tag keyword allows tagging of the current and future packets.
Tagged packets can be logged in EVE and conditional PCAP logging.

Tagging is limited to a scope: host or session (flow). When using host a direction can be specified: src or dst. Tagging
will then occur based on the src or dst IP address of the packet generating the alert.

Tagging is further controlled by count: packets, bytes or seconds. If the count is ommited built-in defaults will be used:
* for session: 256 packets
* for host: 256 packets for the destination IP of the packet triggering the alert

The tag keyword can appear multiple times in a rule.

8.52.1 Syntax

tag:<scope>[,<count>, <metric>[,<direction>]];

Values for scope: session and host Values for metric: packets, bytes, seconds Values for direction: src and dst

Note: "direction" can only be specified if scope is "host" and both "count" and "metric" are also specified.

232 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.52.2 Examples

Keyword:
tag:session; # tags next 256 packets in the flow
tag:host; # tags next 256 packets for the dst ip of the alert

tag:host, 100, packets, src; # tags next 100 packets for src ip of the alert
tag:host,3600,seconds,dst; # tags packets for dst host for the next hour

Full rule examples:
alert dns any any -> any any (dns.query; content:"evil"; tag:host,60,seconds,src; sid:1;)

alert http any any -> any any (http.method; content:"POST"; tag:session; sid:1;)

8.52.3 How to Use Tags
EVE

Tags can be set to generate EVE tag records:

outputs:
- eve-log:
enabled: yes
filename: eve.json
types:
- alert:
tagged-packets: true

The tagged packets will then be logged with event_type: packet:

{
"timestamp": "2020-06-03T10:29:17.850417+0000",

"flow_id": 1576832511820424,
"event_type": "packet",
"src_ip": "192.168.0.27",
"src_port": 54634,
"dest_ip": "192.168.0.103",
"dest_port": 22,

llprotoll . uTCPn ,
"pkt_src": "wire/pcap",
"packet":

< "CAAn6mWIAPSNvErHCABFAAAogkVAATAGIr fAqAAbwKgAZ9VgABZvnIXH5Zf6aFAQEA1 jEwAAAAAAAAAA",
"packet_info": {
"linktype": 1
}
}

EVE: Eve JSON Output

8.52. Tag 233

tag:host,60,seconds,src
tag:session

Suricata User Guide, Release 8.0.0

Conditional PCAP Logging

Using the conditional PCAP logging option the tag keyword can control which packets are logged by the PCAP logging.

outputs:
- pcap-log:

enabled: yes

filename: log.pcap

limit: 1000mb

max-files: 2000

compression: none

mode: normal

use-stream-depth: no #If set to "yes" packets seen after reaching strearm,.,
—»inspection depth are ignored. "no" logs all packets

honor-pass-rules: no # If set to "yes'", flows in which a pass rule matched will.
—stop being logged.

Use "all" to log all packets or use "alerts" to log only alerted packets and.
—flows or "tag"

to log only flow tagged via the "tag" keyword

conditional: tag

[

PCAP Logging: PCAP log

8.52.4 Tracking by Host/Flow

When the tags are using the session scope, the tag is added to the Flow structure. If a packet has no flow, no tagging
will happen. No errors/warnings are generated for this.

See Flow Settings for managing flow limits and resources.

When tags are using the host scope, the tag is stored with a Host object in the host table. The Host table size will affect
effectiveness of per host tags.

See Host Settings for managing host table size.

8.53 VLAN Keywords

8.53.1 vlan.id

Suricata has a vlan.id keyword that can be used in signatures to identify and filter network packets based on Virtual
Local Area Network IDs. By default, it matches all layers if a packet contains multiple VLAN layers. However, if a
specific layer is defined, it will only match that layer.

Syntax:

vlan.id: [op]lid[,layer];

The id can be matched exactly, or compared using the op setting:

vlan.id:300 # exactly 300
vlan.id:<300,0 # smaller than 300 at layer 0
vlan.id:>=200,1 # greater or equal than 200 at layer 1

234 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

vlan.id uses unsigned 16-bit integer.
The valid range for VLAN id values is @ - 4095.
This keyword also supports all and any as arguments for layer. all matches only if all VLAN layers match and

any matches with any layer.

Table 2: Layer values for vlan.id keyword

Value Description

[default] | Match with any layer

0-2 Match specific layer

-3--1 Match specific layer with back to front indexing
all Match only if all layers match

any Match with any layer

This small illustration shows how indexing works for vlan.id:

[ethernet]

[vlan 666 (index 0 and -2)]
[vlan 123 (index 1 and -1)]
[ipv4]

[udp]

Examples

Example of a signature that would alert if any of the VLAN IDs is equal to 300:

alert ip any any -> any any (msg:"Vlan ID is equal to 300"; vlan.id:300; sid:1;)

Example of a signature that would alert if the VLAN ID at layer 1 is equal to 300:

alert ip any any -> any any (msg:"Vlan ID is equal to 300 at layer 1"; vlan.id:300,1; sid:1;)
Example of a signature that would alert if the VLAN ID at the last layer is equal to 400:

alert ip any any -> any any (msg:"Vlan ID is equal to 400 at the last layer"; vlan.id:400,-1; sid:1;)
Example of a signature that would alert only if all the VLAN IDs are greater than 100:

alert ip any any -> any any (msg:"All Vlan IDs are greater than 100"; vlan.id:>100,all; sid:1;)

Itis also possible to use the vlan.id content as a fast_pattern by using the prefilter keyword, as shown in the following
example.

alert ip any any -> any any (msg:"Vlan ID is equal to 200 at layer 1"; vlan.id:200,1; prefilter; sid:1;)
8.53.2 vlan.layers

Matches based on the number of layers.

Syntax:

vlan.layers: [op]number;

It can be matched exactly, or compared using the op setting:

8.53. VLAN Keywords 235

Suricata User Guide, Release 8.0.0

vlan.layers:3 # exactly 3 vlan layers
vlan.layers:<3 # less than 3 vlan layers
vlan.layers:>=2 # more or equal to 2 vlan layers

vlan.layers uses unsigned 8-bit integer.

The minimum and maximum values that vlan.layers can be are 0 and 3.

Examples

Example of a signature that would alert if a packet has 0 VLAN layers:

alert ip any any -> any any (msg:"Packet has 0 vlan layers"; vlan.layers:0; sid:1;)

Example of a signature that would alert if a packet has more than 1 VLAN layers:

alert ip any any -> any any (msg:"Packet has more than 1 vlan layer"; vlan.layers:>1; sid:1;)

It is also possible to use the vlan.layers content as a fast_pattern by using the prefilter keyword, as shown in the

following example.

alert ip any any -> any any (msg:"Packet has 2 vlan layers"; vlan.layers:2; prefilter; sid:1;)

8.54 LDAP Keywords

8.54.1 LDAP Request and Response operations

Table 3: Operation values for

ldap.responses.operation keywords

Code | Operation

0 bind_request

1 bind_response

2 unbind_request

3 search_request

4 search_result_entry
5 search_result_done
6 modify_request

7 modify_response

8 add_request

9 add_response

10 del_request

11 del_response

12 mod_dn_request

13 mod_dn_response
14 compare_request

15 compare_response
16 abandon_request

19 search_result_reference
23 extended_request
24 extended_response
25 intermediate_response

ldap.request.operation and

236

Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

The keywords ldap.request.operation and ldap.responses.operation accept both the operation code and the operation
name as arguments.

8.54.2 Idap.request.operation

Suricata has a 1dap.request.operation keyword that can be used in signatures to identify and filter network packets
based on Lightweight Directory Access Protocol request operations.

Syntax:

ldap.request.operation: operation;

Idap.request.operation uses unsigned 8-bit integer.

This keyword maps to the EVE field 1dap.request.operation

Examples

Example of a signatures that would alert if the packet has an LDAP bind request operation:
alert 1dap any any -> any any (msg:"Test LDAP bind request"; ldap.request.operation:0; sid:1;)

alert 1dap any any -> any any (msg:"Test LDAP bind request"; 1dap.request.operation:bind_request; sid:1;)

8.54.3 Idap.responses.operation

Suricata has a 1dap.responses.operation keyword that can be used in signatures to identify and filter network
packets based on Lightweight Directory Access Protocol response operations.

Syntax:

ldap.responses.operation: operation[,index];

ldap.responses.operation uses unsigned 8-bit integer.
This keyword maps to the EVE field 1dap.responses[].operation

An LDAP request operation can receive multiple responses. By default, the 1dap.responses.operation keyword matches
all indices, but it is possible to specify a particular index for matching and also use flags such as all and any.

Table 4: Index values for ldap.responses.operation keyword

Value Description

[default] | Match with any index

all Match only if all indexes match

any Match with any index

0>= Match specific index

0< Match specific index with back to front indexing

8.54. LDAP Keywords 237

Suricata User Guide, Release 8.0.0

Examples

Example of a signatures that would alert if the packet has an LDAP bind response operation:

alert Idap any any -> any any (msg:"Test LDAP bind response"; ldap.responses.operation:1; sid:1;)

alert Idap any any -> any any (msg:"Test LDAP bind response"; 1dap.responses.operation:bind_response; sid:1;)
Example of a signature that would alert if the packet has an LDAP search_result_done response operation at index 1:

alert Idap any any -> any any (msg:"Test LDAP search response”; ldap.responses.operation:search_result_done,1;
sid:1;)

Example of a signature that would alert if all the responses are of type search_result_entry:

alert 1dap any any -> any any (msg:"Test LDAP search response"; ldap.responses.operation:search_result_entry,all;
sid:1;)

The keyword ldap.responses.operation supports back to front indexing with negative numbers, this means that -1 will
represent the last index, -2 the second to last index, and so on. This is an example of a signature that would alert if a
search_result_entry response is found at the last index:

alert Idap any any -> any any (msg:"Test LDAP search response"; ldap.responses.operation:search_result_entry,-1;
sid:1;)

8.54.4 Idap.responses.count

Matches based on the number of responses.

Syntax:

ldap.responses.count: [op]number;

It can be matched exactly, or compared using the op setting:

ldap.responses.count:3 # exactly 3 responses
ldap.responses.count:<3 # less than 3 responses
ldap.responses.count:>=2 # more or equal to 2 responses

Idap.responses.count uses unsigned 32-bit integer.

This keyword maps to the EVE field 1len(1ldap.responses[])

Examples

Example of a signature that would alert if a packet has 0 LDAP responses:
alert 1dap any any -> any any (msg:"Packet has 0 LDAP responses"; Idap.responses.count:0; sid:1;)
Example of a signature that would alert if a packet has more than 2 LDAP responses:

alert 1dap any any -> any any (msg:"Packet has more than 2 LDAP responses"; ldap.responses.count:>2; sid:1;)

238 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.54.5 Idap.request.dn

Matches on LDAP distinguished names from request operations.
Comparison is case-sensitive.

Syntax:

ldap.request.dn; content:"<content to match against>";

ldap.request.dn is a 'sticky buffer' and can be used as a fast_pattern.
This keyword maps to the EVE fields:

e ldap.request.bind_request.name

e ldap.request.add_request.entry

e ldap.request.search_request.base_object

e ldap.request.modify_request.object

e ldap.request.del_request.dn

e ldap.request.mod_dn_request.entry

* ldap.request.compare_request.entry

Example
Example of a signature that would alert if a packet has the LDAP distinguished name uid=jdoe,ou=People,
dc=example,dc=com:

alert ldap any any -> any any (msg:"Test ~ LDAPDN"; Idap.request.dn; con-
tent:"uid=jdoe,ou=People,dc=example,dc=com"; sid:1;)

It is possible to use the keyword 1dap.request.operation in the same rule to specify the operation to match.

Here is an example of a signature that would alert if a packet has an LDAP search request operation and contains the
LDAP distinguished name dc=example,dc=com.

alert ldap any any -> any any (msg:"Test LDAPDN and operation"; ldap.request.operation:search_request;
Idap.request.dn; content:"dc=example,dc=com"; sid:1;)

8.54.6 Idap.responses.dn

Matches on LDAP distinguished names from response operations.
Comparison is case-sensitive.

Syntax:

ldap.responses.dn; content:'"<content to match against>";

ldap.responses.dn is a 'sticky buffer' and can be used as a fast_pattern.
ldap.responses.dn supports multiple buffer matching, see Multiple Buffer Matching.
This keyword maps to the EVE fields:

e ldap.responses[].search_result_entry.base_object

e ldap.responses[].bind_response.matched_dn

8.54. LDAP Keywords 239

Suricata User Guide, Release 8.0.0

e ldap.responses[].search_result_done.matched_dn
e ldap.responses[].modify_response.matched_dn

e ldap.responses[].add_response.matched_dn

e ldap.responses[].del_response.matched_dn

e ldap.responses[].mod_dn_response.matched_dn

e ldap.responses[].compare_response.matched_dn

e ldap.responses[].extended_response.matched_dn

Note: If a response within the array does not contain the distinguished name field, this field will be interpreted as an
empty buffer.

Example

Example of a signature that would alert if a packet has the LDAP distinguished name dc=example, dc=com:
alert 1dap any any -> any any (msg:"Test LDAPDN"; ldap.responses.dn; content:"dc=example,dc=com"; sid:1;)
It is possible to use the keyword 1dap.responses.operation in the same rule to specify the operation to match.

Here is an example of a signature that would alert if a packet has an LDAP search result entry operation at index 1 on
the responses array, and contains the LDAP distinguished name dc=example,dc=com.

alert 1dap any any -> any any (msg:"Test LDAPDN and operation"; ldap.responses.operation:search_result_entry,1;
Idap.responses.dn; content:"dc=example,dc=com"; sid:1;)

8.54.7 Idap.responses.result_code

Suricata has a 1dap.responses.result_code keyword that can be used in signatures to identify and filter network
packets based on their LDAP result code.

Syntax:

ldap.responses.result_code: code[,index];

Idap.responses.result_code uses unsigned 32-bit integer.
This keyword maps to the following eve fields:
e ldap.responses[].bind_response.result_code
e ldap.responses[].search_result_done.result_code
e ldap.responses[].modify_response.result_code
e ldap.responses[].add_response.result_code
e ldap.responses[].del_response.result_code
e ldap.responses[].mod_dn_response.result_code
e ldap.responses[].compare_response.result_code

e ldap.responses[].extended_response.result_code

240 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Table 5: Result code values for ldap.responses.result_code

Code | Name

0 success

1 operations_error

2 protocol_error

3 time_limit_exceeded

4 size_limit_exceeded

5 compare_false

6 compare_true

7 auth_method_not_supported
8 stronger_auth_required

10 referral

11 admin_limit_exceeded

12 unavailable critical extension
13 confidentiality_required

14 sasl_bind_in_progress

16 no_such_attribute

17 undefined_attribute_type

18 inappropriate_matching

19 constraint_violation

20 attribute_or_value_exists

21 invalid_attribute_syntax

32 no_such_object

33 alias_problem

34 invalid_dns_syntax

35 is_leaf

36 alias_dereferencing_problem
48 inappropriate_authentication
49 invalid_credentials

50 insufficient_access_rights

51 busy

52 unavailable

53 unwilling_to_perform

54 loop_detect

60 sort_control_missing

61 offset_range_error

64 naming_violation

65 object_class_violation

66 not_allowed_on_non_leaf
67 not_allowed_on_rdn

68 entry_already_exists

69 object_class_mods_prohibited
70 results_too_large

71 affects_multiple_dsas

76 control_error

80 other

81 server_down

82 local_error

83 encoding_error

84 decoding_error

85 timeout

continues on next page

8.54. LDAP Keywords 241

Suricata User Guide, Release 8.0.0

Table 5 - continued from previous page

Code | Name

86 auth_unknown

87 filter_error

88 user_canceled

89 param_error

90 no_memory

91 connect_error

92 not_supported

93 control_not_found

94 no_results_returned
95 more_results_to_return
96 client_loop

97 referral_limit_exceeded
100 invalid_response

101 ambiguous_response
112 tls_not_supported

113 intermediate_response
114 unknown_type

118 canceled

119 no_such_operation

120 too_late

121 cannot_cancel

122 assertion_failed

123 authorization_denied
4096 e_sync_refresh_required
16654 | no_operation

More information about LDAP result code values can be found here: https://Idap.com/ldap-result-code-reference/

An LDAP request operation can receive multiple responses. By default, the Idap.responses.result_code keyword
matches with any indices, but it is possible to specify a particular index for matching and also use flags such as all
and any.

Table 6: Index values for ldap.responses.result_code keyword

Value Description

[default] | Match with any index

all Match only if all indexes match

any Match with any index

0>= Match specific index

0< Match specific index with back to front indexing

Examples

Example of signatures that would alert if the packet has a success LDAP result code at any index:

alert 1dap any any -> any any (msg:"Test LDAP result code"; 1dap.responses.result_code:0; sid:1;)

alert 1dap any any -> any any (msg:"Test LDAP result code"; 1dap.responses.result_code:success,any; sid:1;)
Example of a signature that would alert if the packet has an unavailable LDAP result code at index 1:

alert ldap any any -> any any (msg:"Test LDAP result code atindex 1"; ldap.responses.result_code:unavailable,1; sid:1;)

242 Chapter 8. Suricata Rules

https://ldap.com/ldap-result-code-reference/

Suricata User Guide, Release 8.0.0

Example of a signature that would alert if all the responses have a success LDAP result code:

alert Idap any any -> any any (msg:"Test all LDAP responses have success result code";
Idap.responses.result_code:success,all; sid:1;)

The keyword ldap.responses.result_code supports back to front indexing with negative numbers, this means that -1 will
represent the last index, -2 the second to last index, and so on. This is an example of a signature that would alert if a
success result code is found at the last index:

alert 1dap any any -> any any (msg:"Test LDAP success at last index"; 1dap.responses.result_code:success,-1; sid:1;)

8.54.8 Idap.responses.message

Matches on LDAP error messages from response operations.
Comparison is case-sensitive.

Syntax:

ldap.responses.message; content:''<content to match against>";

ldap.responses.message is a 'sticky buffer' and can be used as a fast_pattern.
ldap.responses.message supports multiple buffer matching, see Multiple Buffer Matching.
This keyword maps to the EVE fields:

e ldap.responses[].bind_response.message

e ldap.responses[].search_result_done.message

¢ ldap.responses[].modify_response.message

* ldap.responses[].add_response.message

e ldap.responses[].del_response.message

e ldap.responses[].mod_dn_response.message

e ldap.responses[].compare_response.message

e ldap.responses[].extended_response.message

Note: If a response within the array does not contain the error message field, this field will be interpreted as an empty
buffer.

Example

Example of a signature that would alert if a packet has the LDAP error message Size limit exceeded:

alert Idap any any -> any any (msg:"Test LDAP error message"; Idap.responses.message; content:"Size limit exceeded";
sid:1;)

8.54. LDAP Keywords 243

Suricata User Guide, Release 8.0.0

8.54.9 Idap.request.attribute_type

Matches on LDAP attribute type from request operations.
Comparison is case-sensitive.

Syntax:

ldap.request.attribute_type; content:'<content to match against>";

ldap.request.attribute_type is a 'sticky buffer' and can be used as a fast_pattern.
ldap.request.attribute_type supports multiple buffer matching, see Multiple Buffer Matching.
This keyword maps to the EVE fields:

e ldap.request.search_request.attributes[]

e ldap.request.modify_request.changes[].modification.attribute_type

e ldap.request.add_request.attributes[] .name

e ldap.request.compare_request.attribute_value_assertion.description

Example

Example of a signature that would alert if a packet has the LDAP attribute type objectClass:
alert 1dap any any -> any any (msg:"Test attribute type"; 1dap.request.attribute_type; content:"objectClass"; sid:1;)
It is possible to use the keyword 1dap.request.operation in the same rule to specify the operation to match.

Here is an example of a signature that would alert if a packet has an LDAP add request operation and contains the
LDAP attribute type objectClass.

alert 1dap any any -> any any (msg:"Test attribute type and operation"; ldap.request.operation:add_request;
Idap.request.attribute_type; content:"objectClass"; sid:1;)

8.54.10 Idap.responses.attribute_type

Matches on LDAP attribute type from response operations.
Comparison is case-sensitive.

Syntax:

ldap.responses.attribute_type; content:'"<content to match against>";

ldap.responses.attribute_type is a 'sticky buffer' and can be used as a fast_pattern.
ldap.responses.attribute_type supports multiple buffer matching, see Multiple Buffer Matching.

This keyword maps to the EVE field 1dap.responses[].search_result_entry.attributes[].type

244 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Example

Example of a signature that would alert if a packet has the LDAP attribute type dc:
alert Idap any any -> any any (msg:"Test responses attribute type"; ldap.responses.attribute_type; content:"dc"; sid:1;)
It is possible to use the keyword 1dap.responses.operation in the same rule to specify the operation to match.

Here is an example of a signature that would alert if a packet has an LDAP search result entry operation at index 1 on
the responses array, and contains the LDAP attribute type dc.

alert ldap any any -> any any (msg:"Test attribute type and operation"; ldap.responses.operation:search_result_entry,1;
Idap.responses.attribute_type; content:"dc"; sid:1;)

8.55 PGSQL Keywords

8.55.1 pgsql.query

This keyword is a sticky buffer that allows matching on the contents of PostgreSQL's query request messages parsed
by the engine. Note that this buffer inspects only the string portion of the PostgreSQL message, skipping other fields
such as identifier and length, and focusing on the query itself.

Currently, it exposes the contents of the pgsql.request.simple_query field from EVE output.
pgsql.query can be used as a fast_pattern (see fast_pattern).
Use nocase with this keyword to avoid case sensitivity for the matches.

Examples

alert pgsql any any -> any any (msg:"Simple SELECT rule"; pgsql.query; content:"SELECT *"; sid:1;)

alert pgsql any any -> any any (msg:"Simple delete rule"; pgsql.query; content:"delete"; nocase sid:2;)

8.56 Rule Types and Categorization

Once parsed, Suricata rules are categorized for performance and further processing (as different rule types will be
handled by specific engine modules). The signature types are defined in src/detect.h:

Listing 1: src/detect.h

enum SignatureType {

SIG_TYPE_NOT_SET = 0,

SIG_TYPE_IPONLY, // rule is handled by IPONLY engine

SIG_TYPE_LIKE_IPONLY, // rule is handled by pkt engine, has action effect like ip-
—only

/** Proto detect only signature.

Inspected once per direction when protocol detection is done. */
SIG_TYPE_PDONLY, // rule is handled by PDONLY engine
SIG_TYPE_DEONLY,

SIG_TYPE_PKT,
SIG_TYPE_PKT_STREAHN,
SIG_TYPE_STREAMNM,

(continues on next page)

8.55. PGSQL Keywords 245

https://github.com/OISF/suricata/blob/master/src/detect.h

Suricata User Guide, Release 8.0.0

(continued from previous page)

SIG_TYPE_APPLAYER, // app-layer but not tx, e.g. appproto
SIG_TYPE_APP_TX, // rule is handled by TX engine

SIG_TYPE_MAX,
1

In more human readable terms:

Table 7: Suricata Rule Types, and their Engine Analysis Term

Rule Type Code Symbol Engine-Analysis Representation
Decoder Events Only SIG_TYPE_DEONLY de_only

Packet SIG_TYPE_PKT pkt

IP Only SIG_TYPE_IPONLY ip_only

IP Only (contains negated address(es)) SIG_TYPE_LIKE_IPONLY | like_ip_only

Protocol Detection Only SIG_TYPE_PDONLY pd_only

Packet-Stream SIG_TYPE_PKT_STREAM pkt_stream

Stream SIG_TYPE_STREAM stream

Application Layer Protocol SIG_TYPE_APPLAYER app_layer

Application Layer Protocol Transactions | SIG_TYPE_APP_TX app_tx

The rule type will impact:
» To what does the signature action apply, in case of a match (Action Scope)
e When is the rule matched against traffic (Inspection Hook)
* Against what the rule matches (Data Exposed)

This categorization is done taking into consideration the presence or absence of certain rule elements, as well as the
type of keywords used. The categorization currently takes place in src/detect-engine-build.c:void SignatureSetType().

The SignatureSetType() overall flow is described below:

246 Chapter 8. Suricata Rules

https://github.com/OISF/suricata/blob/master/src/detect-engine-build.c#L1642-L1704

Suricata User Guide, Release 8.0.0

Mo

= |P Only

Signature
Contains

MNegated
Address?

Yes (Like IP Only
L (has negated

address(es))

Handle 'Packet’,
'Stream’, 'AppLayer’ and
'AppLayer Transaction'
rule types

Protocol Detection Decoder Events
Only Only

Flowcharts expanding uncovered functions or portions of the overall algorithm above are shown in the Detailed
Flowcharts section.

The following table lists all Suricata signature types, and how they impact the aspects aforementioned.

8.56. Rule Types and Categorization 247

Suricata User Guide, Release 8.0.0

Table 8: Suricata Rule Types

Type Action Scope Inspection Hook Data Exposed Keyword Examples
(non-exhaustive)
De- Packet Per-broken/ invalid | Decoding events decode-event
coder packet
Events
Only
(de_only)
Packet Packet Per-packet basis Packet-level info (e.g.: header | tcp-pkt, itype, tcp.
(pkt) info) hdr, tcp.seq, ttl etc.
IP Only | Flow (if exist- | Once per direction IP addresses on the flow Source/ Destination field
(ip_only)ing). Packets of a rule
(if not part of a
flow)
IP Only | Flow All packets IP addresses on the flow Source/ Destination field
(con- of a rule containing
tains negated address
negated
ad-
dress)?
(like_ip_only)
Pro- Flow Once per direction, | Protocol detected for the flow | app-layer-protocol
tocol when protocol detec-
Detec- tion is done
tion
Only
(pd_only)
Packet- Flow, if stateful | Per stream chunk, if | The reassembled stream | content with
Stream ! stateful, per-packet if | and/or payload data startswith or depth
(pkt_stneam) not
(stream payload AND
packet payload)
Stream | Flow, if stateful | Stream chunks, if | Stream reassembled payload | tcp-stream in protocol
(stream)| ! stateful, just packets | or packet payload data field; simple content;
if not byte_extract
Appli- Flow Per-packet basis ‘protocol' field in a rule Protocol field of a rule
cation
Layer
Proto-
col
(app_layer)
Appli- Flow Per transaction up- | Buffer keywords Application layer
cation date protocol-related, e.g.
Layer http.host, rfb.
Pro- secresult, dcerpc.
tocol stub_data, frame
Trans- keywords
actions
(app_tx)

Note: Action Scope: Flow, if stateful

248

Chapter 8. Suricata Rules

https://suri-rtd-test.readthedocs.io/en/doc-sigtypes-et-properties-v5/rules/intro.html#protocol

Suricata User Guide, Release 8.0.0

(1) Apply to the flow. If a segment isn't accepted into a stream for any reason (such as packet anomalies, errors, memcap
reached etc), the rule will be applied on a packet level.

Warning: Although both are related to matching on application layer protocols, as the table suggests, since Suricata
7 a Protocol Detection rule (that uses the app-layer-protocol keyword) is not internally classified the same as
a rule simply matching on the application layer protocol on the protocol field.

8.56.1 Signature Properties
The Action Scope mentioned above relates to the Signature Properties, as seen in src/detect-engine.c:

Listing 2: src/detect-engine.c

const struct SignatureProperties signature_properties[SIG_TYPE_MAX] = {

* SIG_TYPE_NOT_SET */ SIG_PROP_FLOW_ACTION_PACKET, 1},

* SIG_TYPE_IPONLY */ SIG_PROP_FLOW_ACTION_FLOW, 1},

* SIG_TYPE_LIKE_IPONLY */ SIG_PROP_FLOW_ACTION_FLOW, },

“* SIG_TYPE_PDONLY */ SIG_PROP_FLOW_ACTION_FLOW, },

“* SIG_TYPE_DEONLY */ SIG_PROP_FLOW_ACTION_PACKET, 1},

* SIG_TYPE_PKT */ SIG_PROP_FLOW_ACTION_PACKET, },

* SIG_TYPE_PKT_STREAM */ SIG_PROP_FLOW_ACTION_FLOW_IF_STATEFUL, },
* SIG_TYPE_STREAM */ SIG_PROP_FLOW_ACTION_FLOW_IF_STATEFUL, },
* SIG_TYPE_APPLAYER */ SIG_PROP_FLOW_ACTION_FLOW, },

* SIG_TYPE_APP_TX */ SIG_PROP_FLOW_ACTION_FLOW, },

EITITIIISIYIY
el e e

};

Signature: Require Real Packet

Aside from the scope of action of a signature, certain rule conditions will require that it matches against a real packet
(as opposed to a pseudo packet). These rules are flagged with SIG_MASK_REQUIRE_REAL_PKT by the engine, and will
have real_pkt listed as one of the rule's requirements. (See engine-analysis example output for the Packet rule

type.)

A pseudo packet is an internal resource used by the engine when a flow is over but there is still data to be processed,
such as when there is a flow timeout. A fake packet is then injected in the flow to finish up processing before ending it.

Those two types will be more documented soon (tracking #7424).

8.56.2 Signature Types and Variable-like Keywords
Keywords such as flow variables (flowint, flowbits), datasets, and similar ones can alter the rule type, if present
in a signature.
That happens because the variable condition can change per packet. Thus, the Signature is categorized as a packet rule.
This affects rule types:

* Application Layer (app_layer)

* Protocol Detection Only (pd_only)

* Decoder Events Only (de_only)

8.56. Rule Types and Categorization 249

https://github.com/OISF/suricata/blob/master/src/detect-engine.c
https://redmine.openinfosecfoundation.org/issues/7424

Suricata User Guide, Release 8.0.0

* IP Only (ip_only) 3
e Like IP Only (1ike_ip_only) 3

The rule examples provided further cover some such cases, but the table below lists those keywords with more details:

Table 9: Variable-like Keywords

Keyword Keyword Option Rule Type change?
flow to_server, to_client no type changes >
flow established, not_established | to packet

flowbits, xbits, hostbits | isset, isnotset to packet

flowbits, xbits, hostbits | set, unset, toggle no type change
flowint isset, notset, all operators to packet

flowint defining the variable; unseting; no type change
iprep isset, notset, all operators to packet

Note: IP Only and Like IP Only

(3) Unlike the other affected types, signatures that would otherwise be classified as ip_only or 1ike_ip_only become
Packet rules if the £1ow keyword is used, regardless of option.

Note: dataset, while may look similar to the keywords above, doesn't pertain to this list as it can only be used
with sticky buffer keywords, thus being only available to Application Layer Transaction rules (app_tx), which are not
affected by this.

Flowbits: isset

If a non-stateful rule (e.g. a pkt rule) checks if a flowbit is set (like in flowbits:fb6,isset) and the rule that sets that
variable is a stateful one, such as an app_tx rule, the engine will set a flag to indicate that that rule is also stateful -
without altering its signature type. This flag is currently SIG_FLAG_INIT_STATE_MATCH (cf. ticket #7483).

There is a work-in-progress to add information about this to the engine-analysis report (ticket #7456).

8.56.3 Signatures per Type

This section offers brief descriptions for each rule type, and illustrates what signatures of each type may look like. It is
possible to learn the type of a signature, as well as other important information, by running Suricata in engine analysis
mode.

For each rule type, there is also a sample of the Engine Analysis report for one or more of rule(s) shown.

250 Chapter 8. Suricata Rules

https://redmine.openinfosecfoundation.org/issues/7483
https://redmine.openinfosecfoundation.org/issues/7456

Suricata User Guide, Release 8.0.0

Decoder Events Only
Signatures that inspect broken or invalid packets. They expose Suricata decoding events.

For more examples check https://github.com/OISF/suricata/blob/master/rules/decoder-events.rules.

Example

alert pkthdr any any -> any any (msg:"SURICATA IPv6 duplicated Hop-By-Hop Options extension header"; decode-
event:ipv6.exthdr_dupl_hh; classtype:protocol-command-decode; sid:1101;)

drop pkthdr any any -> any any (msg:"SURICATA IPv4 invalid option length"; :example-rule-emphasis: decode-
event:ipv4.opt_invalid_len; classtype:protocol-command-decode; sid:2200005; rev:2;)

Engine-Analysis Report

{

raw": "alert pkthdr any any -> any any (msg:\"SURICATA IPv6 duplicated Hop-By-Hop.
—0Options extension header\"; decode-event:ipv6.exthdr_dupl_hh; classtype:protocol-
—command-decode; sid:1101;)",

"id": 1101,

"gid": 1,

"rev": 0,

"msg": "SURICATA IPv6 duplicated Hop-By-Hop Options extension header",
"app_proto": "unknown",

"requirements": [
"engine_event"
1,
"type": "de_only",
"flags": [
"src_any",
"dst_any",
"sp_any",
"dp_any",
"toserver",
"toclient"
1,
"pkt_engines": [
{
"name": "packet",
"is_mpm": false
}
1,
"frame_engines": [],
"lists": {
"packet": {
"matches": [
{
"name": "decode-event"
}
]
}

(continues on next page)

8.56. Rule Types and Categorization 251

https://github.com/OISF/suricata/blob/master/rules/decoder-events.rules

Suricata User Guide, Release 8.0.0

(continued from previous page)

Packet

Rules that expose/ inspect information on a packet-level (for instance, the header). Certain flow keywords may also
turn a rule into a pkt rule, if they require per-packet inspection (cf. Signature Types and Variable-like Keywords).

Examples

alert tcp-pkt any any -> any any (msg: "tcp-pkt, anchored content"; content:"abc"; startswith; sid:203;)
alert tcp any any -> any any (msg:"ttl"; ttl: 123; sid:701;)
alert udp any any -> any any (msg:"UDP with flow direction"; flow:to_server; sid:1001;)

alert tcp any any -> any 443 (flow: to_server; flowbits:set,tls_error; sid:1604; msg:"Allow TLS error handling (outgoing
packet) - non-stateful rule";)

alert tcp-pkt any any -> any any (msg:"Flowbit isset"; flowbits:isset,fb6; flowbits:isset,fb7; sid:1919;)

Engine-Analysis Report

{
"raw": "alert tcp-pkt any any -> any any (msg:\"tcp-pkt, anchored content\"; content:\
—"abc\"; startswith; sid:203;)",
"id": 203,
"gid": 1,
"rev": 0,
"msg": "tcp-pkt, anchored content",
"app_proto": "unknown",
"requirements": [
"payload",
"real_pkt"
1,
"type": "pkt",
"flags": [
"src_any",
"dst_any",
"sp_any",
"dp_any",
"need_packet",
"toserver",
"toclient",
"prefilter"
1,
"pkt_engines": [
{
"name": "payload",
"is_mpm": true

(continues on next page)

252 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

(continued from previous page)

1

1,

"frame_engines": [],

"lists": {

"payload": {
"matches": [
{
"name": "content",
"content": {

"pattern": "abc",
"length": 3,
"nocase": false,
"negated": false,
"starts_with": true,
"ends_with": false,
"is_mpm": true,
"no_double_inspect": false,
"depth": 3,
"fast_pattern": false,
"relative_next": false

}
1

}

1,

"mpm": {
"buffer": "payload",
"pattern": "abc",
"length": 3,
"nocase": false,
"negated": false,
"starts_with": true,
"ends_with": false,
"is_mpm": true,
"no_double_inspect": false,
"depth": 3,
"fast_pattern": false,
"relative_next": false

8.56. Rule Types and Categorization

253

Suricata User Guide, Release 8.0.0

IP Only

The IP ONLY rule type is used when rules match only on source and destination IP addresses, and not on any other
flow or content modifier.

Examples

alert tcp-stream any any -> any any (msg:"tcp-stream, no content"; sid:101;)
alert tcp-pkt [192.168.0.0/16,10.0.0.0/8,172.16.0.0/12] any -> any any (msg:"tcp-pkt, no content"; sid:201;)
alert ip any any -> any any (hostbits:set,myflow2; sid:1505;)

alert udp any any -> any any (msg:"UDP with flow direction"; sid:1601;)

Engine-Analysis Report

"raw": "alert ip any any -> any any (hostbits:set,myflow2; sid:1505;)",

"id": 1505,

"gid": 1,

"rev": 0,

"app_proto": "unknown",

"requirements": [],

"type": "ip_only",

"flags": [
"src_any",
"dst_any",
"sp_any",
"dp_any",
"toserver",
"toclient"

1,

"pkt_engines": [],

"frame_engines": [],

"lists": {
"postmatch": {

"matches": [
{

"name": "hostbits"

254 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

IP Only (contains negated address)

A rule that inspects IP only properties, but contains negated IP addresses.

IP Only signatures with negated addresses are like [P-only signatures, but currently handled differently due to limitations
of the algorithm processing IP Only rules. Impactful differences from a user-perspective are listed on the Signature
Types table.

Examples

alert tcp 192.168.0.0/16,10.0.0.0/8,172.16.0.0/12 any -> ![192.168.0.0/16,10.0.0.0/8,172.16.0.0/12] any (msg:"tcp, has
negated IP address"; sid:304;)

alert tcp [10.0.0.0/8,!10.10.10.10] any -> [10.0.0.0/8,!10.10.10.10] any (msg:"tcp, has negated IP address"; sid:305;)

Engine-Analysis Report

{
"raw": "alert tcp [10.0.0.0/8,!10.10.10.10] any -> [10.0.0.0/8,!10.10.10.10] any (msg:\
—"tcp, has negated IP address\"; sid:305;)",

"id": 305,

"gid": 1,

"rev": 0,

"msg": "tcp, has negated IP address",
"app_proto": "unknown",

"requirements": [],
"type": "like_ip_only",
"flags": [
"sp_any",
"dp_any",
"toserver",
"toclient"
1,
"pkt_engines": [],
"frame_engines": [],
"lists": {}

Protocol Detection Only

When a signature checks for the application layer protocol but there is no need for a per-packet inspection, protocol
detection can be done with the app-layer-protocol keyword. Check the keyword documentation full for usage.
See Protocol Detection Only for a flowchart representing how the type is defined.

See Application Layer Protocol for a packet-based inspection.

Warning: Since Suricata 7, a Protocol Detection rule (that uses the app-layer-protocol keyword) is not
internally classified the same as a rule simply matching on the application layer protocol on the protocol field.

8.56. Rule Types and Categorization 255

https://docs.suricata.io/en/latest/rules/app-layer.html#app-layer-protocol

Suricata User Guide, Release 8.0.0

Examples

alert tcp any any -> any any (msg:"tcp, pd negated"; app-layer-protocol: !http; sid:401;)
alert tcp any any -> any any (msg:"tcp, pd positive"; app-layer-protocol:http; sid:402;)
alert tcp any any -> any any (msg:"tcp, pd positive dns"; app-layer-protocol:dns; sid:403;)

alert tcp any any -> any any (msg:"tcp, pd positive, dns, flow:to_server"; app-layer-protocol:dns; flow:to_server;
sid:405;)

Engine-Analysis Report

{

"raw": "alert tcp any any -> any any (msg:\"tcp, pd positive dns\"; app-layer-
—protocol:dns; sid:403;)",

"id": 403,

"gid": 1,

"rev": 0,

"msg": "tcp, pd positive dns",

"app_proto": "unknown",
"requirements": [],
"type": "pd_only",
"flags": [
"src_any",
"dst_any",
"sp_any",
"dp_any",
"toserver",
"toclient"
1,
"pkt_engines": [
{
"name": "packet",
"is_mpm": false
}
1,
"frame_engines": [],
"lists": {
"packet": {
"matches": [
{

"name": "app-layer-protocol"”

256 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Packet-Stream

A rule is categorized as such when it inspects on traffic in specific portions of the packet payload, using content buffer
with the startswith or depth keywords.

Examples

alert tcp any any -> any any (msg:"tcp, anchored content"; content:"abc"; startswith; sid:303;)

alert http any any -> any any (msg:"http, anchored content"; content:"abc"; depth:30; sid:603;)

Engine-Analysis Report

{

raw": "alert http any any -> any any (msg:\"http, anchored content\"; content:\"abc\";
— depth:30; sid:603;)",

"id": 603,

"gid": 1,

"rev": 0,

"msg": "http, anchored content",

"app_proto": "http_any",
"requirements": [
"payload",
"flow"
1,
"type": "pkt_stream",
"flags": [
"src_any",
"dst_any",
"sp_any",
"dp_any",
"applayer",
"need_packet",
"need_stream",
"toserver",
"toclient",
"prefilter"
1,
"pkt_engines": [
{
"name": "payload",
"is_mpm": true
}
1,
"frame_engines": [],
"lists": {
"payload": {
"matches": [
{
"name": "content",
"content": {

(continues on next page)

8.56. Rule Types and Categorization 257

Suricata User Guide, Release 8.0.0

(continued from previous page)

"pattern": "abc",
"length": 3,

"nocase": false,
"negated": false,
"starts_with": false,
"ends_with": false,
"is_mpm": true,
"no_double_inspect": false,
"depth": 30,
"fast_pattern": false,
"relative_next": false

}
}
]
}
1,
"mpm": {
"buffer": "payload",
"pattern": "abc",
"length": 3,

"nocase": false,

"negated": false,
"starts_with": false,
"ends_with": false,
"is_mpm": true,
"no_double_inspect": false,
"depth": 30,
"fast_pattern": false,
"relative_next": false

Stream

A rule that matches payload traffic without regards to its position, that is, on an unanchored content buffer, uses byte
extraction or matches on tcp-stream is classified a stream rule.

Examples

alert tcp-stream any any -> any any (msg:"tcp-stream, simple content"; content:"abc"; sid:102;)
alert http any any -> any any (msg:"http, simple content"; content:"abc"; sid:602;)

alert tcp any any -> any 443 (flow: to_server; content:"abc"; flowbits:set,tls_error; sid:1605; msg:"Allow TLS error
handling (outgoing packet) with simple content - Stream rule";)

alert tcp any any -> any 443 (flow: to_server; content:"abc"; sid:160401; msg:"Allow TLS error handling (outgoing
packet) - stream rule";)

alert tcp any any -> any 443 (content:"abc"; sid:160402; msg:"Allow TLS error handling (outgoing packet) - stream
rule";)

alert tcp any any -> any any (msg:"byte_extract with dce"; byte_extract:4,0,var,dce; byte_test:4,>,var,4little; sid:901;)

258 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Engine-Analysis Report

{
"raw":
—var,dce; byte_test:4,>,var,4,little; sid:901;)",
"id": 901,
"gid": 1,
"rev'": 0,

msg": "byte_extract with dce",
"app_proto": "dcerpc",
"requirements": [
"payload",
"flow"
1,
"type": "stream",
"flags": [
"src_any",
"dst_any",
"sp_any",
"dp_any",
"applayer",
"need_stream",
"toserver",
"toclient"
1,
"pkt_engines": [
{
"name": "payload",
"is_mpm": false
}
1,
"frame_engines": [],
"lists": {
"payload": {
"matches": [
{
"name": "byte_extract"
1,
{
"name": "byte_test",
"byte_test": {
"nbytes": 4,
"offset": 4,
"base": "unset",
"flags": [
"little_endian"

"alert tcp any any -> any any (msg:\"byte_extract with dce\"; byte_extract:4,0,

8.56. Rule Types and Categorization

259

Suricata User Guide, Release 8.0.0

Application Layer Protocol

For a packet-based inspection of the application layer protocol, a rule should use the protocol field for the matches.

Warning: Since Suricata 7, a simple rule matching traffic on the protocol field is not internally classified the
same as a rule using the app-layer-protocol keyword).

Warning: As per Suricata 7, if flow:established or flow:not_established is added to a base Application
Layer Protocol rule, that signature will become a Packet rule.

Examples

alert dns any any -> any any (msg:"app-layer, dns"; sid:404;)
alert http any any -> any any (msg:"http, no content"; sid:601;)

alert tls any any -> any any (msg:"tls, pkt or app-layer?"; flowint:tls_error_int,=,0; sid:613;)

Engine-Analysis Report

"raw": "alert dns any any -> any any (msg:\"app-layer, dns\"; sid:404;)",

"id": 404,

"gid": 1,

"rev": 0,

"msg": "app-layer, dns",

"app_proto": "dns",

"requirements": [
"flow"

1,

"type": "app_layer",

"flags": [
"src_any",
"dst_any",
"sp_any",
"dp_any",
"applayer",
"toserver",
"toclient"

1,

"pkt_engines": [],

"frame_engines": [],

"lists": {}

260 Chapter 8. Suricata Rules

https://suri-rtd-test.readthedocs.io/en/doc-sigtypes-et-properties-v5/rules/intro.html#protocol

Suricata User Guide, Release 8.0.0

Application Layer Protocol Transactions

Rules inspecting traffic using keywords related to application layer protocols are classified with this signature type.
This also includes frame keywords.

Examples

alert tcp any any -> any any (msg: "http, pos event"; app-layer-event:http.file_name_too_long; sid:501;)

alert http any any -> any any (msg:"Test"; flow:established,to_server; http.method; content:"GET"; http.uri; con-
tent:".exe"; endswith; http.host; content:!".google.com"; endswith; sid:1102;)

alert udp any any -> any any (msg:"DNS UDP Frame"; flow:to_server; frame:dns.pdu; content:"|01 20 00 01|"; offset:2;
content:"suricata"; offset:13; sid:1402; rev:1;)

alert tcp any any -> any any (msg:'byte_extract with dce"; dcerpc.stub_data; content:"abc";
byte_extract:4,0,var,relative; byte_test:4,>,var,4,little; sid:902;)

Engine-Analysis Report

{

"raw": "alert tcp any any -> any any (msg:\"byte_extract with dce\"; dcerpc.stub_data;.
—content:\"abc\"; byte_extract:4,0,var,relative; byte_test:4,>,var,4,little; sid:902;)",
"id": 902,

llgidll -1 ,
"rev": 0,
"msg": "byte_extract with dce",

"app_proto": "dcerpc",

"requirements": [
"flow"

1,

"type": "app_tx",

"flags": [
"src_any",
"dst_any",
"sp_any",
"dp_any",
"applayer",
"toserver",
"toclient",
"prefilter"

1,

"pkt_engines": [],

"frame_engines": [],

"engines": [

{

name": "dce_stub_data",
"direction": "toclient",
"is_mpm": true,
"app_proto": "dcerpc",
"progress": 0,
"matches": [

(continues on next page)

8.56. Rule Types and Categorization 261

Suricata User Guide, Release 8.0.0

(continued from previous page)

{

name": "content",
"content": {
"pattern":
"length": 3,

"nocase": false,

"negated": false,
"starts_with": false,
"ends_with": false,
"is_mpm": true,
"no_double_inspect": false,
"fast_pattern": false,
"relative_next": true

abc",

"name": "byte_extract"

"name": "byte_test",
"byte_test": {
"nbytes": 4,
"offset": 4,
"base": "unset",
"flags": [
"little_endian"

"name": "dce_stub_data",
"direction": "toserver",
"is_mpm": true,
"app_proto": "dcerpc",
"progress": 0,
"matches": [
{
"name": "content",
"content": {
"pattern": "abc",
"length": 3,
"nocase": false,
"negated": false,
"starts_with": false,
"ends_with": false,
"is_mpm": true,
"no_double_inspect": false,
"fast_pattern": false,
"relative_next": true

(continues on next page)

262

Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

(continued from previous page)

"name": "byte_extract"

"name": "byte_test",
"byte_test": {
"nbytes": 4,
"offset": 4,
"base": "unset",
"flags": [
"little_endian"

"name": "dce_stub_data",
"direction": "toclient",
"is_mpm": true,
"app_proto": "smb",
"progress": 0,
"matches": [
{
"name": "content",
"content": {
"pattern": "abc",
"length": 3,
"nocase": false,
"negated": false,
"starts_with": false,
"ends_with": false,
"is_mpm": true,
"no_double_inspect": false,
"fast_pattern": false,
"relative_next": true

"name": "byte_extract"

"name": "byte_test",

"byte_test": {
"nbytes": 4,
"offset": 4,
"base": "unset",
"flags": [

"little_endian"

]

}

(continues on next page)

8.56. Rule Types and Categorization 263

Suricata User Guide, Release 8.0.0

(continued from previous page)

}
]
3,
{
"name": "dce_stub_data",
"direction": "toserver",

"is_mpm": true,
"app_proto": "smb",
"progress": 0,
"matches": [

{
"name": "content",
"content": {
"pattern": "abc",
"length": 3,
"nocase": false,
"negated": false,
"starts_with": false,
"ends_with": false,
"is_mpm": true,
"no_double_inspect": false,
"fast_pattern": false,
"relative_next": true
}
1,
{
"name": "byte_extract"
1,
{
"name": "byte_test",
"byte_test": {
"nbytes": 4,
"offset": 4,
"base": "unset",
"flags": [
"little_endian"
1
}
}
]
}
1,
"lists": {},
"mpm": {
"buffer": "dce_stub_data",
"pattern": "abc",
"length": 3,
"nocase": false,
"negated": false,
"starts_with": false,
"ends_with": false,
"is_mpm": true,
(continues on next page)
264

Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

(continued from previous page)

"no_double_inspect": false,
"fast_pattern": false,
"relative_next": true

8.56.4 Detailed Flowcharts

A look into the illustrated overall representation of functions or paths that determine signature types.

IP Only and IP Only with negated addresses

Mot IP Only

Payload
and
stream match?

ip_only and like_ip_only flows.

Not IP Only

ALPROTO
UNKNOWN?

Not IP Only Not IP Only

Flow direction
set?

Signature

Flowbits
AND NOT
flowbits:set

Not IP Only

IP_Only
compatible?

Non-payload
per-packet match?

Buffer
inspection?

No
Not IP Only

Post Match: Post Match: Contains negated
— IP_Only Flowbits P addres(i” Like IP Only
compatible? AND NOT flowbits:set ’

Yes
Mot IP Only Not IP Only

8.56. Rule Types and Categorization 265

Suricata User Guide, Release 8.0.0

Protocol Detection Only

pd_only flow.

266 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

Signature

ALPROTO Yes

UNKNOWN?

No

Payload
and/or
Stream match list?

—<
@
w

No

<
(1]
w

Buffer inspection?

No

non-payload
per-packet
matches?

No

Yes

Flowbits
AND NOT
flowbits:set

Yes

No

Flow setting
AND NOT
TOSERVER

or TOCLIENT

<
@
w

No

No

Match
IP_Only compatible?

Yes

Has keyword
app-layer-protocol?

Yes

Protocol

Detection Only

No

Not PD_ONLY

Not PD_ONLY

Not PD_ONLY

Not PD_ONLY

Not PD_ONLY

Not PD_ONLY

Not PD_ONLY

Not PD_ONLY

8.56. Rule Types and Categorization

267

Suricata User Guide, Release 8.0.0

Application Layer Protocol, Transaction, Packet, Stream and Stream-Packet rules

app_layer, app_tx, pkt, stream and stream-pkt flows.

REQUIRE_PACKET and REQUIRE_STREAM can be seen as flags need_packet and need_stream in the

engine-analysis output.

buffer

acket_engine?

buffer

Signature
Yes '-=i Packet I
Yes

frame_engine OR buffer
app_engine?

Payload
and/or
Stream match?

Yes

Non-payload

REQUIRE_PACKET
and not flag
REQUIRE_STREAM

——-

I Packet l

flag
Yes

flag

REQUIRE_STREAM
and not flag

REQUIRE_PACKET

.

per-packet match?

No

Packet-Stream

?
APP LAYER 7 Protocol

Application Layer]

8.57 Email Keywords

8.57.1 email.from

Matches the MIME From field of an email.
Comparison is case-sensitive.

Syntax:

i Packet l

i Packet l

email. from; content:'"<content to match against>";

268

Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

email. fromis a 'sticky buffer' and can be used as a fast_pattern.

This keyword maps to the EVE field email. from

Example

Example of a signature that would alert if a packet contains the MIME field from with the value toto <toto@gmail.
com>

alert smtp any any -> any any (msg:"Test mime email from"; email.from; content:"toto <toto@ gmail.com>"; sid:1;)

8.57.2 email.subject

Matches the MIME Subject field of an email.
Comparison is case-sensitive.

Syntax:

email.subject; content:"<content to match against>";

email.subject is a 'sticky buffer' and can be used as a fast_pattern.

This keyword maps to the EVE field email.subject

Example

Example of a signature that would alert if a packet contains the MIME field subject with the value This is a test
email

alert smtp any any -> any any (msg:"Test mime email subject"; email.subject; content:"This is a test email"; sid:1;)

8.57.3 email.to

Matches the MIME To field of an email.
Comparison is case-sensitive.

Syntax:

email.to; content:'<content to match against>";

email.to is a 'sticky buffer' and can be used as a fast_pattern.

This keyword maps to the EVE field email. to

8.57. Email Keywords 269

Suricata User Guide, Release 8.0.0

Example

Example of a signature that would alert if a packet contains the MIME field to with the value 172.16.92.2@1inuxbox

alert smtp any any -> any any (msg:"Test mime email to"; email.to; content:"172.16.92.2 @linuxbox"; sid:1;)

8.57.4 email.cc

Matches the MIME Cc field of an email.
Comparison is case-sensitive.

Syntax:

email.cc; content:'<content to match against>";

email.cc is a 'sticky buffer' and can be used as a fast_pattern.

This keyword maps to the EVE field email.cc[]

Example

Example of a signature that would alert if a packet contains the MIME field cc with the value Emily
<emily.roberts@example.com>, Ava <ava.johnson@example.com>, Sophia Wilson <sophia.
wilson@example.com>

alert smtp any any -> any any (msg:"Test mime email cc"; email.cc; content:"Emily <emily.roberts@example.com>,
Ava <ava.johnson@example.com>, Sophia Wilson <sophia.wilson@example.com>"; sid:1;)

8.57.5 email.date

Matches the MIME Date field of an email.
Comparison is case-sensitive.

Syntax:

email.date; content:"<content to match against>";

email.date is a 'sticky buffer' and can be used as a fast_pattern.

This keyword maps to the EVE field email .date

Example

Example of a signature that would alert if a packet contains the MIME field date with the value Fri, 21 Apr 2023
05:10:36 +0000

alert smtp any any -> any any (msg:"Test mime email date"; email.date; content:"Fri, 21 Apr 2023 05:10:36 +0000";
sid:1;)

270 Chapter 8. Suricata Rules

Suricata User Guide, Release 8.0.0

8.57.6 email.message _id

Matches the MIME Message-Id field of an email.
Comparison is case-sensitive.

Syntax:

email .message_id; content:"<content to match against>";

email .message_id is a 'sticky buffer' and can be used as a fast_pattern.

This keyword maps to the EVE field email .message_id

Example

Example of a signature that would alert if a packet contains the MIME field message id with the value <alpine.
DEB.2.00.1311261630120.9535@sd-26634.dedibox. fr>

alert smtp any any -> any any (msg:"Test mime email message id"; email.message_id;
content:"<alpine.DEB.2.00.1311261630120.9535 @sd-26634.dedibox.fr>"; sid:1;)

8.57.7 email.x_mailer

Matches the MIME X-Mailer field of an email.
Comparison is case-sensitive.

Syntax:

email.x_mailer; content:"<content to match against>";

email.x_mailer is a 'sticky buffer' and can be used as a fast_pattern.

This keyword maps to the EVE field email.x_mailer

Example

Example of a signature that would alert if a packet contains the MIME field x-mailer with the value Microsoft
Office Outlook, Build 11.0.5510

alert smtp any any -> any any (msg:"Test mime email x-mailer"; email.x_mailer; content:"Microsoft Office Outlook,
Build 11.0.5510"; sid:1;)

8.57.8 email.url

Matches URL extracted of an email.
Comparison is case-sensitive.

Syntax:

email.url; content:'<content to match against>";

8.57. Email Keywords 271

Suricata User Guide, Release 8.0.0

email.url is a 'sticky buffer' and can be used as a fast_pattern.
email.url supports multiple buffer matching, see Multiple Buffer Matching.

This keyword maps to the EVE field email.url[]

Example

Example of a signature that would alert if an email contains the url test-site.org/blah/123/.

alert smtp any any -> any any (msg:"Test mime email url"; email.url; content: "test-site.org/blah/123/"; sid:1;)

8.57.9 email.received

Matches Received field of an email.
Comparison is case-sensitive.

Syntax:

email.received; content:"<content to match against>";

email.received is a 'sticky buffer' and can be used as a fast_pattern.
email . received supports multiple buffer matching, see Multiple Buffer Matching.

This keyword maps to the EVE field email.received[]

Example

Example of a signature that would alert if a packet contains the MIME field received with the value from [65.
201.218.30] (helo=COZOXORY.club)by 173-66-46-112.wash.fios.verizon.net with esmtpa (Exim
4.86) (envelope-from)id 71cF63a9for mirjam@abrakadabra.ch; Mon, 29 Jul 2019 17:01:45
+0000

alert smtp any any -> any any (msg:"Test mime email received"; email.received; content:"from [65.201.218.30]
(helo=COZOXORY.club)by 173-66-46-112.wash.fios.verizon.net with esmtpa (Exim 4.86)(envelope-from)id
71cF63a9for mirjam @abrakadabra.ch; Mon, 29 Jul 2019 17:01:45 +0000"; sid:1;)

272 Chapter 8. Suricata Rules

CHAPTER
NINE

9.1 Rule Management with Suricata-Update

RULE MANAGEMENT

While it is possible to download and install rules manually, it is recommended to use a management tool for this.

suricata-update is the official way to update and manage rules for Suricata.

suricata-update is bundled with Suricata and is normally installed with it. For instructions on installing manually,
see http://suricata-update.readthedocs.io/en/latest/quickstart.html#install-suricata-update

Note: suricata-update is bundled with Suricata version 4.1 and later. It can be used with older versions as well.

It will have to be installed separately in that case.

To download the Emerging Threats Open ruleset, it is enough to simply run:

sudo suricata-update

This will download the ruleset into ~var/lib/suricata/rules/

Suricata's configuration will have to be updated to have a rules config like this:

default-rule-path: /var/lib/suricata/rules
rule-files:
- suricata.rules

Now (re)start Suricata.

9.1.1 Updating your rules

To update the rules, simply run

sudo suricata-update

It is recommended to update your rules frequently.

273

http://suricata-update.readthedocs.io/en/latest/quickstart.html#install-suricata-update

Suricata User Guide, Release 8.0.0

9.1.2 Using other rulesets

Suricata-Update is capable of making other rulesets accessible as well.

To see what is available, fetch the master index from the OISF hosts:

sudo suricata-update update-sources

Then have a look at what is available:

sudo suricata-update list-sources

This will give a result similar to

Name: oisf/trafficid
Vendor: OISF
Summary: Suricata Traffic ID ruleset
License: MIT
Name: ptresearch/attackdetection
Vendor: Positive Technologies
Summary: Positive Technologies Attack Detection Team ruleset
License: Custom
Name: sslbl/ssl-fp-blacklist
Vendor: Abuse.ch
Summary: Abuse.ch SSL Blacklist
License: Non-Commercial
Name: et/open
Vendor: Proofpoint
Summary: Emerging Threats Open Ruleset
License: MIT
Name: scwx/security
Vendor: Secureworks
Summary: Secureworks suricata-security ruleset.
License: Commercial
Parameters: secret-code
Subscription: https://www.secureworks.com/contact/ (Please reference CTU Countermeasures)
Name: scwx/malware
Vendor: Secureworks
Summary: Secureworks suricata-malware ruleset.
License: Commercial
Parameters: secret-code
Subscription: https://www.secureworks.com/contact/ (Please reference CTU Countermeasures)
Name: et/pro
Vendor: Proofpoint
Summary: Emerging Threats Pro Ruleset
License: Commercial
Replaces: et/open
Parameters: secret-code
Subscription: https://www.proofpoint.com/us/threat-insight/et-pro-ruleset

Each of the rulesets has a name that has a 'vendor' prefix, followed by a set name. For example, OISF's traffic id ruleset
is called 'oisf/trafficid'.

To enable 'oisf/trafficid’, enter:

sudo suricata-update enable-source oisf/trafficid
sudo suricata-update

Now restart Suricata again and the rules from the OISF TrafficID ruleset are loaded.

To see which rulesets are currently active, use "list-enabled-sources".

274 Chapter 9. Rule Management

Suricata User Guide, Release 8.0.0

9.1.3 Controlling which rules are used

By default suricata-update will merge all rules into a single file "/var/lib/suricata/rules/suricata.rules".

To enable rules that are disabled by default, use /etc/suricata/enable.conf

2019401 # enable signature with this sid
group:emerging-icmp.rules # enable this rulefile
re:trojan # enable all rules with this string

Similarly, to disable rules use /etc/suricata/disable.conf:

2019401 # disable signature with this sid
group:emerging-info.rules # disable this rulefile
re:heartbleed # disable all rules with this string

After updating these files, rerun suricata-update again:

sudo suricata-update

Finally restart Suricata.

9.1.4 Further reading

See https://suricata-update.readthedocs.io/en/latest/

9.2 Adding Your Own Rules

If you would like to create a rule yourself and use it with Suricata, this guide might be helpful.

Start creating a file for your rule. Use one of the following examples in your console/terminal window:

sudo nano local.rules
sudo vim local.rules

Write your rule, see Rules Format and save it.

Update the Suricata configuration file so your rule is included. Use one of the following examples:

sudo nano /etc/suricata/suricata.yaml
sudo vim /etc/suricata/suricata.yaml

and make sure your local.rules file is added to the list of rules:

default-rule-path: /usr/local/etc/suricata/rules

rule-files:
- suricata.rules
- /path/to/local.rules

Now, run Suricata and see if your rule is being loaded.

suricata -c /etc/suricata/suricata.yaml -i wlan®

9.2. Adding Your Own Rules 275

https://suricata-update.readthedocs.io/en/latest/

Suricata User Guide, Release 8.0.0

If the rule failed to load, Suricata will display as much information as it has when it deemed the rule un-loadable. Pay
special attention to the details: look for mistakes in special characters, spaces, capital characters, etc.

Next, check if your log-files are enabled in the Suricata configuration file suricata.yaml.
If you had to correct your rule and/or modify Suricata's YAML configuration file, you'll have to restart Suricata.
If you see your rule is successfully loaded, you can double check your rule by doing something that should trigger it.
By default, Suricata will log alerts to two places
* eve.json
e fast.log
These files will be located in the log output directory which is set by one of two methods:
1. Suricata configuration file: see default-log-dir for the name of the directory
2. Suricata command line: Using -1 /path/to/log-dir creates log files in the named directory.

The following example assumes that the log directory is named /var/log/suricata

tail -f /var/log/suricata/fast.log

If you would make a rule like this:

alert http any any -> any any (msg:"Do not read gossip during work";
content:"Scarlett"; nocase; classtype:policy-violation; sid:1; rev:1;)

Your alert should look like this:

09/15/2011-16:50:27.725288 [**] [1:1:1] Do not read gossip during work [**]
[Classification: Potential Corporate Privacy Violation] [Priority: 1] {TCP} 192.168.0.
—32:55604 -> 68.67.185.210:80

9.3 Rule Reloads

Suricata can reload the rules without restarting. This way, there is minimal service disruption.

This works by sending Suricata a signal or by using the unix socket. When Suricata is told to reload the rules these are
the basic steps it takes:

* Load new config to update rule variables and values.
* Load new rules

» Construct new detection engine

* Swap old and new detection engines

* Make sure all threads are updated

¢ Free old detection engine

Suricata will continue to process packets normally during this process. Keep in mind though, that the system should
have enough memory for both detection engines.

Signal:

kill -USR2 $(pidof suricata)

276 Chapter 9. Rule Management

Suricata User Guide, Release 8.0.0

There are two methods available when using the Unix socket.

Blocking reload

suricatasc -c reload-rules

Non blocking reload

suricatasc -c ruleset-reload-nonblocking

It is also possible to get information about the last reload via dedicated commands. See Commands in standard running
mode for more information.

9.4 Rules Profiling

If Suricata is built with the --enable-profiling-rules then the ruleset profiling can be activated on demand from the unix
socket and dumped from it.

To start profiling

suricatasc -c ruleset-profile-start

To stop profiling

suricatasc -c ruleset-profile-stop

To dump profiling

suricatasc -c ruleset-profile

A typical scenario to get rules performance would be

suricatasc -c ruleset-profile-start
sleep 30

suricatasc -c ruleset-profile-stop
suricatasc -c ruleset-profile

On busy systems, using the sampling capability to capture performance on a subset of packets can be obtained via the
sample-rate variable in the profiling section in the suricata.yaml file.

9.4. Rules Profiling 277

Suricata User Guide, Release 8.0.0

278 Chapter 9. Rule Management

CHAPTER
TEN

MAKING SENSE OUT OF ALERTS

When an alert happens it's important to figure out what it means. Is it serious? Relevant? A false positive?
To find out more about the rule that fired, it's always a good idea to look at the actual rule.

The first thing to look at in a rule is the description that follows the msg keyword. Let's consider an example:

msg:"ET SCAN sipscan probe";

The "ET" indicates the rule came from the Emerging Threats (Proofpoint) project. "SCAN" indicates the purpose of
the rule is to match on some form of scanning. Following that, a more or less detailed description is given.

Most rules contain some pointers to more information in the form of the "reference" keyword.

Consider the following example rule:

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS \
(msg:"ET CURRENT_EVENTS Adobe Oday Shovelware"; \
flow:established,to_server; content:"GET "; nocase; depth:4; \
content:!"|0d Oa|Referer\:"; nocase; \
uricontent:"/ppp/listdir.php?dir="; \
pcre:"/\/[a-z]1{2}\/[a-z]{4}01\/ppp\/1listdir\.php\?dir=/U"; \
classtype:trojan-activity; \
reference:url,isc.sans.org/diary.html?storyid=7747; \
reference:url,doc.emergingthreats.net/2010496; \
reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/CURRENT_EVENTS/CURRENT_
—Adobe; \
sid:2010496; rev:2;)

In this rule, the reference keyword indicates 3 urls to visit for more information:

isc.sans.org/diary.html?storyid=7747
doc.emergingthreats.net/2010496
www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/CURRENT_EVENTS/CURRENT_Adobe

Some rules contain a reference like: "reference:cve,2009-3958; " should allow you to find info about the specific
CVE using your favorite search engine.

It's not always straight forward and sometimes not all of that information is available publicly. Usually asking about it
on the signature support channel can be helpful.

In Rule Management with Suricata-Update more information on the rule sources and their documentation and support
methods can be found.

In many cases, looking at just the alert and the packet that triggered it won't be enough to be conclusive. When using
the default Eve settings a lot of metadata will be added to the alert.

279

Suricata User Guide, Release 8.0.0

For example, if a rule fired that indicates your web application is attacked, looking at the metadata might reveal that
the web application replied with 404 not found. This will usually mean the attack failed but not always.

Not every protocol leads to metadata generation, so when running an IDS engine like Suricata, it's often recommended
to combine it with full packet capture. Using tools like Evebox, Sguil or Snorby, the full TCP session or UDP flow can
be inspected.

Obviously there is a lot more to Incidence Response, but this should get you started.

280 Chapter 10. Making sense out of Alerts

CHAPTER
ELEVEN

PERFORMANCE

11.1 Runmodes

Suricata consists of several 'building blocks' called threads, thread-modules and queues. A thread is like a process that
runs on a computer. Suricata is multi-threaded, so multiple threads are active at once. A thread-module is a part of
a functionality. One module is for example for decoding a packet, another is the detect-module and another one the
output-module. A packet can be processed by more than one thread. The packet will then be passed on to the next
thread through a queue. Packets will be processed by one thread at a time, but there can be multiple packets being
processed at a time by the engine (see Max-pending-packets). A thread can have one or more thread-modules. If they
have more modules, they can only be active one at a time. The way threads, modules and queues are arranged together
is called the "Runmode".

11.1.1 Different runmodes
You can choose a runmode out of several predefined runmodes. The command line option --1ist-runmodes shows
all available runmodes. All runmodes have a name: single, workers, autofp.

Generally, the workers runmode performs the best. In this mode the NIC/driver makes sure packets are properly
balanced over Suricata's processing threads. Each packet processing thread then contains the full packet pipeline.

281

Suricata User Guide, Release 8.0.0

Runmode: Workers

Flow balancing happens in hardware or driver

For processing PCAP files, or in case of certain IPS setups (like NFQ), autofp is used. Here there are one or more
capture threads, that capture the packet and do the packet decoding, after which it is passed on to the flow worker
threads.

282 Chapter 11. Performance

Suricata User Guide, Release 8.0.0

Runmode: autofp

Flow balancing happens inside Suricata

11.1. Runmodes 283

Suricata User Guide, Release 8.0.0

Runmode: autofp pture threacs)

Flow balancing happens in both Suricata and hardware/driver

Finally, the single runmode is the same as the workers mode, however there is only a single packet processing thread.
This is mostly useful during development.

284 Chapter 11. Performance

Suricata User Guide, Release 8.0.0

Runmode: single

For more information about the command line options concerning the runmode, see Command Line Options.

11.1. Runmodes 285

Suricata User Guide, Release 8.0.0

11.1.2 Load balancing

Suricata may use different ways to load balance the packets to process between different threads with the configuration
option autofp-scheduler.

The default value is hash, which means the packet is assigned to threads using the 5-7 tuple hash, which is also used
anyways to store the flows in memory.

This option can also be set to - ippair : packets are assigned to threads using addresses only. - ftp-hash : same as hash
except for flows that may be ftp or ftp-data so that these flows get processed by the same thread. Like so, there is no
concurrency issue in recognizing ftp-data flows due to processing them before the ftp flow got processed. In case of
such a flow, a variant of the hash is used.

11.2 Packet Capture

11.2.1 Load balancing

To get the best performance, Suricata will need to run in 'workers' mode. This effectively means that there are multiple
threads, each running a full packet pipeline and each receiving packets from the capture method. This means that we
rely on the capture method to distribute the packets over the various threads. One critical aspect of this is that Suricata
needs to get both sides of a flow in the same thread, in the correct order.

The AF_PACKET and PF_RING capture methods both have options to select the 'cluster-type'. These default to 'clus-
ter_flow' which instructs the capture method to hash by flow (5 tuple). This hash is symmetric. Netmap does not have
a cluster_flow mode built-in. It can be added separately by using the "'Ib' tool":https://github.com/luigirizzo/netmap/
tree/master/apps/1b

On multi-queue NICs, which is almost any modern NIC, RSS settings need to be considered.

11.2.2 RSS

Receive Side Scaling is a technique used by network cards to distribute incoming traffic over various queues on the
NIC. This is meant to improve performance but it is important to realize that it was designed for normal traffic, not for
the IDS packet capture scenario. RSS using a hash algorithm to distribute the incoming traffic over the various queues.
This hash is normally not symmetrical. This means that when receiving both sides of a flow, each side may end up in
a different queue. Sadly, when deploying Suricata, this is the common scenario when using span ports or taps.

The problem here is that by having both sides of the traffic in different queues, the order of processing of packets
becomes unpredictable. Timing differences on the NIC, the driver, the kernel and in Suricata will lead to a high chance
of packets coming in at a different order than on the wire. This is specifically about a mismatch between the two traffic
directions. For example, Suricata tracks the TCP 3-way handshake. Due to this timing issue, the SYN/ACK may only
be received by Suricata long after the client to server side has already started sending data. Suricata would see this
traffic as invalid.

None of the supported capture methods like AF_PACKET, PF_RING or NETMAP can fix this problem for us. It would
require buffering and packet reordering which is expensive.

To see how many queues are configured:

$ ethtool -1 ens2fl

Channel parameters for ens2fl:
Pre-set maximums:

RX: 0

TX: 0

(continues on next page)

286 Chapter 11. Performance

https://github.com/luigirizzo/netmap/tree/master/apps/lb
https://github.com/luigirizzo/netmap/tree/master/apps/lb

Suricata User Guide, Release 8.0.0

(continued from previous page)

Other: 1
Combined: 64
Current hardware settings:
RX:

TX:
Other:
Combined:

o e —]

Some NIC's allow you to set it into a symmetric mode. The Intel X(L)710 card can do this in theory, but the drivers
aren't capable of enabling this yet (work is underway to try to address this). Another way to address is by setting a
special "Random Secret Key" that will make the RSS symmetrical. See http://www.ndsl.kaist.edu/~kyoungsoo/papers/
TR-symRSS.pdf (PDF).

In most scenario's however, the optimal solution is to reduce the number of RSS queues to 1:

Example:

Intel X710 with i40e driver:
ethtool -L $DEV combined 1

Some drivers do not support setting the number of queues through ethtool. In some cases there is a module load time
option. Read the driver docs for the specifics.

11.2.3 Offloading

Network cards, drivers and the kernel itself have various techniques to speed up packet handling. Generally these will
all have to be disabled.

LRO/GRO lead to merging various smaller packets into big 'super packets'. These will need to be disabled as they
break the dsize keyword as well as TCP state tracking.

Checksum offloading can be left enabled on AF_PACKET and PF_RING, but needs to be disabled on PCAP, NETMAP
and others.

11.2.4 Recommendations

Read your drivers documentation! E.g. for i40e the ethtool change of RSS queues may lead to kernel panics if done
wrong.

Generic: set RSS queues to 1 or make sure RSS hashing is symmetric. Disable NIC offloading.

AF_PACKET: 1 RSS queue and stay on kernel <=4.2 or make sure you have >=4.4.16, >=4.6.5 or >=4.7. Exception:
if RSS is symmetric cluster-type 'cluster_qm' can be used to bind Suricata to the RSS queues. Disable NIC offloading
except the rx/tx csum.

PF_RING: 1 RSS queue and use cluster-type 'cluster_flow'. Disable NIC offloading except the rx/tx csum.

NETMAP: 1 RSS queue. There is no flow based load balancing built-in, but the 'Ib' tool can be helpful. Another option
is to use the 'autofp' runmode. Exception: if RSS is symmetric, load balancing is based on the RSS hash and multiple
RSS queues can be used. Disable all NIC offloading.

11.2. Packet Capture 287

http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf
http://www.ndsl.kaist.edu/~kyoungsoo/papers/TR-symRSS.pdf

Suricata User Guide, Release 8.0.0

11.3 Tuning Considerations

Settings to check for optimal performance.

11.3.1 max-pending-packets: <number>
This setting controls the number simultaneous packets that the engine can handle. Setting this higher generally keeps
the threads more busy, but setting it too high will lead to degradation.

Suggested setting: 10000 or higher. Max is ~65000. This setting is per thread. The memory is set up at start and the
usage is as follows:

number_of.threads X max-pending-packets X (default-packet-size + ~750 bytes)

11.3.2 mpme-algo: <ac|hs|ac-bs|ac-ks>

Controls the pattern matcher algorithm. AC (Aho-Corasick) is the default. On supported platforms, Hyperscan is
the best option. On commodity hardware if Hyperscan is not available the suggested setting is mpm-algo: ac-ks
(Aho-Corasick Ken Steele variant) as it performs better than mpm-algo: ac

11.3.3 detect.profile: <low|medium|high|custom>

The detection engine tries to split out separate signatures into groups so that a packet is only inspected against signatures
that can actually match. As in large rule set this would result in way too many groups and memory usage similar groups
are merged together. The profile setting controls how aggressive this merging is done. The default setting of high
usually is good enough.

The "custom" setting allows modification of the group sizes:

custom-values:
toclient-groups: 100
toserver-groups: 100

In general, increasing will improve performance. It will lead to minimal increase in memory usage. The default value
for toclient-groups and toserver-groups with detect.profile: highis?75.

11.3.4 detect.sgh-mpm-context: <auto|single|full>

The multi pattern matcher can have it's context per signature group (full) or globally (single). Auto selects between
single and full based on the mpm-algo selected. ac, ac-bs, ac-ks, hs default to "single". Setting this to "full" with
mpm-algo: acormpm-algo: ac-ks offers better performance. Setting this to "full" with mpm-algo: hs is not
recommended as it leads to much higher startup time. Instead with Hyperscan either detect.profile: high or
bigger custom group size settings can be used as explained above which offers better performance than ac and ac-ks
even with detect.sgh-mpm-context: full.

288 Chapter 11. Performance

Suricata User Guide, Release 8.0.0

11.3.5 af-packet

If using af-packet (default on Linux) it is recommended that af-packet v3 is used for IDS/NSM deployments. For IPS
it is recommended af-packet v2. To make sure af-packet v3 is used it can specifically be enforced it in the af-packet
config section of suricata.yaml like so:

af-packet:
- interface: eth®

tpacket-v3: yes

11.3.6 ring-size

Ring-size is another af-packet variable that can be considered for tuning and performance benefits. It basically means
the buffer size for packets per thread. So if the setting is ring-size: 100000 like below:

af-packet:
- interface: eth®
threads: 5
ring-size: 100000

it means there will be 100,000 packets allowed in each buffer of the 5 threads. If any of the buffers gets filled (for
example packet processing can not keep up) that will result in packet drop counters increasing in the stats logs.

The memory used for those is set up and dedicated at start and is calculated as follows:

af-packet.threads X af-packet.ring-size X (default-packet-size + ~750 bytes)

where af-packet.threads, af-packet.ring-size, default-packet-size are the values set in suricata.yaml.
Conlfig values for example for af-packet could be quickly displayed with on the command line as well with suricata
--dump-config |grep af-packet.

11.3.7 stream.bypass

Another option that can be used to improve performance is stream.bypass. In the example below:

Stream:
memcap: 64mb
checksum-validation: yes # reject wrong csums
inline: auto # auto will use inline mode in IPS mode, yes or no set it,
—Statically
bypass: yes
reassembly:
memcap: 256mb
depth: 1mb # reassemble Imb into a Stream
toserver-chunk-size: 2560
toclient-chunk-size: 2560
randomize-chunk-size: yes

Inspection will be skipped when stream.reassembly.depth of 1mb is reached for a particular flow.

11.3. Tuning Considerations 289

Suricata User Guide, Release 8.0.0

11.4 Hyperscan

11.4.1 Introduction

"Hyperscan is a high performance regular expression matching library (...)" (https://www.intel.com/content/www/us/
en/developer/articles/technical/introduction-to-hyperscan.html)

In Suricata it can be used to perform multi pattern matching (mpm) or single pattern matching (spm).

Support for hyperscan in Suricata was initially implemented by Justin Viiret and Jim Xu from Intel via https://github.
com/OISF/suricata/pull/1965.

Hyperscan is only for Intel x86 based processor architectures at this time. For ARM processors, vectorscan is a drop
in replacement for hyperscan, https://github.com/VectorCamp/vectorscan.

11.4.2 Basic Installation (Package)

Some Linux distributions include hyperscan in their respective package collections.

Fedora 37+/Centos 8+: sudo dnf install hyperscan-devel Ubuntu/Debian: sudo apt-get install libhyperscan-dev

11.4.3 Advanced Installation (Source)

Hyperscan has the following dependencies in order to build from source:
* boost development libraries (minimum boost library version is 1.58)
* cmake
e C++ compiler (e.g. gcc-c++)
* libpcap development libraries
e pcre2 development libraries
¢ python3
* ragel
* sqlite development libraries

Note: git is an additional dependency if cloning the hyperscan GitHub repository. Otherwise downloading the hyper-
scan zip from the GitHub repository will work too.

The steps to build and install hyperscan are:

git clone https://github.com/intel/hyperscan
cd hyperscan

cmake -DBUILD_STATIC_AND_SHARED=1

cmake --build ./

sudo cmake --install ./

Note: Hyperscan can take a long time to build/compile.

Note: It may be necessary to add /usr/local/lib or /usr/local/lib64 to the Id search path. Typically this is done by adding
a file under /etc/ld.so.conf.d/ with the contents of the directory location of libhs.so.5 (for hyperscan 5.x).

290 Chapter 11. Performance

https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-hyperscan.html
https://www.intel.com/content/www/us/en/developer/articles/technical/introduction-to-hyperscan.html
https://github.com/OISF/suricata/pull/1965
https://github.com/OISF/suricata/pull/1965
https://github.com/VectorCamp/vectorscan

Suricata User Guide, Release 8.0.0

11.4.4 Using Hyperscan

Confirm that the suricata version installed has hyperscan enabled.

suricata --build-info | grep Hyperscan
Hyperscan support: yes

To use hyperscan support, edit the suricata.yaml. Change the mpm-algo and spm-algo values to 'hs'.
Alternatively, use this command-line option: --set mpm-algo=hs --set spm-algo=hs

Note: The default suricata.yaml configuration settings for mpm-algo and spm-algo are "auto". Suricata will use hyper-
scan if it is present on the system in case of the "auto" setting.

If the current suricata installation does not have hyperscan support, refer to Installation

11.4.5 Hyperscan caching

Upon startup, Hyperscan compiles and optimizes the ruleset into its own internal structure. Suricata optimizes the
startup process by saving the Hyperscan internal structures to disk and loading them on the next start. This prevents
the recompilation of the ruleset and results in faster initialization. If the ruleset is changed, new necessary cache files
are automatically created.

To enable this function, in suricata.yaml configure:

detect:
Cache MPM contexts to the disk to avoid rule compilation at the startup.
Cache files are created in the standard library directory.
sgh-mpm-caching: yes
sgh-mpm-caching-path: /var/lib/suricata/cache/hs

Note: You might need to create and adjust permissions to the default caching folder path, especially if you are running
Suricata as a non-root user.

11.5 High Performance Configuration

11.5.1 NIC

One of the major dependencies for Suricata's performance is the Network Interface Card. There are many vendors and
possibilities. Some NICs have and require their own specific instructions and tools of how to set up the NIC. This
ensures the greatest benefit when running Suricata. Vendors like Napatech, Netronome, Accolade, Myricom include
those tools and documentation as part of their sources.

For Intel, Mellanox and commodity NICs the following suggestions below could be utilized.

It is recommended that the latest available stable NIC drivers are used. In general when changing the NIC settings it
is advisable to use the latest ethtool version. Some NICs ship with their own ethtool that is recommended to be
used. Here is an example of how to set up the ethtool if needed:

wget https://mirrors.edge.kernel.org/pub/software/network/ethtool/ethtool-5.2.tar.xz
tar -xf ethtool-5.2.tar.xz

cd ethtool-5.2

./configure && make clean && make && make install

/usr/local/sbin/ethtool --version

11.5. High Performance Configuration 291

Suricata User Guide, Release 8.0.0

When doing high performance optimisation make sure irgbalance is off and not running:

service irgbalance stop

Depending on the NIC's available queues (for example Intel's x710/i40 has 64 available per port/interface) the worker
threads can be set up accordingly. Usually the available queues can be seen by running:

/usr/local/sbin/ethtool -1 ethl

Some NICs - generally lower end 1Gbps - do not support symmetric hashing see Packet Capture. On those systems
due to considerations for out of order packets the following setup with af-packet is suggested (the example below uses

ethl):

/usr/local/sbin/ethtool -L ethl

combined 1

then set up af-packet with number of desired workers threads threads: auto (auto by default will use number of
CPUs available) and cluster-type: cluster_flow (also the default setting)

For higher end systems/NICs a better and more performant solution could be utilizing the NIC itself a bit more. x710/i40
and similar Intel NICs or Mellanox MT27800 Family [ConnectX-5] for example can easily be set up to do a bigger
chunk of the work using more RSS queues and symmetric hashing in order to allow for increased performance on the
Suricata side by using af-packet with cluster-type: cluster_gm mode. In that mode with af-packet all packets
linked by network card to a RSS queue are sent to the same socket. Below is an example of a suggested config set up
based on a 16 core one CPU/NUMA node socket system using x710:

rmmod i40e && modprobe i40e
ifconfig ethl down
/usr/local/sbin/ethtool -L ethl
/usr/local/sbin/ethtool -K ethl
/usr/local/sbin/ethtool -K ethl
ifconfig ethl up
/usr/local/sbin/ethtool -X ethl

—.6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:

—equal 16

/usr/local/sbin/ethtool -A ethl
/usr/local/sbin/ethtool -C ethl
/usr/local/sbin/ethtool -G ethl

combined 16
rxhash on
ntuple on

hkey..
6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5

rx off
adaptive-rx off adaptive-tx off rx-usecs 125
rx 1024

A:6D:5A:6D:5A

The commands above can be reviewed in detail in the help or manpages of the ethtool. In brief the sequence makes
sure the NIC is reset, the number of RSS queues is set to 16, load balancing is enabled for the NIC, a low entropy
toeplitz key is inserted to allow for symmetric hashing, receive offloading is disabled, the adaptive control is disabled
for lowest possible latency and last but not least, the ring rx descriptor size is set to 1024. Make sure the RSS hash

function is Toeplitz:

/usr/local/sbin/ethtool -X ethl

hfunc toeplitz

Let the NIC balance as much as possible:

for proto in tcp4 udp4 tcp6 udp6; do
/usr/local/sbin/ethtool -N ethl rx-flow-hash $proto sdfn

done

In some cases:

/usr/local/sbin/ethtool -N ethl

rx-flow-hash $proto sd

292

Chapter 11. Performance

Suricata User Guide, Release 8.0.0

might be enough or even better depending on the type of traffic. However not all NICs allow it. The sd specifies the
multi queue hashing algorithm of the NIC (for the particular proto) to use src IP, dst IP only. The sdfn allows for the
tuple src IP, dst IP, src port, dst port to be used for the hashing algorithm. In the af-packet section of suricata.yaml:

af-packet:
- interface: ethl
threads: 16
cluster-id: 99
cluster-type: cluster_gm

11.5.2 CPU affinity and NUMA

Intel based systems

If the system has more then one NUMA node there are some more possibilities. In those cases it is generally recom-
mended to use as many worker threads as cpu cores available/possible - from the same NUMA node. The example
below uses a 72 core machine and the sniffing NIC that Suricata uses located on NUMA node 1. In such 2 socket con-
figurations it is recommended to have Suricata and the sniffing NIC to be running and residing on the second NUMA
node as by default CPU 0 is widely used by many services in Linux. In a case where this is not possible it is recom-
mended that (via the cpu affinity config section in suricata.yaml and the irq affinity script for the NIC) CPU 0 is never
used.

In the case below 36 worker threads are used out of NUMA node 1's CPU, af-packet runmode with cluster-type:
cluster_qm.

If the CPU's NUMA set up is as follows:

1scpu

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 72

On-line CPU(s) list: 0-71
Thread(s) per core: 2
Core(s) per socket: 18

Socket(s): 2

NUMA node(s): 2

Vendor ID: GenuinelIntel
CPU family: 6

Model: 79

Model name: Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz
Stepping: 1

CPU MHz: 1199.724

CPU max MHz: 3600.0000
CPU min MHz: 1200.0000
BogoMIPS: 4589.92
Virtualization: VT-x

L1d cache: 32K

L1i cache: 32K

L2 cache: 256K

L3 cache: 46080K

(continues on next page)

11.5. High Performance Configuration 293

Suricata User Guide, Release 8.0.0

(continued from previous page)

NUMA node® CPU(s): 0-17,36-53
NUMA nodel CPU(s): 18-35,54-71

It is recommended that 36 worker threads are used and the NIC set up could be as follows:

rmmod i40e && modprobe i40e
ifconfig ethl down
/usr/local/sbin/ethtool -L ethl combined 36
/usr/local/sbin/ethtool -K ethl rxhash on
/usr/local/sbin/ethtool -K ethl ntuple on
ifconfig ethl up
./set_irq_affinity local ethl
/usr/local/sbin/ethtool -X ethl hkey.,
—6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5
—equal 36
/usr/local/sbin/ethtool -A ethl rx off tx off
/usr/local/sbin/ethtool -C ethl adaptive-rx off adaptive-tx off rx-usecs 125
/usr/local/sbin/ethtool -G ethl rx 1024
for proto in tcp4 udp4 tcp6 udp6; do
echo "/usr/local/sbin/ethtool -N ethl rx-flow-hash $proto sdfn"
/usr/local/sbin/ethtool -N ethl rx-flow-hash $proto sdifn
done

A:6D:5A:6D:5A

In the example above the set_irq_affinity script is used from the NIC driver's sources. In the cpu affinity section
of suricata.yaml config:

Suricata is multi-threaded. Here the threading can be influenced.
threading:
cpu-affinity:
management-cpu-set:
cpu: ["1-10"] # include only these CPUs in affinity settings
receive-cpu-set:
cpu: ["0-10"] # include only these CPUs in affinity settings
worker-cpu-set:
cpu: ["18-35", "54-71"]
mode: "exclusive"
prio:
low: [0]
medium: ["1"]
high: ["18-35","54-71"]
default: "high"

In the af-packet section of suricata.yaml config :

- interface: ethl
Number of receive threads. "auto" uses the number of cores
threads: 18
cluster-id: 99
cluster-type: cluster_gm
defrag: no
mmap-locked: yes
tpacket-v3: yes
ring-size: 100000

(continues on next page)

294 Chapter 11. Performance

Suricata User Guide, Release 8.0.0

(continued from previous page)

block-size: 1048576

- interface: ethl
Number of receive threads. "auto" uses the number of cores
threads: 18
cluster-id: 99
cluster-type: cluster_gm
defrag: no
mmap-locked: yes
tpacket-v3: yes
ring-size: 100000
block-size: 1048576

That way 36 worker threads can be mapped (18 per each af-packet interface slot) in total per CPUs NUMA 1 range -
18-35,54-71. That part is done via the worker-cpu-set affinity settings. ring-size and block-size in the config
section above are decent default values to start with. Those can be better adjusted if needed as explained in 7uning
Considerations.

AMD based systems

Another example can be using an AMD based system where the architecture and design of the system itself plus the
NUMA node's interaction is different as it is based on the HyperTransport (HT) technology. In that case per NUMA
thread/lock would not be needed. The example below shows a suggestion for such a configuration utilising af-packet,
cluster-type: cluster_flow. The Mellanox NIC is located on NUMA 0.

The CPU set up is as follows:

Architecture: x86_64

CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 128

On-line CPU(s) 1list: 0-127
Thread(s) per core: 2

Core(s) per socket: 32

Socket(s): 2

NUMA node(s): 8

Vendor ID: AuthenticAMD
CPU family: 23

Model: 1

Model name: AMD EPYC 7601 32-Core Processor
Stepping: 2

CPU MHz: 1200.000

CPU max MHz: 2200.0000

CPU min MHz: 1200.0000
BogoMIPS: 4391.55
Virtualization: AMD-V

L1d cache: 32K

L1i cache: 64K

L2 cache: 512K

L3 cache: 8192K

NUMA node® CPU(s): 0-7,64-71
NUMA nodel CPU(s): 8-15,72-79
NUMA node2 CPU(s): 16-23,80-87

(continues on next page)

11.5. High Performance Configuration 295

Suricata User Guide, Release 8.0.0

(continued from previous page)

NUMA node3 CPU(s): 24-31,88-95

NUMA node4 CPU(s): 32-39,96-103
NUMA node5 CPU(s): 40-47,104-111
NUMA node6 CPU(s): 48-55,112-119
NUMA node7 CPU(s): 56-63,120-127

The ethtool, show_irq_affinity.sh and set_irq_affinity_cpulist.sh tools are provided from the official
driver sources. Set up the NIC, including offloading and load balancing:

ifconfig eno6 down

/opt/mellanox/ethtool/sbin/ethtool -L eno6 combined 15

/opt/mellanox/ethtool/sbin/ethtool -K eno6 rxhash on

/opt/mellanox/ethtool/sbin/ethtool -K eno6 ntuple on

ifconfig eno6 up

/sbin/set_irq_affinity_cpulist.sh 1-7,64-71 eno6

/opt/mellanox/ethtool/sbin/ethtool -X eno6 hfunc toeplitz
/opt/mellanox/ethtool/sbin/ethtool -X eno6 hkey.
—6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5A:6D:5

A:6D:5A:6D:5A

In the example above (1-7,64-71 for the irq affinity) CPU 0 is skipped as it is usually used by default on Linux systems
by many applications/tools. Let the NIC balance as much as possible:

for proto in tcp4 udp4 tcp6 udp6; do
/usr/local/sbin/ethtool -N ethl rx-flow-hash $proto sdfn
done

In the cpu affinity section of suricata.yaml config :

Suricata is multi-threaded. Here the threading can be influenced.
threading:
set-cpu-affinity: yes
cpu-affinity:
management-cpu-set:
cpu: ["120-127"] # include only these cpus in affinity settings
receive-cpu-set:
cpu: [® 1 # include only these cpus in affinity settings
worker-cpu-set:
cpu: ["8-55"]
mode: "exclusive"
prio:
high: ["8-55"]
default: "high"

In the af-packet section of suricata.yaml config:

- interface: ethl
Number of receive threads. "auto" uses the number of cores
threads: 48 # 48 worker threads on cpus "8-55" above
cluster-id: 99
cluster-type: cluster_flow
defrag: no
mmap-locked: yes
tpacket-v3: yes

(continues on next page)

296 Chapter 11. Performance

Suricata User Guide, Release 8.0.0

(continued from previous page)

ring-size: 100000
block-size: 1048576

In the example above there are 15 RSS queues pinned to cores 1-7,64-71 on NUMA node 0 and 40 worker threads
using other CPUs on different NUMA nodes. The reason why CPU 0 is skipped in this set up is as in Linux systems
it is very common for CPU 0 to be used by default by many tools/services. The NIC itself in this config is positioned
on NUMA 0 so starting with 15 RSS queues on that NUMA node and keeping those off for other tools in the system
could offer the best advantage.

Note: Performance and optimization of the whole system can be affected upon regular NIC driver and pkg/kernel
upgrades so it should be monitored regularly and tested out in QA/test environments first. As a general suggestion it
is always recommended to run the latest stable firmware and drivers as instructed and provided by the particular NIC
vendor.

Other considerations

Another advanced option to consider is the isolcpus kernel boot parameter is a way of allowing CPU cores to be
isolated for use of general system processes. That way ensures total dedication of those CPUs/ranges for the Suricata
process only.

stream.wrong_thread / tcp.pkt_on_wrong_thread are counters available in stats.log or eve.json as
event_type: stats thatindicate issues with the load balancing. There could be traffic/NICs settings related as well.
In very high/heavily increasing counter values it is recommended to experiment with a different load balancing method
either via the NIC or for example using XDP/eBPF. There is an issue open https://redmine.openinfosecfoundation.org/
issues/2725 that is a placeholder for feedback and findings.

11.6 Statistics
The stats.log produces statistics records on a fixed interval, by default every 8 seconds.

11.6.1 stats.log file

Counter | TM Name | Value
flow_mgr.closed_pruned | FlowManagerThread | 154033
flow_mgr.new_pruned | FlowManagerThread | 67800
flow_mgr.est_pruned | FlowManagerThread | 100921
flow.memuse | FlowManagerThread | 6557568
flow.spare | FlowManagerThread | 10002
flow.emerg_mode_entered | FlowManagerThread | ®
flow.emerg_mode_over | FlowManagerThread | 0
decoder.pkts | RxPcapem2l | 450001754
decoder.bytes | RxPcapem21 | 409520714250
decoder. ipv4 | RxPcapem21 | 449584047
decoder.ipv6 | RxPcapem21 | 9212
decoder.ethernet | RxPcapem2l | 450001754

(continues on next page)

11.6. Statistics 297

https://redmine.openinfosecfoundation.org/issues/2725
https://redmine.openinfosecfoundation.org/issues/2725

Suricata User Guide, Release 8.0.0

(continued from previous page)

decoder.raw | RxPcapem21l | ®
decoder.sll | RxPcapem21 | 0
decoder. tcp | RxPcapem21l | 448124337
decoder.udp | RxPcapem21 | 542040
decoder.sctp | RxPcapem21 | 0
decoder.icmpv4 | RxPcapem21l | 82292
decoder.icmpv6é | RxPcapem2l | 9164
decoder. ppp | RxPcapem21 | ®
decoder . pppoe | RxPcapem21 | ®
decoder.gre | RxPcapem21 | ®
decoder.vlan | RxPcapem21 | 0
decoder.avg_pkt_size | RxPcapem2l | 910
decoder.max_pkt_size | RxPcapem2l | 1514
defrag.ipv4.fragments | RxPcapem21 | 4
defrag.ipv4.reassembled | RxPcapem21 | 1
defrag.ipv4.timeouts | RxPcapem21 | 0
defrag.ipv6.fragments | RxPcapem21l |
defrag.ipv6.reassembled | RxPcapem21 | ®
defrag.ipv6.timeouts | RxPcapem21 | ®
tcp.sessions | Detect | 41184
tcp. ssn_memcap_drop | Detect | ®
tcp.pseudo | Detect | 2087
tcp.invalid_checksum | Detect | 8358
tcp.no_flow | Detect |
tcp.reused_ssn | Detect | 11
tcp.memuse | Detect | 36175872
tcp.syn | Detect | 85902
tcp.synack | Detect | 83385
tcp.rst | Detect | 84326
tcp. segment_memcap_drop | Detect | ®
tcp.stream_depth_reached | Detect | 109
tcp.reassembly_memuse | Detect | 67755264
tcp.reassembly_gap | Detect | 789
detect.alert | Detect | 14721

Detecting packet loss

At shut down, Suricata reports the packet loss statistics it gets from pcap, pfring or afpacket

[18088] 30/5/2012 -- 07:39:18 - (RxPcapem21) Packets 451595939, bytes 410869083410
[18088] 30/5/2012 -- 07:39:18 - (RxPcapem21) Pcap Total:451674222 Recv:451596129.
—Drop:78093 (0.0%).

Usually, this is not the complete story though. These are kernel drop stats, but the NIC may also have dropped packets.
Use ethtool to get to those:

ethtool -S em2

NIC statistics:
rx_packets: 35430208463
tx_packets: 216072
rx_bytes: 32454370137414

(continues on next page)

298 Chapter 11. Performance

Suricata User Guide, Release 8.0.0

(continued from previous page)

tx_bytes: 53624450
rx_broadcast: 17424355
tx_broadcast: 133508
rx_multicast: 5332175
tx_multicast: 82564
rx_errors: 47

tx_errors: 0

tx_dropped: 0O

multicast: 5332175
collisions: O
rx_length_errors: 0
rx_over_errors: 0
rx_crc_errors: 51
rx_frame_errors: 0
rx_no_buffer_count: 0
rx_missed_errors: 0
tx_aborted_errors: 0
tx_carrier_errors: 0
tx_fifo_errors: 0
tx_heartbeat_errors: 0
tx_window_errors: 0
tx_abort_late_coll: ©
tx_deferred_ok: 0
tx_single_coll_ok: ®
tx_multi_coll_ok: ©
tx_timeout_count: 0
tx_restart_queue: 0
rx_long_length_errors: 0
rx_short_length_errors: 0
rx_align_errors: 0
tx_tcp_seg_good: 0
tx_tcp_seg_failed: ©®
rx_flow_control_xon: 0
rx_flow_control_xoff: 0
tx_flow_control_xon: 0
tx_flow_control_xoff: 0O
rx_long_byte_count: 32454370137414
rx_csum_offload_good: 35270755306
rx_csum_offload_errors: 65076
alloc_rx_buff_failed: O
tx_smbus: 0

rx_smbus: 0
dropped_smbus: 0

11.6. Statistics 299

Suricata User Guide, Release 8.0.0

11.6.2 Kernel drops
stats.log contains interesting information in the capture.kernel_packets and capture.kernel_drops. The meaning of them
is different following the capture mode.
In AF_PACKET mode:
* kernel_packets is the number of packets correctly sent to userspace
* kernel_drops is the number of packets that have been discarded instead of being sent to userspace
In PF_RING mode:
* kernel_packets is the total number of packets seen by pf_ring
* kernel_drops is the number of packets that have been discarded instead of being sent to userspace

In the Suricata stats.log the TCP data gap counter is also an indicator, as it accounts missing data packets in TCP
streams:

tcp.reassembly_gap | Detect | 789

Ideally, this number is 0. Not only pkt loss affects it though, also bad checksums and stream engine running out of
memory.

11.6.3 Tools to plot graphs

Some people made nice tools to plot graphs of the statistics file.
¢ ipython and matplotlib script
* Monitoring with Zabbix or other and Code on GitHub

11.7 Ignoring Traffic

In some cases there are reasons to ignore certain traffic. Certain hosts may be trusted, or perhaps a backup stream
should be ignored.

11.7.1 Capture Filters (BPF)

Through BPFs the capture methods pcap, af-packet, netmap and pf_ring can be told what to send to Suricata, and what
not. For example a simple filter 'tcp’ will only capture tcp packets.

If some hosts and or nets need to be ignored, use something like "not (host IP1 or IP2 or IP3 or net NET/24)".

Example:

not host 1.2.3.4

Capture filters are specified on the command-line after all other options:

suricata -i eth® -v not host 1.2.3.4
suricata -i enol -c suricata.yaml tcp or udp

Capture filters can be set per interface in the pcap, af-packet, netmap and pf_ring sections. It can also be put in a file:

300 Chapter 11. Performance

https://github.com/regit/suri-stats
http://christophe.vandeplas.com/2013/11/suricata-monitoring-with-zabbix-or-other.html
https://github.com/cvandeplas/suricata_stats

Suricata User Guide, Release 8.0.0

echo "not host 1.2.3.4" > capture-filter.bpf
suricata -i ens5f0® -F capture-filter.bpf

Using a capture filter limits what traffic Suricata processes. So the traffic not seen by Suricata will not be inspected,
logged or otherwise recorded.

BPF and IPS

In case of IPS modes using af-packet and netmap, BPFs affect how traffic is forwarded. If a capture NIC does not
capture a packet because of a BPF, it will also not be forwarded to the peering NIC.

So in the example of not host 1.2.3.4, traffic to and from the IP 1.2.3.4 is effectively dropped.

11.7.2 pass rules

Pass rules are Suricata rules that if matching, pass the packet and in case of TCP the rest of the flow. They look like
normal rules, except that instead of alert or drop they use pass as the action.

Example:

pass ip 1.2.3.4 any <> any any (msg:'"pass all traffic from/to 1.2.3.4"; sid:1;)

A big difference with capture filters is that logs such as Eve or http.log are still generated for this traffic.

11.7.3 suppress

Suppress rules can be used to make sure no alerts are generated for a host. This is not efficient however, as the sup-
pression is only considered post-matching. In other words, Suricata first inspects a rule, and only then will it consider
per-host suppressions.

Example:

suppress gen_id 0, sig_id 0, track by_src, ip 1.2.3.4

11.7.4 Encrypted Traffic

The TLS and SSH app layer parsers have the ability to stop processing encrypted traffic after the initial handshake.
By setting the app-layer.protocols.tls.encryption-handling and app-layer.protocols.ssh.encryption-handling options to
bypass Suricata bypasses flows once the handshake is completed and encrypted traffic is detected. The rest of the flow
is ignored. The bypass is done in the kernel or in hardware, similar to how flow bypass is done.

11.7.5 Bypassing Traffic

Aside from using the bypass keyword in rules, there are three other ways to bypass traffic.

¢ Within suricata (local bypass). Suricata reads a packet, decodes it, checks it in the flow table. If the corresponding
flow is local bypassed then it simply skips all streaming, detection and output and the packet goes directly out in
IDS mode and to verdict in IPS mode.

11.7. Ignoring Traffic 301

Suricata User Guide, Release 8.0.0

* Within the kernel (capture bypass). When Suricata decides to bypass it calls a function provided by the cap-
ture method to declare the bypass in the capture. For NFQ this is a simple mark that will be used by the ipt-
ables/nftablesruleset. For AF_PACKET this will be a call to add an element in an eBPF hash table stored in
kernel.

* Within the NIC driver. This method relies upon XDP, XDP can process the traffic prior to reaching the kernel.
Additional bypass documentation:

https://suricon.net/wp-content/uploads/2017/12/SuriCon17-Manev_Purzynski.pdf https://www.stamus-networks.
com/2016/09/28/suricata-bypass-feature/

11.8 Packet Profiling

In this guide will be explained how to enable packet profiling and use it with the most recent code of Suricata on
Ubuntu. It is based on the assumption that you have already installed Suricata once from the GIT repository.

Packet profiling is convenient in case you would like to know how long packets take to be processed. It is a way to figure
out why certain packets are being processed quicker than others, and this way a good tool for developing Suricata.

Update Suricata by following the steps from Installation from GIT. Start at the end at

cd suricata/suricata
git pull

And follow the described next steps. To enable packet profiling, make sure you enter the following during the config-
uring stage:

./configure --enable-profiling

Find a folder in which you have pcaps. If you do not have pcaps yet, you can get these with Wireshark. See Sniffing
Packets with Wireshark.

Go to the directory of your pcaps. For example:

cd ~/Desktop

With the Is command you can see the content of the folder. Choose a folder and a pcap file

for example:

cd ~/Desktop/2011-05-05

Run Suricata with that pcap:

suricata -c /etc/suricata/suricata.yaml -r log.pcap.(followed by the number/name of your.
—pcap)

for example:

suricata -c /etc/suricata/suricata.yaml -r log.pcap.1304589204

302 Chapter 11. Performance

https://suricon.net/wp-content/uploads/2017/12/SuriCon17-Manev_Purzynski.pdf
https://www.stamus-networks.com/2016/09/28/suricata-bypass-feature/
https://www.stamus-networks.com/2016/09/28/suricata-bypass-feature/
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Sniffing_Packets_with_Wireshark
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Sniffing_Packets_with_Wireshark

Suricata User Guide, Release 8.0.0

11.9 Rule Profiling

Suricata can generate a rules performance report at the end of each session, if built with the enable-profiling option
(see configuring Rule profiling). With that option, the engine will also generate profiling data for other engine modules,
such as packet processing.

Rule profiling can also be enabled by building the engine with enable-profiling -rules and using the unix socket
to dump the report (see Rules Profiling). This will enable profiling of rules' statistics only.

Once the report is generated, it is stored in the default log directory used by Suricata. If not changed, the filename will
be rule_perf.log.

A Rules Profile report looks like this:

Num Rule Gid Rev Ticks % Checks Matches Max Ticks.
< Avg Ticks Avg Match Avg No Match

1 2210021 1 3 12037 4.96 1 1 12037 o
— 12037.00 12037.00 0.00

2 2210054 1 1 107479 44.26 12 0 35805 o
— 8956.58 0.00 8956.58

3 2210053 1 1 4513 1.86 1 0 4513 o
— 4513.00 0.00 4513.00

4 2210023 1 1 3077 1.27 1 0 3077 o
— 3077.00 0.00 3077.00

5 2210008 1 1 3028 1.25 1 0 3028 o
— 3028.00 0.00 3028.00

6 2210009 1 1 2945 1.21 1 0 2945 o
— 2945.00 0.00 2945.00

7 2210055 1 1 2945 1.21 1 0 2945 o
— 2945.00 0.00 2945.00

8 2210007 1 1 2871 1.18 1 0 2871 o
— 2871.00 0.00 2871.00

9 2210005 1 1 2871 1.18 1 0 2871 o
— 2871.00 0.00 2871.00

10 2210024 1 1 2846 1.17 1 0 2846 o
— 2846.00 0.00 2846.00

The meaning of the individual fields:
* Ticks -- total ticks spent on this rule, so a sum of all inspections.
* Y% -- share of this single signature in the total cost of inspection.
¢ Checks -- number of times a signature was inspected.

* Matches -- number of times it matched. This may not have resulted in an alert due to suppression and threshold-
ing.
* Max ticks -- single most expensive inspection.

* Avg ticks -- per inspection average, so "ticks" / "checks".

* Avg match -- avg ticks spent resulting in match.

11.9. Rule Profiling 303

Suricata User Guide, Release 8.0.0

* Avg No Match -- avg ticks spent resulting in no match.

The "ticks" are CPU clock ticks: http://en.wikipedia.org/wiki/CPU_time

11.10 Tcmalloc

'tcmalloc' is a library Google created as part of the google-perftools suite for improving memory handling in a threaded
program. It's very simple to use and does work fine with Suricata. It leads to minor speed ups and also reduces memory
usage quite a bit.

11.10.1 Installation

On Ubuntu, install the libtcmalloc-minimal4 package:

apt-get install libtcmalloc-minimal4

On Fedora, install the gperftools-libs package:

yum install gperftools-libs

11.10.2 Usage

Use the tcmalloc by preloading it:
Ubuntu:

LD_PRELOAD="/usr/lib/x86_64-1inux-gnu/libtcmalloc_minimal.so0.4" suricata -c suricata.
—yaml -i eth®

Fedora:

LD_PRELOAD="/usr/1ib64/libtcmalloc_minimal.so.4" suricata -c suricata.yaml -i eth®

11.11 Performance Analysis

There are many potential causes for performance issues. In this section we will guide you through some options. The
first part will cover basic steps and introduce some helpful tools. The second part will cover more in-depth explanations
and corner cases.

11.11.1 System Load

The first step should be to check the system load. Run a top tool like htop to get an overview of the system load and if
there is a bottleneck with the traffic distribution. For example if you can see that only a small number of cpu cores hit
100% all the time and others don't, it could be related to a bad traffic distribution or elephant flows like in the screenshot
where one core peaks due to one big elephant flow.

304 Chapter 11. Performance

http://en.wikipedia.org/wiki/CPU_time

Suricata User Guide, Release 8.0.0

FID USER TIME+ Command
45 telegraf 1 0 . 4:52.82 =

If all cores are at peak load the system might be too slow for the traffic load or it might be misconfigured. Also keep an
eye on memory usage, if the actual memory usage is too high and the system needs to swap it will result in very poor
performance.

The load will give you a first indication where to start with the debugging at specific parts we describe in more detail
in the second part.

11.11.2 Lodgfiles

The next step would be to check all the log files with a focus on stats.log and suricata.log if any obvious issues are
seen. The most obvious indicator is the capture.kernel_drops value that ideally would not even show up but should be
below 1% of the capture.kernel_packets value as high drop rates could lead to a reduced amount of events and alerts.

If memcap is seen in the stats the memcap values in the configuration could be increased. This can result to higher
memory usage and should be taken into account when the settings are changed.

Don't forget to check any system logs as well, even a dmesg run can show potential issues.

11.11.3 Suricata Load

Besides the system load, another indicator for potential performance issues is the load of Suricata itself. A helpful tool
for that is perf which helps to spot performance issues. Make sure you have it installed and also the debug symbols
installed for Suricata or the output won't be very helpful. This output is also helpful when you report performance
issues as the Suricata Development team can narrow down possible issues with that.

sudo perf top -p $(pidof suricata)

If you see specific function calls at the top in red it's a hint that those are the bottlenecks. For example if you see IPOn-
lyMatchPacket it can be either a result of high drop rates or incomplete flows which result in decreased performance.
To look into the performance issues on a specific thread you can pass -t TID to perf top. In other cases you can see
functions that give you a hint that a specific protocol parser is used a lot and can either try to debug a performance bug
or try to filter related traffic.

11.11. Performance Analysis 305

Suricata User Guide, Release 8.0.0

o

L
]
-]
]
]
-]
]
-]
:]
]
-]
]
-]
:]
]
-]
:]
-]
]
]
-]
:]
-]
]
]
.]
]
]
]
]
-]
]
]
1
]
-]
]
]
1
]
-]
]
]
.]
]
.]
]
]
-]
]
-]

In general try to play around with the different configuration options that Suricata does provide with a focus on the
options described in High Performance Configuration.

306 Chapter 11. Performance

Suricata User Guide, Release 8.0.0

11.11.4 Traffic

In most cases where the hardware is fast enough to handle the traffic but the drop rate is still high it's related to specific
traffic issues.

Basics

Some of the basic checks are:

¢ Check if the traffic is bidirectional, if it's mostly unidirectional you're missing relevant parts of the flow (see
tshark example at the bottom). Another indicator could be a big discrepancy between SYN and SYN-ACK as
well as RST counter in the Suricata stats.

* Check for encapsulated traffic, while GRE, MPLS etc. are supported they could also lead to performance issues.
Especially if there are several layers of encapsulation.

 Use tools like iftop to spot elephant flows. Flows that have a rate of over 1Gbit/s for a long time can result in one
cpu core peak at 100% all the time and increasing the droprate while it might not make sense to dig deep into
this traffic.

* Another approach to narrow down issues is the usage of bpf filter. For example filter all HTTPS traffic with not
port 443 to exclude traffic that might be problematic or just look into one specific port port 25 if you expect
some issues with a specific protocol. See /gnoring Traffic for more details.

e If VLAN is used it might help to disable vlan.use-for-tracking in scenarios where only one direction of the flow
has the VLAN tag.

Advanced

There are several advanced steps and corner cases when it comes to a deep dive into the traffic.

If VLAN QinQ (IEEE 802.1ad) is used be very cautious if you use cluster_gm in combination with Intel drivers and
AF_PACKET runmode. While the RFC expects ethertype 0x8100 and 0x88A8 in this case (see https://en.wikipedia.
org/wiki/IEEE_802.1ad) most implementations only add 0x8100 on each layer. If the first seen layer has the same
VLAN tag but the inner one has different VLAN tags it will still end up in the same queue in cluster_gm mode. This
was observed with the i40e driver up to 2.8.20 and the firmware version up to 7.00, feel free to report if newer versions
have fixed this (see https://suricata.io/support/).

If you want to use tshark to get an overview of the traffic direction use this command:

sudo tshark -i $INTERFACE -q -z conv,ip -a duration:10

The output will show you all flows within 10s and if you see O for one direction you have unidirectional traffic, thus
you don't see the ACK packets for example. Since Suricata is trying to work on flows this will have a rather big impact
on the visibility. Focus on fixing the unidirectional traffic. If it's not possible at all you can enable async-oneside in
the stream configuration setting.

Check for other unusual or complex protocols that aren't supported very well. You can try to filter those to see if it has
any impact on the performance. In this example we filter Cisco Fabric Path (ethertype 0x8903) with the bpf filter not
ether proto 0x8903 as it's assumed to be a performance issue (see https://redmine.openinfosecfoundation.org/issues/
3637)

11.11. Performance Analysis 307

https://en.wikipedia.org/wiki/IEEE_802.1ad
https://en.wikipedia.org/wiki/IEEE_802.1ad
https://suricata.io/support/
https://redmine.openinfosecfoundation.org/issues/3637
https://redmine.openinfosecfoundation.org/issues/3637

Suricata User Guide, Release 8.0.0

Elephant Flows

The so called Elephant Flows or traffic spikes are quite difficult to deal with. In most cases those are big file transfers
or backup traffic and it's not feasible to decode the whole traffic. From a network security monitoring perspective it's
often enough to log the metadata of that flow and do a packet inspection at the beginning but not the whole flow.

If you can spot specific flows as described above then try to filter those. The easiest solution would be a bpf filter but
that would still result in a performance impact. Ideally you can filter such traffic even sooner on driver or NIC level (see
eBPF/XDP) or even before it reaches the system where Suricata is running. Some commercial packet broker support
such filtering where it's called Flow Shunting or Flow Slicing.

11.11.5 Rules

The Ruleset plays an important role in the detection but also in the performance capability of Suricata. Thus it's
recommended to look into the impact of enabled rules as well.

If you run into performance issues and struggle to narrow it down start with running Suricata without any rules enabled
and use the tools again that have been explained at the first part. Keep in mind that even without signatures enabled
Suricata still does most of the decoding and traffic analysis, so a fair amount of load should still be seen. If the load
is still very high and drops are seen and the hardware should be capable to deal with such traffic loads you should
deep dive if there is any specific traffic issue (see above) or report the performance issue so it can be investigated (see
https://suricata.io/join-our-community/).

Suricata also provides several specific traffic related signatures in the rules folder that could be enabled for testing to spot
specific traffic issues. Those are found the rules and you should start with decoder-events.rules, stream-events.rules
and app-layer-events.rules.

It can also be helpful to use Rule Profiling and/or Packet Profiling to find problematic rules or traffic pattern. This is
achieved by compiling Suricata with --enable-profiling but keep in mind that this has an impact on performance and
should only be used for troubleshooting.

308 Chapter 11. Performance

https://suricata.io/join-our-community/

CHAPTER
TWELVE

CONFIGURATION

12.1 Suricata.yaml

Suricata uses the Yaml format for configuration. The Suricata.yaml file included in the source code, is the example
configuration of Suricata. This document will explain each option.

At the top of the YAML-file you will find % YAML 1.1. Suricata reads the file and identifies the file as YAML.

12.1.1 Max-pending-packets

With the max-pending-packets setting you can set the number of packets you allow Suricata to process simultaneously.
This can range from one packet to tens of thousands/hundreds of thousands of packets. It is a trade of higher perfor-
mance and the use of more memory (RAM), or lower performance and less use of memory. A high number of packets
being processed results in a higher performance and the use of more memory. A low number of packets, results in
lower performance and less use of memory. Choosing a low number of packets being processed while having many
CPU's/CPU cores, can result in not making use of the whole computer-capacity. (For instance: using one core while
having three waiting for processing packets.)

max-pending-packets: 1024

12.1.2 Runmodes

By default the runmode option is disabled. With the runmodes setting you can set the runmode you would like to use.
For all runmodes available, enter --list-runmodes in your command line. For more information, see Runmodes.

runmode: autofp

12.1.3 Default-packet-size

For the max-pending-packets option, Suricata has to keep packets in memory. With the default-packet-size option, you
can set the size of the packets on your network. It is possible that bigger packets have to be processed sometimes. The
engine can still process these bigger packets, but processing it will lower the performance.

default-packet-size: 1514

309

Suricata User Guide, Release 8.0.0

12.1.4 User and group

It is possible to set the user and group to run Suricata as:

run-as:
user: suri
group: suri

12.1.5 PID File

This option sets the name of the PID file when Suricata is run in daemon mode. This file records the Suricata process
ID.

pid-file: /var/run/suricata.pid

Note: This configuration file option only sets the PID file when running in daemon mode. To force creation of a PID
file when not running in daemon mode, use the --pidfile command line option.

Also, if running more than one Suricata process, each process will need to specify a different pid-file location.

12.1.6 Action-order

All signatures have different properties. One of those is the Action property. This one determines what will happen
when a signature matches. There are four types of Action. A summary of what will happen when a signature matches
and contains one of those Actions:

1) Pass

If a signature matches and contains pass, Suricata stops scanning the packet and skips to the end of all rules (only for
the current packet). If the signature matches on a TCP connection, the entire flow will be passed but details of the flow
will still be logged.

2) Drop

This only concerns the IPS/inline mode. If the program finds a signature that matches, containing drop, it stops imme-
diately. The packet will not be sent any further. Drawback: The receiver does not receive a message of what is going
on, resulting in a time-out (certainly with TCP). Suricata generates an alert for this packet.

3) Reject

This is an active rejection of the packet. Both receiver and sender receive a reject packet. There are two types of reject
packets that will be automatically selected. If the offending packet concerns TCP, it will be a Reset-packet. For all other
protocols it will be an ICMP-error packet. Suricata also generates an alert. When in Inline/IPS mode, the offending
packet will also be dropped like with the 'drop' action.

4) Alert

If a signature matches and contains alert, the packet will be treated like any other non-threatening packet, except for
this one an alert will be generated by Suricata. Only the system administrator can notice this alert.

Inline/IPS can block network traffic in two ways. One way is by drop and the other by reject.

Rules will be loaded in the order of which they appear in files. But they will be processed in a different order. Signatures
have different priorities. The most important signatures will be scanned first. There is a possibility to change the order
of priority. The default order is: pass, drop, reject, alert.

310 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

action-order:
- pass
- drop
- reject
- alert

This means a pass rule is considered before a drop rule, a drop rule before a reject rule and so on.

12.1.7 Packet alert queue settings

It is possible to configure the size of the alerts queue that is used to append alerts triggered by each packet.

This will influence how many alerts would be perceived to have matched against a given packet. The default value is
15. If an invalid setting or no value is provided, the engine will fall back to the default.

#Define maximum number of possible alerts that can be triggered for the same
packet. Default is 15
packet-alert-max: 15

We recommend that you use the default value for this setting unless you are seeing a high number of discarded alerts
(alert_queue_overflow) - see the Discarded and Suppressed Alerts Stats section for more details.

Impact on engine behavior

Internally, the Suricata engine represents each packet with a data structure that has its own alert queue. The max size
of the queue is defined by packet-alert-max. The same rule can be triggered by the same packet multiple times. As
long as there is still space in the alert queue, those are appended.

Rules that have the noalert keyword will be checked - in case their signatures have actions that must be applied to the
Packet or Flow, then suppressed. They have no effect in the final alert queue.

Rules are queued by priority: higher priority rules may be kept instead of lower priority ones that may have been
triggered earlier, if Suricata reaches packet-alert-max for a given packet (a.k.a. packet alert queue overflow).

Packet alert queue overflow

Once the alert queue reaches its max size, we are potentially at packet alert queue overflow, so new alerts will only be
appended in case their rules have a higher priority id (this is the internal id attributed by the engine, not the signature
id).

This may happen in two different situations:
* ahigher priority rule is triggered after a lower priority one: the lower priority rule is replaced in the queue;

* alower priority rule is triggered: the rule is just discarded.

Note: This behavior does not mean that triggered drop rules would have their action ignored, in IPS mode.

12.1. Suricata.yaml 311

Suricata User Guide, Release 8.0.0

Discarded and Suppressed Alerts Stats

Both scenarios previously described will be logged as detect.alert_queue_overflow in the stats logs (in stats.log and
eve-log's stats event).

When noalert rules match, they appear in the stats logs as detect.alerts_suppressed.

Date: 4/6/2022 -- 17:18:08 (uptime: 0d, 00h 00m 00s)

Counter | TM Name | Value
detect.alert | Total | 3
detect.alert_queue_overflow | Total | 4
detect.alerts_suppressed | Total | 1

In this example from a stats.log, we read that § alerts were generated: 3 were kept in the packet queue while 4 were
discarded due to packets having reached max size for the alert queue, and 1 was suppressed due to coming from a
noalert rule.

12.1.8 Splitting configuration in multiple files

Some users might have a need or a wish to split their suricata.yaml file into separate files, this is available via the
'include’ and 'linclude' keyword. The first example is of taking the contents of the outputs section and storing them in
outputs.yaml.

outputs.yaml

- fast
enabled: yes
filename: fast.log
append: yes

suricata.yaml

outputs: !include outputs.yaml

The second scenario is where multiple sections are migrated to a different YAML file.

host_1.yaml
max-pending-packets: 2048

outputs:
- fast
enabled: yes
filename: fast.log
append: yes

312 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

suricata.yaml

include: host_1.yaml

If the same section, say outputs is later redefined after the include statement it will overwrite the included file. Therefore
any include statement at the end of the document will overwrite the already configured sections.

12.1.9 Event output

Default logging directory

In the /var/log/suricata directory, all of Suricata's output (alerts and events) will be stored.

default-log-dir: /var/log/suricata

This directory can be overridden by entering the -1 command line parameter or by changing the directory directly in
Yaml. To change it with the -1 command line parameter, enter the following:

suricata -c suricata.yaml -i eth® -1 /var/log/suricata-logs/

Stats

Engine statistics such as packet counters, memory use counters and others can be logged in several ways. A separate
text log 'stats.log' and an EVE record type 'stats' are enabled by default.

The stats have a global configuration and a per logger configuration. Here the global config is documented.

global stats configuration
stats:
enabled: yes
The interval field (in seconds) controls at what interval
the loggers are invoked.
interval: 8
Add decode events as stats.
#decoder-events: true
Decoder event prefix in stats. Has been 'decoder' before, but that leads
to missing events in the eve.stats records. See issue #2225.
#decoder-events-prefix: "decoder.event"
Add stream events as stats.
#stream-events: false
Exception policy stats counters options
(Note: if exception policy: ignore, counters are not logged)
exception-policy:
#per-app-proto-errors: false # default: false. True will log errors for
each app-proto. Warning: VERY verbose

Statistics can be enabled or disabled here.

Statistics are dumped on an inferval. Setting this below 3 or 4 seconds is not useful due to how threads are synchronized
internally.

12.1. Suricata.yaml 313

Suricata User Guide, Release 8.0.0

The decoder events that the decoding layer generates, can create a counter per event type. This behaviour is enabled by
default. The decoder-events option can be set to false to disable.

In 4.1.x there was a naming clash between the regular decoder counters and the decoder-event counters. This lead to
a fair amount of decoder-event counters not being shown in the EVE.stats records. To address this without breaking
existing setups, a config option decoder-events-prefix was added to change the naming of the decoder-events from
decoder.<proto>.<event> to decoder.event.<proto>.<event>. In 5.0 this became the default. See issue 2225.

Similar to the decoder-events option, the stream-events option controls whether the stream-events are added as counters
as well. This is disabled by default.

If any exception policy is enabled, stats counters are logged. To control verbosity for application layer protocol errors,
leave per-app-proto-errors as false.

Outputs

There are several types of output. The general structure is:

outputs:
- fast:
enabled: yes
filename: fast.log
append: yes/no

Enabling all of the logs, will result in a much lower performance and the use of more disc space, so enable only the
outputs you need.

Line based alerts log (fast.log)

This log contains alerts consisting of a single line. Example of the appearance of a single fast.log-file line:

10/05/10-10:08:59.667372 [**] [1:2009187:4] ET WEB_CLIENT ACTIVEX iDefense
COMRaider ActiveX Control Arbitrary File Deletion [**] [Classification: Web
Application Attack] [Priority: 3] {TCP} xx.xx.232.144:80 -> 192.168.1.4:56068

-fast: #The log-name.
enabled:yes #This log is enabled. Set to 'mo' to disable.
filename: fast.log #The name of the file in the default logging directory.
append: yes/no #If this option is set to yes, the last filled fast.log-file.

—will not be
#overwritten while restarting Suricata.

Eve (Extensible Event Format)

This is an JSON output for alerts and events. It allows for easy integration with 3rd party tools like logstash.

outputs:
Extensible Event Format (nicknamed EVE) event log in JSON format
- eve-log:
enabled: yes
filetype: regular #regular|syslog|unix_dgram|unix_stream|redis
filename: eve.json

(continues on next page)

314 Chapter 12. Configuration

https://redmine.openinfosecfoundation.org/issues/2225

Suricata User Guide, Release 8.0.0

(continued from previous page)

Enable for multi-threaded eve.json output; output files are amended with

an identifier, e.g., eve.9.json

#threaded: false

Specify the amount of buffering, in bytes, for

this output type. The default value 0 means "no

buffering".

#buffer-size: 0

#prefix: "@cee: " # prefix to prepend to each log entry

the following are valid when type: syslog above

#identity: "suricata"

#facility: locals

#level: Info ## possible levels: Emergency, Alert, Critical,

Error, Warning, Notice, Info, Debug

#ethernet: no # log ethernet header in events when available

#redis:

server: 127.0.0.1

port: 6379

async: true ## if redis replies are read asynchronously

mode: list ## possible values: list|lpush (default), rpush, channel|publish,..
—xadd|stream

lpush and rpush are using a Redis list. "list" is an alias for.
— 1push

publish is using a Redis channel. "channel" is an alias for.
—publish

xadd is using a Redis stream. "stream" is an alias for xadd

key: suricata ## string denoting the key/channel/stream to use (default to.
—suricata)
stream-maxlen: 100000 ## Automatically trims the stream length to at most
this number of events. Set to 0 to disable.
—trimming.
Only used when mode is set to xadd/stream.
stream-trim-exact: false ## Trim exactly to the maximum stream length above.
Default: use inexact trimming (inexact by a few
tens of items)
Only used when mode is set to xadd/stream.
Redis pipelining set up. This will enable to only do a query every
'batch-size' events. This should lower the latency induced by network
connection at the cost of some memory. There is no flushing implemented
so this setting should be reserved to high traffic Suricata deployments.
pipelining:
enabled: yes ## set enable to yes to enable query pipelining
batch-size: 10 ## number of entries to keep in buffer

oW W R W% W R

Include top level metadata. Default yes.
#metadata: no

include the name of the input pcap file in pcap file processing mode
pcap-file: false

Community Flow ID
Adds a 'community-id' field to EVE records. These are meant to give
records a predictable flow ID that can be used to match records to

(continues on next page)

12.1. Suricata.yaml 315

Suricata User Guide, Release 8.0.0

(continued from previous page)

output of other tools such as Zeek (Bro).

#

Takes a 'seed' that needs to be same across sensors and tools
to make the id less predictable.

enable/disable the community id feature.

community-id: false

Seed value for the ID output. Valid values are 0-65535.
community-id-seed: 0

HTTP X-Forwarded-For support by adding an extra field or overwriting
the source or destination IP address (depending on flow direction)
with the one reported in the X-Forwarded-For HTTP header. This is
helpful when reviewing alerts for traffic that is being reverse
or forward proxied.
xff:
enabled: no
Two operation modes are available: "extra-data" and "overwrite".
mode: extra-data
Two proxy deployments are supported: "reverse" and "forward". In
a "reverse" deployment the IP address used is the last one, in a
"forward" deployment the first IP address is used.
deployment: reverse
Header name where the actual IP address will be reported. If more
than one IP address is present, the last IP address will be the
one taken into consideration.
header: X-Forwarded-For

types:
- alert:
payload: yes # enable dumping payload in Base64
payload-buffer-size: 4kb # max size of payload buffer to output in eve-log
payload-printable: yes # enable dumping payload in printable (lossy).

- format

payload-length: yes # enable dumping payload length, including the.
—gaps

packet: yes # enable dumping of packet (without stream.
—.segments)

metadata: no # enable inclusion of app layer metadata with.,
—alert. Default yes

If you want metadata, use:
metadata:
Include the decoded application layer (ie. http, dns)
#app-layer: true
Log the current state of the flow record.
#flow: true
#rule:
Log the metadata field from the rule in a structured
format.
#metadata: true
Log the raw rule text.
#raw: false

(continues on next page)

316

Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

(continued from previous page)

#reference: false # include reference information from the rule

http-body: yes # Requires metadata; enable dumping of HTTP body.
—1in Base64

http-body-printable: yes # Requires metadata; enable dumping of HTTP body.
—1n printable format

websocket-payload: yes # Requires metadata; enable dumping of WebSocket.
—Payload in Base64

websocket-payload-printable: yes # Requires metadata; enable dumping of.
—.WebSocket Payload in printable format

Enable the logging of tagged packets for rules using the
"tag" keyword.
tagged-packets: yes
Enable logging the final action taken on a packet by the engine
(e.g: the alert may have action 'allowed' but the verdict be
'drop' due to another alert. That's the engine's verdict)
verdict: yes
app layer frames
- frame:
disabled by default as this is very verbose.
enabled: no
payload-buffer-size: 4kb # max size of frame payload buffer to output in,
—eve-log
- anomaly:
Anomaly log records describe unexpected conditions such
as truncated packets, packets with invalid IP/UDP/TCP
length values, and other events that render the packet
invalid for further processing or describe unexpected
behavior on an established stream. Networks which
experience high occurrences of anomalies may experience
packet processing degradation.

Anomalies are reported for the following:

1. Decode: Values and conditions that are detected while
decoding individual packets. This includes invalid or
unexpected values for low-level protocol lengths as well
as stream related events (TCP 3-way handshake issues,
unexpected sequence number, etc).

2. Stream: This includes stream related events (TCP
3-way handshake issues, unexpected sequence number,
etc).

3. Application layer: These denote application layer
specific conditions that are unexpected, invalid or are
unexpected given the application monitoring state.

By default, anomaly logging is enabled. When anomaly

logging is enabled, applayer anomaly reporting is

also enabled.

enabled: yes

#

Choose one or more types of anomaly logging and whether to enable
logging of the packet header for packet anomalies.

R R R T T R T N N T S T R R

(continues on next page)

12.1. Suricata.yaml 317

Suricata User Guide, Release 8.0.0

(continued from previous page)

types:
decode: no
stream: no
applayer: yes
#packethdr: no
- http:
extended: yes # enable this for extended logging information
custom allows additional HTTP fields to be included in eve-log.
the example below adds three additional fields when uncommented
#custom: [Accept-Encoding, Accept-Language, Authorization]
set this value to one and only one from {both, request, response}
to dump all HTTP headers for every HTTP request and/or response
dump-all-headers: none
- dns:
This configuration uses the new DNS logging format,
the old configuration is still available:
https://docs.suricata.io/en/latest/output/eve/eve-json-output.html#dns-v1-
- format

As of Suricata 5.0, version 2 of the eve dns output
format is the default.
#version: 2

Enable/disable this logger. Default: enabled.
#enabled: yes

Control logging of requests and responses:

- requests: enable logging of DNS queries

- responses: enable logging of DNS answers

By default both requests and responses are logged.
#requests: no

#responses: no

Format of answer logging:

- detailed: array item per answer

- grouped: answers aggregated by type
Default: all

#formats: [detailed, grouped]

DNS record types to log, based on the query type.

Default: all.

#types: [a, aaaa, cname, mx, ns, ptr, txt]

- tls:

extended: yes # enable this for extended logging information

output TLS transaction where the session is resumed using a

session id

#session-resumption: no

custom controls which TLS fields that are included in eve-log

WARNING: enabling custom disables extended logging.

#custom: [subject, issuer, session_resumed, serial, fingerprint, sni,.
—version, not_before, not_after, certificate, chain, ja3, ja3s, ja4, subjectaltname,.
—client, client_certificate, client_chain, client_alpns, server_alpns]

(continues on next page)

318 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

(continued from previous page)

H R R R

files:
force-magic: no # force logging magic on all logged files
force logging of checksums, available hash functions are md5,
shal and sha256
#force-hash: [md5]

- drop:
alerts: yes # log alerts that caused drops
flows: all # start or all: 'start' logs only a single drop

per flow direction. All logs each dropped pkt.
Enable logging the final action taken on a packet by the engine
(will show more information in case of a drop caused by 'reject’)
verdict: yes
smtp:
#extended: yes # enable this for extended logging information
this includes: bcc, message-id, subject, x_mailer, user-agent
custom fields logging from the list:
reply-to, bcc, message-id, subject, x-mailer, user-agent, received,
x-originating-ip, in-reply-to, references, importance, priority,
sensitivity, organization, content-md5, date
#custom: [received, x-mailer, x-originating-ip, relays, reply-to, bcc]
output md5 of fields: body, subject
for the body you need to set app-layer.protocols.smtp.mime.body-md5
to yes
#md5: [body, subject]

- dnp3

websocket

ftp

ftp-data

rdp

nfs

smb

tftp

ike

dcerpc

krb5

bittorrent-dht

ssh

arp:
enabled: no

snmp

rfb

sip

quic

dhcp:
enabled: yes
When extended mode is on, all DHCP messages are logged
with full detail. When extended mode is off (the
default), just enough information to map a MAC address
to an IP address is logged.
extended: no

mgtt:

(continues on next page)

12.1. Suri

cata.yaml 319

Suricata User Guide, Release 8.0.0

(continued from previous page)

passwords: yes # enable output of passwords
string-log-limit: 1kb # limit size of logged strings in bytes.
Can be specified in kb, mb, gb. Just a number
is parsed as bytes. Default is 1KB.
Use a value of 0 to disable limiting.
Note that the size is also bounded by
the maximum parsed message size (see
app-layer configuration)
- http2
- pgsql:
enabled: no
passwords: yes # enable output of passwords. Disabled by default
- stats:
totals: yes # stats for all threads merged together
threads: no # per thread stats
deltas: no # include delta values

Don't log stats counters that are zero. Default: true
#null-values: false # False will NOT log stats counters: 0
bi-directional flows
- flow
uni-directional flows
#- netflow

Metadata event type. Triggered whenever a pktvar is saved
and will include the pktvars, flowvars, flowbits and

flowints.

#- metadata

EXPERIMENTAL per packet output giving TCP state tracking details
including internal state, flags, etc.

This output is experimental, meant for debugging and subject to
change in both config and output without any notice.

#- stream:

all: false # log all TCP packets

event-set: false # log packets that have a decoder/stream.,
—event

state-update: false # log packets triggering a TCP state update

spurious-retransmission: false # log spurious retransmission packets

#
heartbeat:

The output-flush-interval value governs how often Suricata will instruct the
detection threads to flush their EVE output. Specify the value in seconds [1-60]
and Suricata will initiate EVE log output flushes at that interval. A value

of 0 means no EVE log output flushes are initiated. When the EVE output
buffer-size value is non-zero, some EVE output that was written may remain
buffered. The output-flush-interval governs how much buffered data exists.

HHOoH W W W W W

The default value is: 0® (never instruct detection threads to flush output)
#output-flush-interval: 0

For more advanced configuration options, see Eve JSON Output.

The format is documented in Eve JSON Format.

320 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

TLS parameters and certificates logging (tls.log)

Attention: tls-log is deprecated in Suricata 8.0 and will be removed in Suricata 9.0.

The TLS handshake parameters can be logged in a line based log as well. By default, the logfile is /s.log in the suricata
log directory. See Custom TLS logging for details about the configuration and customization of the log format.

Furthermore there is an output module to store TLS certificate files to disk. This is similar to File-store (File Extraction),
but for TLS certificates.

Example:

output module to store certificates chain to disk
- tls-store:
enabled: yes
#certs-log-dir: certs # directory to store the certificates files

A line based log of HTTP requests (http.log)

Attention: http-log is deprecated in Suricata 8.0 and will be removed in Suricata 9.0.

This log keeps track of all HTTP-traffic events. It contains the HTTP request, hostname, URI and the User-Agent.
This information will be stored in the http.log (default name, in the suricata log directory). This logging can also be
performed through the use of the Eve-log capability.

Example of a HTTP-log line with non-extended logging:

07/01/2014-04:20:14.338309 vg.no [**] / [**] Mozilla/5.0 (Macintosh; Intel Mac 0S X 10_9_
;*,2)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.114 Safari/537.36 [**]
192.168.1.6:64685 -> 195.88.54.16:80

Example of a HTTP-log line with extended logging:

07/01/2014-04:21:06.994705 vg.no [**] / [**] Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_
‘*)2)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.114 Safari/537.36 [**] <no.
wreferer> [**]

GET [**] HTTP/1.1 [**] 301 => http://www.vg.no/ [**] 239 bytes [**] 192.168.1.6:64726 ->_
—195.88.54.16:80

- http-log: #The log-name.
enabled: yes #This log is enabled. Set 'no' to disable.
filename: http.log #The name of the file in the default logging directory.
append: yes/no #If this option is set to yes, the last filled http.log-

—file will not be
overwritten while restarting Suricata.
extended: yes # If set to yes more information is written about the,
—event.

12.1. Suricata.yaml 321

Suricata User Guide, Release 8.0.0

Packet log (pcap-log)

With the pcap-log option you can save all packets, that are registered by Suricata, in a log file named _log.pcap_.
This way, you can take a look at all packets whenever you want. In the normal mode a pcap file is created in the
default-log-dir. It can also be created elsewhere if a absolute path is set in the yaml-file.

The file that is saved in example the default-log-dir /var/log/suricata, can be be opened with every program which
supports the pcap file format. This can be Wireshark, TCPdump, Suricata, Snort and many others.

The pcap-log option can be enabled and disabled.

There is a size limit for the pcap-log file that can be set. The default limit is 32 MB. If the log-file reaches this limit,
the file will be rotated and a new one will be created. Remember that in the 'normal' mode, the file will be saved in
default-log-dir or in the absolute path (if set).

The pcap files can be compressed before being written to disk by setting the compression option to 1z4. Note: On
Windows, this option increases disk I/O instead of reducing it. When using 1z4 compression, you can enable checksums
using the 1z4-checksum option, and you can set the compression level 1z4-level to a value between 0 and 16, where
higher levels result in higher compression.

By default all packets are logged except:
* TCP streams beyond stream.reassembly.depth
* encrypted streams after the key exchange
e Ifabpf-filter is set, packets that don't match the filter will not be logged

It is possible to do conditional pcap logging by using the conditional option in the pcap-log section. By default the
variable is set to all so all packets are logged. If the variable is set to alerts then only the flow with alerts will be logged.
If the variable is set to fag then only packets tagged by signatures using the tag keyword will be logged to the pcap file.
Please note that if alerts or tag is used, then in the case of TCP session, Suricata will use available information from
the streaming engine to log data that have triggered the alert.

- pcap-log:
enabled: vyes
filename: log.pcap

Limit in MB.
limit: 32

mode: normal # "normal" or multi
conditional: alerts

A BPF filter that will be applied to all packets being

logged. If set, packets must match this filter otherwise they
will not be logged.

#bpf-filter:

In normal mode a pcap file "filename" is created in the default-log-dir or as specified by "dir". normal mode is
generally not as performant as multi mode.

In multi mode, multiple pcap files are created (per thread) which performs better than normal mode.
In multi mode the filename takes a few special variables:

* Y%n representing the thread number

* %i representing the thread id

* %t representing the timestamp (secs or secs.usecs based on 'ts-format')

322 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Example: filename: pcap.%n.%t

Note: Itis possible to use directories but the directories are not created by Suricata. For example filename: pcaps/
%n/log.%s will log into the pre-existing pcaps directory and per thread sub directories.

Note: that the limit and max-files settings are enforced per thread. So the size limit using 8 threads with 1000mb files
and 2000 files is about 16TiB.

Verbose Alerts Log (alert-debug.log)

This is a log type that gives supplementary information about an alert. It is particularly convenient for people who
investigate false positives and who write signatures. However, it lowers the performance because of the amount of
information it has to store.

- alert-debug: #The log-name.
enabled: no #This log is not enabled. Set 'yves' to enable.
filename: alert-debug.log #The name of the file in the default logging directory.
append: yes/no #If this option is set to yes, the last filled fast.log-

—file will not be
overwritten while restarting Suricata.

Stats

In stats you can set the options for stats.log. When enabling stats.log you can set the amount of time in seconds after
which you want the output-data to be written to the log file.

- stats:
enabled: yes #By default, the stats-option is enabled
filename: stats.log #The log-name. Combined with the default logging..
—directory

#(default-log-dir) it will result in /var/log/suricata/
-»Sstats.log.
#This directory can be overruled with a absolute path. (A
#directory starting with /).
append: yes/no #If this option is set to yes, the last filled fast.log-
—file will not be
#overwritten while restarting Suricata.

The interval and several other options depend on the global stats section as described above.

12.1. Suricata.yaml 323

Suricata User Guide, Release 8.0.0

Syslog

Attention: The syslog output is deprecated in Suricata 8.0 and will be removed in Suricata 9.0. Please migrate to
the eve output which has the ability to send to syslog.

With this option it is possible to send all alert and event output to syslog.

- syslog: #This is a output-module to direct log-output to several.,
—directions.

enabled: no #The use of this output-module is not enabled.

facility: local5 #In this option you can set a syslog facility.

level: Info #In this option you can set the level of output. The,

—possible levels are:
#Emergency, Alert, Critical, Error, Warning, Notice,.
—Info and Debug.

File-store (File Extraction)

The file-store output enables storing of extracted files to disk and configures where they are stored.

The following shows the configuration options for version 2 of the file-store output.

- file-store:
This configures version 2 of the file-store.
version: 2

enabled: no

Set the directory for the filestore. If the path is not
absolute will be be relative to the default-log-dir.
#dir: filestore

Write out a fileinfo record for each occurrence of a

file. Disabled by default as each occurrence is already logged
as a fileinfo record to the main eve-log.

#write-fileinfo: yes

Force storing of all files. Default: no.
#force-filestore: yes

Override the global stream-depth for sessions in which we want
to perform file extraction. Set to 0 for unlimited; otherwise,
must be greater than the global stream-depth value to be used.
#stream-depth: 0

Uncomment the following variable to define how many files can
remain open for filestore by Suricata. Default value is 0 which
means files get closed after each write

#max-open-files: 1000

Force logging of checksums, available hash functions are md5,

(continues on next page)

324 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

(continued from previous page)

shal and sha256. Note that SHA256 is automatically forced by
the use of this output module as it uses the SHA256 as the
file naming scheme.

#force-hash: [shal, md5]

12.1.10 Detection engine

Inspection configuration

The detection-engine builds internal groups of signatures. Suricata loads signatures, with which the network traffic will
be compared. The fact is, that many rules certainly will not be necessary. For instance, if there appears a packet with
the UDP-protocol, all signatures for the TCP-protocol won't be needed. For that reason, all signatures will be divided in
groups. However, a distribution containing many groups will make use of a lot of memory. Not every type of signature
gets its own group. There is a possibility that different signatures with several properties in common, will be placed
together in a group. The quantity of groups will determine the balance between memory and performance. A small
number of groups will lower the performance yet use little memory. The opposite counts for a higher amount of groups.
The engine allows you to manage the balance between memory and performance. To manage this, (by determining the
amount of groups) there are several general options: high for good performance and more use of memory, low for low
performance and little use of memory. The option medium is the balance between performance and memory usage.
This is the default setting. The option custom-values is for advanced users. This option has values which can be
managed by the user.

detect:
profile: medium
custom-values:
toclient-groups: 3
toserver-groups: 25
sgh-mpm-context: auto
inspection-recursion-limit: 3000
stream-tx-log-limit: 4
guess-applayer-tx: no
grouping:
tcp-priority-ports: 53, 80, 139, 443, 445, 1433, 3306, 3389, 6666, 6667, 8080
udp-priority-ports: 53, 135, 5060

At all of these options, you can add (or change) a value. Most signatures have the adjustment to focus on one direction,
meaning focusing exclusively on the server, or exclusively on the client.

If you take a look at example 4, the Detection-engine grouping tree, you see it has many branches. At the end of each
branch, there is actually a 'sig group head'. Within that sig group head there is a container which contains a list with
signatures that are significant for that specific group/that specific end of the branch. Also within the sig group head the
settings for Multi-Pattern-Matcher (MPM) can be found: the MPM-context.

As will be described again in Pattern matcher settings, there are several MPM-algorithms of which can be chosen from.
Because every sig group head has its own MPM-context, some algorithms use a lot of memory. For that reason there
is the option sgh-mpm-context to set whether the groups share one MPM-context, or to set that every group has its
own MPM-context.

For setting the option sgh-mpm-context, you can choose from auto, full or single. The default setting is 'auto’, meaning
Suricata selects full or single based on the algorithm you use. 'Full' means that every group has its own MPM-context,
and 'single' that all groups share one MPM-context. The algorithm "ac" uses a single MPM-context if the Sgh-MPM-
context setting is 'auto'. The rest of the algorithms use full in that case.

12.1. Suricata.yaml 325

Suricata User Guide, Release 8.0.0

The inspection-recursion-1limit option has to mitigate that possible bugs in Suricata cause big problems. Often
Suricata has to deal with complicated issues. It could end up in an 'endless loop' due to a bug, meaning it will repeat
its actions over and over again. With the option inspection-recursion-limit you can limit this action.

The stream-tx-log-limit defines the maximum number of times a transaction will get logged for rules without
app-layer keywords. This is meant to avoid logging the same data an arbitrary number of times.

The guess-applayer-tx option controls whether the engine will try to guess and tie a transaction to a given alert
if the matching signature doesn't have app-layer keywords. If enabled, AND ONLY ONE LIVE TRANSACTION
EXISTS, that transaction's data will be added to the alert metadata. Note that this may not be the expected data, from
an analyst's perspective.

The grouping option allows user to define the most seen ports on their network using tcp-priority-ports and
udp-priority-ports settings to benefit from the internal signature groups created by Suricata. The engine shall
then try to club the rules that use the ports defined in groups of their own and put them on top of the list of rules to be
matched against traffic on "priority".

Example 4 Detection-engine grouping tree

src-group | dst-group | Sp-group | dp-group (signatures
.z" dp
-~ |:_J'>
asp b -
o Pr » dp |
\\\ dp
src | ™ dst a
. sp
toclient |~ ‘x‘
5re dst
Protocols \‘\
TGP %
Packet \"-\ src
— Y
1
taserver
src Stands for source IP-address.
dst Stands for destination IP-address.
sp Stands for source port.
dp Stands for destination port.

Example 5 Detail grouping tree

326 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

STQIOUD | det-groug | 30-groug

LN,
BT ol |
¥
T
- = BT "'-m.

Prikessla

Sig group head

-Signatures
G=% -MPM cix

dp

Prefilter Engines

The concept of prefiltering is that there are far too many rules to inspect individually. The approach prefilter takes is
that from each rule one condition is added to prefilter, which is then checked in one step. The most common example
is MPM (also known as fast_pattern). This takes a single pattern per rule and adds it to the MPM. Only for those rules
that have at least one pattern match in the MPM stage, individual inspection is performed.

Next to MPM, other types of keywords support prefiltering. ICMP itype, icode, icmp_seq and icmp_id for example.
TCP window, IP TTL are other examples.

For a full list of keywords that support prefilter, see:

suricata --list-keywords=all

Suricata can automatically select prefilter options, or it can be set manually.

detect:
prefilter:
default: mpm

12.1. Suricata.yaml 327

Suricata User Guide, Release 8.0.0

By default, only MPM/fast_pattern is used.
The prefilter engines for other non-MPM keywords can then be enabled in specific rules by using the 'prefilter' keyword.

E.g.

alert ip any any -> any any (ttl:123; prefilter; sid:1;)

To let Suricata make these decisions set default to 'auto':

detect:
prefilter:
default: auto

Thresholding Settings

Thresholding uses a central hash table for tracking thresholds of the types: by_src, by_dst, by_both.

detect:
thresholds:
hash-size: 16384
memcap: 16mb

detect.thresholds.hash-size controls the number of hash rows in the hash table. detect.thresholds.memcap
controls how much memory can be used for the hash table and the data stored in it.

Pattern matcher settings

The multi-pattern-matcher (MPM) is a part of the detection engine within Suricata that searches for multiple patterns at
once. Often, signatures have one or more patterns. Of each signature, one pattern is used by the multi-pattern-matcher.
That way Suricata can exclude many signatures from being examined, because a signature can only match when all its
patterns match.

These are the proceedings:
1) A packet comes in.
2) The packed will be analyzed by the Multi-pattern-matcher in search of patterns that match.
3) All patterns that match, will be further processed by Suricata (signatures).

Example 8 Multi-pattern-matcher

328 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Signatures

Suricata offers various implementations of different multi-pattern-matcher algorithm's. These can be found below.

To set the multi-pattern-matcher algorithm:

mpm-algo: ac

After 'mpm-algo’, you can enter one of the following algorithms: ac, hs and ac-ks.

On x86_64 hs (Hyperscan) should be used for best performance.

12.1.11 Threading

Suricata is multi-threaded. Suricata uses multiple CPUs/CPU cores so it can process a lot of network packets simulta-
neously. (In a single-core engine, the packets will be processed one at a time.)

There are four thread-modules: Packet acquisition, decode and stream application layer, detection, and outputs.
The packet acquisition module reads packets from the network.

The decode module decodes the packets and the stream application application layer has three tasks:

First: it performs stream-tracking, meaning it is making sure all steps will be taken to.
—make a correct network-connection.

Second: TCP-network traffic comes in as packets. The Stream-Assembly engine reconstructs.
—the original stream.

Finally: the application layer will be inspected. HTTP and DCERPC will be analyzed.

The detection threads will compare signatures. There can be several detection threads so they can operate simulta-
neously.

In Outputs all alerts and events will be processed.

Example 6 Threading

12.1. Suricata.yaml 329

Suricata User Guide, Release 8.0.0

W
——+ [Ouipuis

__,i‘
Packet acquisition: Reads packets from the network
Decode: Decodes packets.
Stream app. Layer: Performs stream-tracking and reassembly.
Detect: Compares signatures.
Outputs: Processes all events and alerts.

Most computers have multiple CPU's/ CPU cores. By default the operating system determines which core works on
which thread. When a core is already occupied, another one will be designated to work on the thread. So, which core
works on which thread, can differ from time to time.

There is an option within threading:

set-cpu-affinity: no

With this option you can cause Suricata setting fixed cores for every thread. In that case 1, 2 and 4 are at core O (zero).
Each core has its own detect thread. The detect thread running on core 0 has a lower priority than the other threads
running on core 0. If these other cores are to occupied, the detect thread on core 0 has not much packets to process.
The detect threads running on other cores will process more packets. This is only the case after setting the option to

[l 1

yes'.

Example 7 Balancing workload

330 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

CPU/CPU core-threads set_cpu_affinity: yes
Corg 0 PAC DECCODE STREAM DETECT- QUTPUT
L 1 DETECT
2 DETECT
3 DETECT
set_cpu_affinity: no
Example
Core 0 PAC DETECT
1 DECODE
2 STREAM DETECT X2
3 DETECT QUTRPUT

You can set the detect-thread-ratio:

detect-thread-ratio: 1.5

The detect thread-ratio will determine the amount of detect threads. By default it will be 1.5 x the amount of CPU's/CPU
cores present at your computer. This will result in having more detection threads then CPU's/ CPU cores. Meaning you
are oversubscribing the amount of cores. This may be convenient at times when there have to be waited for a detection
thread. The remaining detection thread can become active.

You can alter the per-thread stack-size if the default provided by your build system is too small. The default value is
provided by your build system; we suggest setting the value to 8MB if the default value is too small.

stack-size: 8MB

In the option 'cpu affinity’ you can set which CPU's/cores work on which thread. In this option there are several sets of
threads. The management-, receive-, worker- and verdict-set. These are fixed names and can not be changed. For each
set there are several options: cpu, mode, and prio. In the option 'cpu’ you can set the numbers of the CPU's/cores which
will run the threads from that set. You can set this option to 'all’, use a range (0-3) or a comma separated list (0,1). The
option 'mode' can be set to 'balanced' or 'exclusive'. When set to 'balanced’, the individual threads can be processed by
all cores set in the option 'cpu'. If the option 'mode’ is set to 'exclusive’, there will be fixed cores for each thread. As
mentioned before, threads can have different priority's. In the option 'prio' you can set a priority for each thread. This
priority can be low, medium, high or you can set the priority to 'default’. If you do not set a priority for a CPU, than the
settings in 'default’ will count. By default Suricata creates one 'detect' (worker) thread per available CPU/CPU core.

Note: The 'prio' settings could overwrite each other, make sure to not include the same CPU core in different 'prio’
settings.

12.1. Suricata.yaml 331

Suricata User Guide, Release 8.0.0

threading:
set-cpu-affinity: yes
autopin: no
cpu-affinity:

management-cpu-set:

cpu: [®] # include only these cpus in affinity settings
receive-cpu-set:

cpu: [®] # include only these cpus in affinity settings
worker-cpu-set:

cpu: ["all"]

mode: "exclusive"

Use explicitly 3 threads and don't compute number by using

detect-thread-ratio variable:

threads: 3

prio:
low: [O]
medium: ["1-2"]
high: [3 1]

default: "medium"
interface-specific-cpu-set:
- interface: "enp4s0£f0" # 0000:3b:00.0 # net_bonding® # enslf0®
cpu: [1,3,5,7,9]
mode: "exclusive"
prio:
high: ["all"]
default: "medium"
verdict-cpu-set:
cpu: [0]
prio:
default: "high"

Relevant cpu-affinity settings for IDS mode

Runmode AutoFp:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
receive-cpu-set - used for receive and decode
worker-cpu-set - used for streamtcp,detect,output(logging),reject

Rumode Workers:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
worker-cpu-set - used for receive,streamtcp,decode,detect,output(logging),respond/reject

332

Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Relevant cpu-affinity settings for IPS mode

Runmode AutoFp:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
receive-cpu-set - used for receive and decode

worker-cpu-set - used for streamtcp,detect,output(logging)

verdict-cpu-set - used for verdict and respond/reject

Runmode Workers:

management-cpu-set - used for management (example - flow.managers, flow.recyclers)
worker-cpu-set - used for receive,streamtcp,decode,detect,output(logging),respond/reject,
< verdict

Interface-specific CPU affinity settings

Using the new configuration format introduced in Suricata 8.0 it is possible to set CPU affinity settings per interface.
This can be useful when you have multiple interfaces and you want to dedicate specific CPU cores to specific interfaces.
This can be useful, for example, when Suricata runs on multiple NUMA nodes and reads from interfaces on each NUMA
node.

Interface-specific affinity settings can be configured for the worker-cpu-set and the receive-cpu-set (only used
in autofp mode). This feature is available for capture modes which work with interfaces (af-packet, dpdk, etc.). The
value of the interface key can be the kernel interface name (e.g. ethO for af-packet), the PCI address of the interface
(e.g. 0000:3b:00.0 for DPDK capture mode), or the name of the virtual device interface (e.g. net_bonding0 for DPDK
capture mode). The interface names needs to be unique and be specified in the capture mode configuration.

The interface-specific settings will override the global settings for the worker-cpu-set and receive-cpu-set. The
CPUs do not need to be contained in the parent node settings. If the interface-specific settings are not defined, the
global settings will be used.

threading:
set-cpu-affinity: yes
cpu-affinity:
worker-cpu-set:
interface-specific-cpu-set:
- interface: "eth®" # 0000:3b:00.0 # net_bonding0®
cpu: [1,3,5,7,9]
mode: "exclusive"
prio:
high: ["all"]
default: "medium"

12.1. Suricata.yaml 333

Suricata User Guide, Release 8.0.0

Automatic NUMA-aware CPU core pinning

When Suricata is running on a system with multiple NUMA nodes, it is possible to automatically use CPUs from the
same NUMA node as the network capture interface. CPU cores on the same NUMA node as the network capture
interface can have reduced memory access latency and can increase the performance of Suricata. This is enabled by
setting the autopin option to yes in the threading section. This option is available for worker-cpu-set and receive-
cpu-set.

threading:
set-cpu-affinity: yes
autopin: yes
cpu-affinity:
worker-cpu-set:
cpu: ["all"]
mode: "exclusive"
prio:
high: ["all"]

Consider 2 interfaces defined in the capture mode configuration, one on each NUMA node. The autopin option is
enabled to automatically use CPUs from the same NUMA node as the interface. The worker-cpu-set is set to use all
CPUs. When interface on the first NUMA node is used, the worker threads will be pinned to CPUs on the first NUMA
node. When interface on the second NUMA node is used, the worker threads will be pinned to CPUs on the second
NUMA node. If the number of CPU cores on a given NUMA node is exhausted then the worker threads will be pinned
to CPUs on the other NUMA node.

The option threading.autopin can be combined with the interface-specific CPU affinity settings. To use the
autopin option, the system must have the hwloc dependency installed and pass --enable-hwloc to the configure
script.

12.1.12 IP Defrag

Occasionally network packets appear fragmented. On some networks it occurs more often than on others. Fragmented
packets exist of many parts. Before Suricata is able to inspect these kind of packets accurately, the packets have to be
reconstructed. This will be done by a component of Suricata; the defragment-engine. After a fragmented packet is
reconstructed by the defragment-engine, the engine sends on the reassembled packet to rest of Suricata.

At the moment Suricata receives a fragment of a packet, it keeps in memory that other fragments of that packet will
appear soon to complete the packet. However, there is a possibility that one of the fragments does not appear. To
prevent Suricata for keeping waiting for that packet (thereby using memory) there is a timespan after which Suricata
discards the fragments (timeout). This occurs by default after 60 seconds.

In IPS mode, it is possible to tell the engine what to do in case the memcap for the defrag engine is reached: "drop-

packet”, "pass-packet", or "ignore" (default behavior).

defrag:
memcap: 32mb
memcap-policy: ignore # in IPS mode, what to do if memcap is reached
hash-size: 65536
trackers: 65535 # number of defragmented flows to follow
max-frags: 65535 # number of fragments do keep (higher than trackers)
prealloc: yes
timeout: 60

334 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

12.1.13 Flow and Stream handling

Flow Settings

Within Suricata, Flows are very important. They play a big part in the way Suricata organizes data internally. A flow
is a bit similar to a connection, except a flow is more general. All packets having the same Tuple (protocol, source IP,
destination IP, source-port, destination-port), belong to the same flow. Packets belonging to a flow are connected to it
internally.

Example 9 Flow

" TCP Flow
STREAM il

<A B

= - Connection/
STREAN SE55I0N

Sy

',_|_.' LUDP Flow
<A B

-}

Y

Example 10 Tuple

12.1. Suricata.yaml 335

Suricata User Guide, Release 8.0.0

Flow

PACKET

. Same Tuple

Keeping track of all these flows, uses memory. The more flows, the more memory it will cost.
To keep control over memory usage, there are several options:

The option memcap for setting the maximum amount of bytes the flow-engine will use, hash-size for setting the size
of the hash-table and prealloc for the following:

For packets not yet belonging to a flow, Suricata creates a new flow. This is a relative expensive action.
The risk coming with it, is that attackers /hackers can a attack the engine system at this part. When they
make sure a computer gets a lot of packets with different tuples, the engine has to make a lot of new flows.
This way, an attacker could flood the system. To mitigate the engine from being overloaded, this option
instructs Suricata to keep a number of flows ready in memory. This way Suricata is less vulnerable to these
kind of attacks.

The flow-engine has a management thread that operates independent from the packet processing. This thread is called
the flow-manager. This thread ensures that wherever possible and within the memcap. There will be 10000 flows
prepared.

In IPS mode, a memcap-policy exception policy can be set, telling Suricata what to do in case memcap is hit: 'drop-
packet', 'pass-packet’, 'reject’, or 'ignore'.

flow:
memcap: 33554432 #The maximum amount of bytes the flow-engine will make.
—use of.
memcap-policy: bypass #How to handle the flow if memcap is reached (IPS mode)
hash-size: 65536 #Flows will be organized in a hash-table. With this.

—option you can set the
#size of the hash-table.

(continues on next page)

336 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

(continued from previous page)

prealloc: 10000 #The amount of flows Suricata has to keep ready in.
< memory.
rate-tracking: #Enable tracking of flows by the following rate.

—definition; mark them
#as elephant flows if they exceed the defined rate..
—Disabled by default.

bytes: 1GiB #Number of bytes to track
interval: 10 #Time interval in seconds for which tracking should be.
—done

At the point the memcap will still be reached, despite prealloc, the flow-engine goes into the emergency-mode. In this
mode, the engine will make use of shorter time-outs. It lets flows expire in a more aggressive manner so there will be
more space for new Flows.

emergency-recovery defines the percentage of flows that the engine needs to prune before clearing the emergency
mode. The default emergency-recovery value is 30. This is the percentage of prealloc'd flows after which the flow
-engine will be back to normal (when 30 percent of the 10000 flows are completed).

If during the emergency-mode the aggressive time-outs do not have the desired result, this option is the
final resort. It ends some flows even if they have not reached their time-outs yet.

emergency-recovery: 30 #Percentage of 10000 prealloc'd flows.

Flow Time-Outs

The amount of time Suricata keeps a flow in memory is determined by the Flow time-out.

There are different states in which a flow can be. Suricata distinguishes three flow-states for TCP and two for UDP. For
TCP, these are: New, Established and Closed,for UDP only new and established. For each of these states Suricata can
employ different timeouts.

The state new in a TCP-flow, means the period during the three way handshake. The state established is the state when
the three way handshake is completed. The state closed in the TCP-flow: there a several ways to end a flow. This is by
means of Reset or the Four-way FIN handshake.

New in a UDP-flow: the state in which packets are send from only one direction.
Established in a UDP-flow: packets are send from both directions.

In the example configuration the are settings for each protocol. TCP, UDP, ICMP and default (all other protocols).

flow-timeouts:

default:
new: 30 #Time-out in seconds after the last activity in this,
—~flow in a New state.
established: 300 #Time-out in seconds after the last activity in this.
—flow in a Established
#state.
emergency-new: 10 #Time-out in seconds after the last activity in this,

—flow in a New state
#during the emergency mode.
emergency-established: 100 #Time-out in seconds after the last activity in this.
—flow in a Established
#state in the emergency mode.

(continues on next page)

12.1. Suricata.yaml 337

Suricata User Guide, Release 8.0.0

(continued from previous page)

tcp:
new: 60
established: 3600
closed: 120
emergency-new: 10
emergency-established: 300
emergency-closed: 20
udp:
new: 30
established: 300
emergency-hnew: 10
emergency-established: 100
icmp:
new: 30
established: 300
emergency-new: 10
emergency-established: 100

Stream-engine

The Stream-engine keeps track of the TCP-connections. The engine exists of two parts: The stream tracking- and the
reassembly-engine.

The stream-tracking engine monitors the state of a connection. The reassembly-engine reconstructs the flow as it used
to be, so it will be recognized by Suricata.

The stream-engine has two memcaps that can be set. One for the stream-tracking-engine and one for the reassembly-
engine. For both cases, in IPS mode, an exception policy (memcap-policy) can be set, telling Suricata what to do in
case memcap is hit: 'drop-flow', 'drop-packet’, 'pass-flow’, 'pass-packet’, 'bypass', 'reject', or ignore'.

The stream-tracking-engine keeps information of the flow in memory. Information about the state, TCP-sequence-

numbers and the TCP window. For keeping this information, it can make use of the capacity the memcap allows.

TCP packets have a so-called checksum. This is an internal code which makes it possible to see if a packet has arrived
in a good state. The stream-engine will not process packets with a wrong checksum. This option can be set off by
entering 'no' instead of 'yes'.

stream:
memcap: 64mb # Max memory usage (in bytes) for TCP session tracking
memcap-policy: ignore # In IPS mode, call memcap policy if memcap is reached
checksum-validation: yes # Validate packet checksum, reject packets with invalid.
—checksums.

To mitigate Suricata from being overloaded by fast session creation, the option prealloc-sessions instructs Suricata to
keep a number of sessions ready in memory.

A TCP-session starts with the three-way-handshake. After that, data can be sent and received. A session can last a long
time. It can happen that Suricata will be started after a few TCP sessions have already been started. This way, Suricata
misses the original setup of those sessions. This setup always includes a lot of information. If you want Suricata to
check the stream from that time on, you can do so by setting the option 'midstream’ to 'true’. The default setting is 'false’.
In IPS mode, it is possible to define a 'midstream-policy', indicating whether Suricata should drop-flow, drop-packet,
pass-flow, pass-packet, reject, or bypass a midstream flow. The default is ignore. Normally Suricata is able to see
all packets of a connection. Some networks make it more complicated though. Some of the network-traffic follows a
different route than the other part, in other words: the traffic goes asynchronous. To make sure Suricata will check the

338 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

one part it does see, instead of getting confused, the option 'async-oneside' is brought to life. By default the option is
set to 'false’.

Suricata inspects content in the normal/IDS mode in chunks. In the inline/IPS mode it does that on the sliding window
way (see example ..) In the case Suricata is set in inline mode, it has to inspect packets immediately before sending it to
the receiver. This way Suricata is able to drop a packet directly if needed.(see example ...) It is important for Suricata
to note which operating system it is dealing with, because operating systems differ in the way they process anomalies
in streams. See Host-os-policy.

prealloc-sessions: 32768 # 32k sessions prealloc'd
midstream: false # do not allow midstream session pickups
midstream-policy: drop-flow # in IPS mode, drop flows that start midstream
async-oneside: false # do not enable async stream handling
inline: no # stream inline mode
drop-invalid: yes # drop invalid packets

bypass: no

The drop-invalid option can be set to no to avoid blocking packets that are seen invalid by the streaming engine.
This can be useful to cover some weird cases seen in some layer 2 IPS setup.

The bypass option activates 'bypass' for a flow/session when either side of the session reaches its depth.

Warning: bypass can lead to missing important traffic. Use with care.

Example 11 Normal/IDS mode

Suricata inspects traffic in chunks.

F‘e]clku’. 1 Pac klt:I 2

I

Packet 3

A
L
K

'

ABCDEF

f

Example 12 Inline/IPS Sliding Window

Suricata inspects traffic in a sliding window manner.

12.1. Suricata.yaml 339

Suricata User Guide, Release 8.0.0

ABC DEF GHI
‘ ABC I ‘ ABCDEF I DEFGHI

Sliding window = 6

=}

Example 13 Normal/IDS (reassembly on ACK'D data)

"" Packetl Pac:ketz Packet 3
!
‘GETI& I HTTP/1. nI ‘\ﬁn'u"-.n I

Packet 4

=0 TTToT Ywo ! o I
ﬁ

GET /fa HTTP/1.0 \rin\r\n |:> HTTP parser

340 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Example 14 Inline/IPS (reassembly on UNACK'D data)

Packet 1 Packet 2 Packet 3 Packet 4
[[I I -
Yrrhrin I GET /b m GET /a

HTTP parser HTTP parser HTTP parser

GET /a

The reassembly-engine has to keep data segments in memory in order to be able to reconstruct a stream. To avoid
resource starvation a memcap is used to limit the memory used. In IPS mode, an exception policy (memcap-policy) can
be set, telling Suricata what to do in case memcap is hit: 'drop-flow', 'drop-packet’, ‘pass-flow’, 'pass-packet’, 'bypass’,
'reject’, or 'ignore’'.

Reassembling a stream is an expensive operation. With the option depth you can control how far into a stream re-
assembly is done. By default this is IMB. This setting can be overridden per stream by the protocol parsers that do file
extraction.

Inspection of reassembled data is done in chunks. The size of these chunks is set with toserver-chunk-size and
toclient-chunk-size. To avoid making the borders predictable, the sizes can be varied by adding in a random
factor.

reassembly:
memcap: 256mb # Memory reserved for stream data reconstruction (in bytes)
memcap-policy: ignore # What to do when memcap for reassembly is hit
depth: 1mb # The depth of the reassembling.

toserver-chunk-size: 2560 # inspect raw stream in chunks of at least this size
toclient-chunk-size: 2560 # inspect raw stream in chunks of at least
randomize-chunk-size: yes

#randomize-chunk-range: 10

'Raw' reassembly is done for inspection by simple content, pcre keywords use and other payload inspection not done
on specific protocol buffers like http_uri. This type of reassembly can be turned off:

reassembly:
raw: no

Incoming segments are stored in a list in the stream. To avoid constant memory allocations a per-thread pool is used.

reassembly:
segment-prealloc: 2048 # pre-alloc 2k segments per thread

Resending different data on the same sequence number is a way to confuse network inspection.

12.1. Suricata.yaml 341

Suricata User Guide, Release 8.0.0

reassembly:
check-overlap-different-data: true

Example 15 Stream reassembly

Stream Reassembly

Signature: EVIL

ohnaction

-

Reassembled Stream: EVIL I

342 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Packet 1 Packet 2 Packet 4 Packet 6

| [
Packet 3 Packet & Packet 7

A A A
c C c
K K K

ABCDEFGHIJKEL

toserver_chunk_size: 10

TCP Urgent Handling

TCP Urgent pointer support is a complicated topic, where it is essentially impossible for a network device to know with
certainty what the behavior of the receiving host is.

For this reason, many middleboxes strip the URG flag and reset the urgent pointer (see for example RFC 6093, 3.4).

Several options are provided to control how to deal with the urgent pointer.

stream:
reassembly:
urgent:
policy: oob # drop, inline, oob (1 byte, see RFC 6093, 3.1), gap
oob-limit-policy: drop

stream.reassembly.urgent.policy:
e drop: drop URG packets before they affect the stream engine
* inline: ignore the urgent pointer and process all data inline
* o0ob (out of band): treat the last byte as out of band

 gap: skip the last byte, but do no adjust sequence offsets, leading to
gaps in the data

If the urgent policy is set to oob, there is an additional setting. Since OOB data does advance the TCP sequence number,
the stream engine tracks the number of bytes to make sure no GAPs in the non-OOB data are seen by the app-layer
parsers and detection engine. This is currently limited to 64k per direction. If the number of OOB bytes exceeds that
64k, an additional policy is triggered: stream.reassembly.urgent.oob-limit-policy.

12.1. Suricata.yaml 343

Suricata User Guide, Release 8.0.0

stream.reassembly.urgent.oob-limit-policy: - drop: drop URG packets before they affect the stream engine - inline:
ignore the urgent pointer and process all data inline - gap: skip the last byte, but do no adjust sequence offsets, leading
to gaps in the data

Observables

Each packet with the URG flag set, will increment the fcp.urg counter.

When dropping the URG packets, the packets will have the drop reason ips.drop_reason.stream_urgent, which is also
a counter in the stats logging.

The stream event stream-event:reassembly_urgent_oob_limit_reached allows matching on the packet that reaches the
OOB limit. Stream rule 2270066 matches on this.

If stats.stream-events are enabled the counter stream.reassembly_urgent_oob_limit_reached will be incremented if the
OOB limit is reached.

12.1.14 Host Tracking

The Host table is used for tracking per IP address. This is used for tracking per IP thresholding, per IP tagging, storing
iprep data and storing hostbit.

Settings

The configuration allows specifying the following settings: hash-size, prealloc and memcap.

host:
hash-size: 4096
prealloc: 1000
memcap: 32mb

* hash-size: size of the hash table in number of rows
e prealloc: number of Host objects preallocated for efficiency
* memcap: max memory use for hosts, including the hash table size

Hosts are evicted from the hash table by the Flow Manager thread when all data in the host is expired (tag, threshold,
etc). Hosts with iprep will not expire.

12.1.15 Application Layer Parsers

The app-layer section holds application layer specific configurations.

In IPS mode, a global exception policy accessed via the error-policy setting can be defined to indicate what the

non

engine should do in case it encounters an app-layer error. Possible values are "drop-flow", "pass-flow", "bypass",

non non

"drop-packet", "pass-packet", "reject" or "ignore" (which maintains the default behavior).

Each supported protocol has a dedicated subsection under protocols.

344 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Asn1_max_frames

Asnl (Abstract Syntax One) is a standard notation to structure and describe data.

Within Asnl-max-frames there are several frames. To protect itself, Suricata will inspect a maximum of 256. You can
set this amount differently if wanted.

Application layer protocols such as X.400 electronic mail, X.500 and LDAP directory services, H.323 (VoIP), BACnet
and SNMP, use ASN.1 to describe the protocol data units (PDUs) they exchange. It is also extensively used in the
Access and Non-Access Strata of UMTS.

Limit for the maximum number of asnl frames to decode (default 256):

asnl-max-frames: 256

FTP

The FTP application layer parser is enabled by default and uses dynamic protocol detection.

By default, FTP control channel commands and responses are limited to 4096 bytes, but this value can be changed.
When a command request or response exceeds the line length limit, the stored data will be truncated, however the parser
will continue to watch for the end of line and acquire the next command. Commands that are truncated will be noted
in the eve log file with the fields command_truncated or reply_truncated. Please note that this affects the control
messages only, not FTP data (file transfers).

ftp:
enabled: yes
#memcap: 64mb

Maximum line length for control messages before they will be truncated.
#max-line-length: 4kb

Configure HTTP (libhtp)

The library Libhtp is being used by Suricata to parse HTTP-sessions.

While processing HTTP-traffic, Suricata has to deal with different kind of servers which each process anomalies in
HTTP-traffic differently. The most common web-server is Apache. This is an open source web-server program.

Besides Apache, IIS (Internet Information Services/Server) a web-server program of Microsoft is also well-known.

Like with host-os-policy, it is important for Suricata to know which IP-address/network-address is used by which server.
In Libhtp this assigning of web-servers to IP-and network addresses is called personality.

Currently Available Personalities:
* Minimal
* Generic
¢ IDS (default)
* IIS 4 0
* IIS 50
« IIS_ 51
* IIS_ 6.0

12.1. Suricata.yaml 345

http://en.wikipedia.org/wiki/Abstract_Syntax_Notation_One

Suricata User Guide, Release 8.0.0

* IIS_7.0
* IIS_7.5
* Apache
e Apache_2_2

You can assign names to each block of settings. Which in this case is -apache and -iis7. Under these names you can
set IP-addresses, network-addresses the personality and a set of features.

The version-specific personalities know exactly how web servers behave, and emulate that. The IDS personality would
try to implement a best-effort approach that would work reasonably well in the cases where you do not know the
specifics.

The default configuration also applies to every IP-address for which no specific setting is available.

HTTP request bodies are often big, so they take a lot of time to process which has a significant impact on the perfor-
mance. With the option 'request-body-limit' you can set the limit (in bytes) of the client-body that will be inspected.
Setting it to 0 will inspect all of the body.

The same goes for HTTP response bodies.

libhtp:

default-config:
personality: IDS
request-body-limit: 3072
response-body-limit: 3072

server-config:
- apache:
address: [192.168.1.0/24, 127.0.0.0/8, "::1"]
personality: Apache_2_2
request-body-limit: 0
response-body-limit: O

- iis7:
address:
- 192.168.0.0/24
- 192.168.10.0/24
personality: IIS_7_0
request-body-limit: 4096
response-body-limit: 8192

Suricata makes available the whole set of libhtp customisations for its users.

You can now use these parameters in the conf to customise suricata's use of libhtp.

Configures whether backslash characters are treated as path segment
separators. They are not on Unix systems, but are on Windows systems.
If this setting is enabled, a path such as "/one\two/three" will be
converted to "/one/two/three". Accepted values - yes, no.
#path-convert-backslash-separators: yes

Configures whether input data will be converted to lowercase.
#path-convert-lowercase: yes

(continues on next page)

346 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

(continued from previous page)

Configures how the server reacts to encoded NUL bytes.
#path-nul-encoded-terminates: no

Configures how the server reacts to raw NUL bytes.
#path-nul-raw-terminates: no

Configures whether consecutive path segment separators will be
compressed. When enabled, a path such as "/one//two" will be normalized
to "/one/two". The backslash_separators and decode_separators
parameters are used before compression takes place. For example, if
backslash_separators and decode_separators are both enabled, the path
"/one\\/two\/%5cthree/%2f//four" will be converted to
"/one/two/three/four". Accepted values - yes, no.
#path-separators-compress: yes

HFHOR R R W W R

Configures whether encoded path segment separators will be decoded.
Apache does not do this, but IIS does. If enabled, a path such as
"/one%2ftwo" will be normalized to "/one/two". If the

backslash_separators option is also enabled, encoded backslash

characters will be converted too (and subsequently normalized to

forward slashes). Accepted values - yes, no.
#path-separators-decode: yes

Configures whether %u-encoded sequences in path will be decoded. Such
sequences will be treated as invalid URL encoding if decoding is not
desireable. Accepted values - yes, no.

#path-u-encoding-decode: yes

Configures how server reacts to invalid encoding in path. Accepted
values - preserve_percent, remove_percent, decode_invalid, status_400
#path-url-encoding-invalid-handling: preserve_percent

Controls whether the data should be treated as UTF-8 and converted
to a single-byte stream using best-fit mapping
#path-utf8-convert-bestfit:yes

Sets the replacement character that will be used to in the lossy
best-fit mapping from Unicode characters into single-byte streams.
The question mark is the default replacement character.
#path-bestfit-replacement-char: ?

Configures whether plus characters are converted to spaces
when decoding URL-encoded strings.

#query-plusspace-decode: yes

response-body-decompress-layer-limit:

Limit to how many layers of compression will be
decompressed. Defaults to 2.

uri-include-all: Include all parts of the URI. By default the

'scheme’, username/password, hostname and port

are excluded.

(continues on next page)

12.1. Suricata.yaml 347

Suricata User Guide, Release 8.0.0

(continued from previous page)

H

meta-field-limit: Hard size limit for request and response size
limits.

inspection limits
request-body-minimal-inspect-size: 32kb
request-body-inspect-window: 4kb
response-body-minimal-inspect-size: 40kb
response-body-inspect-window: 16kb

auto will use http-body-inline mode in IPS mode, yes or no set it statically

http-body-inline: auto

Decompress SWF files.
2 types: 'deflate', 'lzma', 'both' will decompress deflate and lzma
compress-depth:
Specifies the maximum amount of data to decompress,
set 0 for unlimited.
decompress-depth:
Specifies the maximum amount of decompressed data to obtain,
set 0 for unlimited.
swf-decompression:

enabled: yes

type: both

compress-depth: 0

decompress-depth: 0

O OH W W R R R

Take a random value for inspection sizes around the specified value.
This lower the risk of some evasion technics but could lead

detection change between runs. It is set to 'yes' by default.
#randomize-inspection-sizes: yes

If randomize-inspection-sizes is active, the value of various

inspection size will be chosen in the [1 - range%, 1 + range¥%]

range

Default value of randomize-inspection-range is 10.
#randomize-inspection-range: 10

Can enable LZMA decompression

#lzma-enabled: false

Memory limit usage for LZMA decompression dictionary

Data is decompressed until dictionary reaches this size
#lzma-memlimit: 1 Mb

Maximum decompressed size with a compression ratio

above 2048 (only reachable by LZMA)

#compression-bomb-1limit: 1 Mb

Maximum time spent decompressing a single transaction in usec
#decompression-time-limit: 100000

Maximum number of live transactions per flow

#max-tx: 512

Maximum used number of HTTP1 headers in one request or response
#headers-1limit: 1024

Other parameters are customizable from Suricata.

348 Chapter 12

. Configuration

Suricata User Guide, Release 8.0.0

double-decode-path: Double decode path section of the URI
double-decode-query: Double decode query section of the URI

decompression-time-limit

decompression-time-limit was implemented to avoid DOS by resource exhaustion on inputs such as decompression
bombs (found by fuzzing). The lower the limit, the better the protection against DOS is, but this may also lead to false
positives. In case the time limit is reached, the app-layer event http.compression_bomb is set (this event can also
set from other conditions). This can happen on slow configurations (hardware, ASAN, etc...)

Configure SMB

The SMB parser will parse version 1, 2 and 3 of the SMB protocol over TCP.
To enable the parser add the following to the app-1layer section of the YAML.

smb:
enabled: yes
detection-ports:
dp: 139, 445

The parser uses pattern based protocol detection and will fallback to probing parsers if the pattern based detec-
tion fails. As usual, the pattern based detection is port independent. The probing parsers will only run on the
detection-ports.

SMB is commonly used to transfer the DCERPC protocol. This traffic is also handled by this parser.

Resource limits

Several options are available for limiting record sizes and data chunk tracking.

smb:
enabled: yes
max-read-size: 8mb
max-write-size: 1lmb

max-read-queue-size: 16mb
max-read-queue-cnt: 16

max-write-queue-size: 16mb
max-write-queue-cnt: 16

The max-read-size option can be set to control the max size of accepted READ records. Events will be raised if a
READ request asks for too much data and/or if READ responses are too big. A value of 0 disables the checks.

The max-write-size option can be set to control the max size of accepted WRITE request records. Events will be raised
if a WRITE request sends too much data. A value of O disables the checks.

Additionally if the max-read-size or max-write-size values in the "negotiate protocol response" exceeds this limit an
event will also be raised.

12.1. Suricata.yaml 349

Suricata User Guide, Release 8.0.0

For file tracking, extraction and file data inspection the parser queues up out of order data chunks for both READs and
WRITEs. To avoid using too much memory the parser allows for limiting both the size in bytes and the number of
queued chunks.

smb:
enabled: yes

max-read-queue-size: 16mb
max-read-queue-cnt: 16

max-write-queue-size: 16mb
max-write-queue-cnt: 16

max-read-queue-size controls how many bytes can be used per SMB flow for out of order READs. max-read-queue-cnt
controls how many READ chunks can be queued per SMB flow. Processing of these chunks will be blocked when any
of the limits are exceeded, and an event will be raised.

max-write-queue-size and max-write-queue-cnt are as the READ variants, but then for WRITEs.

Cache limits

The SMB parser uses several per flow caches to track data between different records and transactions. These caches
have a size ceiling. When the size limit is reached, new additions will automatically evict the oldest entries.

smb:
max-guid-cache-size: 1024
max-rec-offset-cache-size: 128
max-tree-cache-size: 512
max-dcerpc-frag-cache-size: 128
max-session-cache-size: 512

The max-guid-cache-size setting controls the size of the hash that maps the GUID to filenames. These are added through
CREATE commands and removed by CLOSE commands.

max-rec-offset-cache-size controls the size of the hash that maps the READ offset from READ commands to the READ
responses.

The max-tree-cache-size option contols the size of the SMB session to SMB tree hash.

max-dcerpc-frag-cache-size controls the size of the hash that tracks partial DCERPC over SMB records. These are
buffered in this hash to only parse the DCERPC record when it is fully reassembled.

The max-session-cache-size setting controls the size of a generic hash table that maps SMB session to filenames, GUIDs
and share names.

Configure HTTP2

HTTP2 has 2 parameters that can be customized. The point of these 2 parameters is to find a balance between the
completeness of analysis and the resource consumption.

http2.max-table-size refers to SETTINGS_HEADER_TABLE_SIZE from rfc 7540 section 6.5.2. Its default value is
4096 bytes, but it can be set to any uint32 by a flow.

http2.max-streams refers to SETTINGS_MAX_CONCURRENT_STREAMS from rfc 7540 section 6.5.2. Its default
value is unlimited.

350 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

SSL/TLS

SSL/TLS parsers track encrypted SSLv2, SSLv3, TLSv1, TLSv1.1 and TLSv1.2 sessions.

Protocol detection is done using patterns and a probing parser running on only TCP/443 by default. The pattern based
protocol detection is port independent.

tls:
enabled: yes
detection-ports:
dp: 443

What to do when the encrypted communications start:

- track-only: keep tracking TLS session, check for protocol anomalies,

inspect tls_* keywords. Disables inspection of unmodified
'‘content' signatures.

- bypass: stop processing this flow as much as possible. No further
TLS parsing and inspection. Offload flow bypass to kernel
or hardware if possible.

- full: keep tracking and inspection as normal. Unmodified content
keyword signatures are inspected as well.

For the best performance, select 'bypass'.

R S R R Y

#encryption-handling: track-only

Encrypted traffic

There is no decryption of encrypted traffic, so once the handshake is complete continued tracking of the session is of
limited use. The encryption-handling option in app-layer.protocols.tls and app-layer.protocols.ssh
controls the behavior after the handshake.

If the encryption-handling property of the TLS/SSH configuration nodes are set to track-only (or are not set),
Suricata will continue to track the respective SSL/TLS or SSH session. Inspection will be limited, as raw content
inspection will still be disabled. There is no point in doing pattern matching on traffic known to be encrypted. Inspection
for (encrypted) Heartbleed and other protocol anomalies still happens.

When encryption-handling is set to bypass, all processing of this session is stopped. No further parsing and
inspection happens. This will also lead to the flow being bypassed, either inside Suricata or by the capture method if it
supports it and is configured for it.

Finally, if encryption-handling is set to full, Suricata will process the flow as normal, without inspection limita-
tions or bypass.

The option has replaced the no-reassemble option. If no-reassemble is present, and encryption-handling
is not, false is interpreted as encryption-handling: track-only and true is interpreted as
encryption-handling: bypass.

12.1. Suricata.yaml 351

Suricata User Guide, Release 8.0.0

Modbus

According to MODBUS Messaging on TCP/IP Implementation Guide V1.0b, it is recommended to keep the TCP
connection opened with a remote device and not to open and close it for each MODBUS/TCP transaction. In that case,
it is important to set the stream-depth of the modbus as unlimited.

modbus:
Stream reassembly size for modbus, default is 0
stream-depth: 0

MQTT

The maximum size of a MQTT message is 256MB, potentially containing a lot of payload data (such as properties,
topics, or published payloads) that would end up parsed and logged. To acknowledge the fact that most MQTT messages,
however, will be quite small and to reduce the potential for denial of service issues, it is possible to limit the maximum
length of a message that Suricata should parse. Any message larger than the limit will just be logged with reduced
metadata, and rules will only be evaluated against a subset of fields. The default is 1 MB.

mqtt:
max-msg-length: 1mb

SMTP

SMTP parsers can extract files from attachments. It is also possible to extract raw conversations as files with the key
raw-extraction. Note that in this case the whole conversation will be stored as a file, including SMTP headers and
body content. The filename will be set to "rawmsg". Usual file-related signatures will match on the raw content of
the email. This configuration parameter has a false default value. It is incompatible with decode-mime. If both are
enabled, raw-extraction will be automatically disabled.

smtp:
extract messages in raw format from SMTP
raw-extraction: true

Maximum transactions

SMTP, MQTT, FTP, PostgreSQL, SMB, DCERPC, HTTP1, ENIP and NFS have each a max-tx parameter that can
be customized. max-tx refers to the maximum number of live transactions for each flow. An app-layer event proto-
col.too_many_transactions is triggered when this value is reached. The point of this parameter is to find a balance
between the completeness of analysis and the resource consumption.

For HTTP2, this parameter is named max-streams as an HTTP2 stream will get translated into one Suricata transaction.
This configuration parameter is used whatever the value of SETTINGS_MAX_CONCURRENT_STREAMS negotiated
between a client and a server in a specific flow is.

352 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

12.1.16 Engine Logging
The engine logging system logs information about the application such as errors and other diagnostic information during
startup, runtime and shutdown of the Suricata engine. This does not include Suricata generated alerts and events.
The engine logging system has the following log levels:

e error

e warning

* notice

e info

e perf

e config

¢ debug

Note that debug level logging will only be emitted if Suricata was compiled with the --enable-debug configure
option.

The first option within the logging configuration is the default-log-level. This option determines the sever-
ity/importance level of information that will be displayed. Messages of lower levels than the one set here, will not
be shown. The default setting is Notice. This means that error, warning and notice will be shown and messages
for the other levels won't be.

Default Configuration Example

Logging configuration. This is not about logging IDS alerts/events, but
output about what Suricata is doing, like startup messages, errors, etc.
logging:

The default log level, can be overridden in an output section.

Note that debug level logging will only be emitted if Suricata was

compiled with the --enable-debug configure option.

#

This value is overridden by the SC_LOG_LEVEL env var.

default-log-level: notice

The default output format. Optional parameter, should default to

something reasonable if not provided. Can be overridden in an

output section. You can leave this out to get the default.

#

This console log format value can be overridden by the SC_LOG_FORMAT env var.
#default-log-format: "%D: %S: %M"

#

For the pre-7.0 log format use:

#default-log-format: "[%i] %t [%S] - (%f:%1) <%d> (%n) -- "

A regex to filter output. Can be overridden in an output section.
Defaults to empty (no filter).

#

This value is overridden by the SC_LOG_OP_FILTER env var.
default-output-filter:

(continues on next page)

12.1. Suricata.yaml 353

Suricata User Guide, Release 8.0.0

(continued from previous page)

Define your logging outputs. If none are defined, or they are all
disabled you will get the default - console output.
outputs:
- console:
enabled: yes
type: json
- file:
enabled: yes
level: info
filename: suricata.log
format: "[%i - %m] %z %d: %S: %M"
type: json
- syslog:
enabled: no
facility: local5s
format: "[%i] <%d> --
type: json

Default Log Level

Example:

logging:
default-log-level: info

This option sets the default log level. The default log level is notice. This value will be used in the individual logging
configuration (console, file, syslog) if not otherwise set.

Note: The -v command line option can be used to quickly increase the log level at runtime. See the -v command line
option.

The default-log-1level set in the configuration value can be overridden by the SC_LOG_LEVEL environment vari-
able.

Default Log Format

A logging line exists of two parts. First it displays meta information (Log-level, Suricata module), and finally the actual
log message. Example:

i: suricata: This is Suricata version 7.0.2 RELEASE running in USER mode

(Here the part until the second : is the meta info, "This is Suricata version 7.0.2 RELEASE running in USER mode"
is the actual message.)

It is possible to determine which information will be displayed in this line and (the manner how it will be displayed) in
which format it will be displayed. This option is the so called format string:

default-log-format: "[%i] %t - (%f:%1) <%d> (%n) -- "

The % followed by a character has a special meaning. There are thirteen specified signs:

354 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

ISO-like formatted timestamp: YYYY-MM-DD HH:MM:SS

Original Suricata log timestamp: DD/MM/YYYY -- HH:MM::SS

Process ID. Suricata's whole processing consists of multiple threads.
Thread ID. ID of individual threads.

Thread module name. (Outputs, Detect etc.)

Log-level of specific log-event. (Error, info, debug etc.)

Compact log format (E for Error, i for info etc.)

Subsystem name.

Thread name.

Log message body.

Name of source code filename where log-event is generated.
Line-number within the source filename, where the log-event is generated.
Function-name in the source code.

B HFHERAWNOQABE H'T + N

The last three options, f, 1 and n, are mainly convenient for developers.
The log-format can be overridden in the command line by the environment variable: SC_LOG_FORMAT.
Output Filter

Within logging you can set an output-filter. With this output-filter you can set which part of the event-logs should be
displayed. You can supply a regular expression (Regex). A line will be shown if the regex matches.

default-output-filter: # In this option the regular expression can be entered.

This value is overridden by the environment var: SC_LOG_OP_FILTER

Logging Outputs

There are different ways of displaying output. The output can appear directly on your screen, it can be placed in a file
or via syslog. The last mentioned is an advanced tool for log-management. The tool can be used to direct log-output
to different locations (files, other computers etc.)

outputs:

- console:
enabled: yes
#level: notice

- file:
enabled: no
filename: /var/log/suricata.log
level: info

- syslog:
enabled: no
facility: local5s
format: "[%i] <%d> --
#level: notice

Output to screen (stdout/stderr).

This option is enabled.

Use a different level than the default.
Output stored in a file.

This option is not enabled.

Filename and location on disc.

Use a different level than the default.
Output using syslog.

The use of this program is not enabled.
Syslog facility to use.

Output format specific to syslog.

Use a different level than the default.

o WO O W W W R R R W

12.1. Suricata.yaml 355

Suricata User Guide, Release 8.0.0

12.1.17 Packet Acquisition

Data Plane Development Kit (DPDK)

Data Plane Development Kit is a framework for fast packet processing in data plane applications running on a wide
variety of CPU architectures. DPDK's Environment Abstraction Layer (EAL) provides a generic interface to low-level
resources. It is a unique way how DPDK libraries access NICs. EAL creates an API for an application to access NIC
resources from the userspace level. In DPDK, packets are not retrieved via interrupt handling. Instead, the application
polls the NIC for newly received packets.

DPDK allows the user space application to directly access memory where the NIC stores the packets. As a result,
neither DPDK nor the application copies the packets for the inspection. The application directly processes packets via

passed packet descriptors.

NIC

Metwork driver
{configurafion)

T

COMNFIGURATION

Kernel space

DATA
POLLING

¥

.

______----/ DPDK API //-

Y

I

Application

Fig. 1: High-level overview of DPDK application

To use DPDK capture module, Suricata must be compiled with DPDK option enabled. Support for DPDK can be
enabled in configure step of the build process such as:

./configure --enable-dpdk

Suricata makes use of DPDK for packet acquisition in workers runmode. The whole DPDK configuration resides in
the dpdk: node. This node encapsulates 2 main subnodes, and those are eal-params and interfaces.

356

Chapter 12. Configuration

https://www.dpdk.org/
https://doc.dpdk.org/guides/prog_guide/env_abstraction_layer.html
https://doc.dpdk.org/guides/prog_guide/poll_mode_drv.html

Suricata User Guide, Release 8.0.0

dpdk:
eal-params:
proc-type: primary
allow: ["0000:3b:00.0", "0000:3b:00.1"]
interfaces:

- interface: 0000:3b:00.0
threads: auto
promisc: true
multicast: true
checksum-checks: true
checksum-checks-offload: true
vlan-strip-offload: true
linkup-timeout: 10
mtu: 1500
mempool-size: auto
mempool-cache-size: auto
rx-descriptors: auto
tx-descriptors: auto
copy-mode: none
copy-iface: none # or PCIe address of the second interface

The DPDK arguments, which are typically provided through the command line, are contained in the node dpdk.
eal-params. EAL is configured and initialized using these parameters. There are two ways to specify arguments:
lengthy and short. Dashes are omitted when describing the arguments. This setup node can be used to set up the memory
configuration, accessible NICs, and other EAL-related parameters, among other things. The node dpdk.eal-params
also supports multiple arguments of the same type. This can be useful for EAL arguments such as --vdev, --allow,
or --block. Values for these EAL arguments are specified as a comma-separated list. An example of such usage can
be found in the example above where the allow argument only makes 0000:3b:00.0 and 0000:3b:00. 1 accessible
to Suricata. arguments with list node. such as --vdev, --allow, --block eal options. The definition of Icore affinity as an
EAL parameter is a standard practice. However, Icore parameters like -1, -c, and --1cores are specified within the
suricata-yaml-threading section to prevent configuration overlap.

The node dpdk.interfaces wraps a list of interface configurations. Items on the list follow the structure that can
be found in other capture interfaces. The individual items contain the usual configuration options such as threads /
copy-mode / checksum-checks settings. Other capture interfaces, such as AF_PACKET, rely on the user to ensure
that NICs are appropriately configured. Configuration through the kernel does not apply to applications running under
DPDK. The application is solely responsible for the initialization of the NICs it is using. So, before the start of Suricata,
the NICs that Suricata uses, must undergo the process of initialization. As a result, there are extra configuration options
(how NICs can be configured) in the items (interfaces) of the dpdk.interfaces list. At the start of the configuration
process, all NIC offloads are disabled to prevent any packet modification. According to the configuration, checksum
validation offload can be enabled to drop invalid packets. Other offloads can not currently be enabled. Additionally, the
list items in dpdk . interfaces contain DPDK specific settings such as mempool-size or rx-descriptors. These
settings adjust individual parameters of EAL. One of the entries in dpdk. interfaces is the default interface. When
loading interface configuration and some entry is missing, the corresponding value of the default interface is used.

The worker threads must be assigned to specific cores. The configuration module threading must be
used to set thread affinity. Worker threads can be pinned to cores in the array configured in threading.
cpu-affinity["worker-cpu-set"]. Performance-oriented setups have everything (the NIC, memory, and CPU
cores interacting with the NIC) based on one NUMA node. It is therefore required to know the layout of the server ar-
chitecture to get the best results. The CPU core ids and NUMA locations can be determined for example from the output
of /proc/cpuinfo where physical id described the NUMA number. The NUMA node to which the NIC is con-
nected to can be determined from the file /sys/class/net/<KERNEL NAME OF THE NIC>/device/numa_node.

12.1. Suricata.yaml 357

https://doc.dpdk.org/guides/linux_gsg/linux_eal_parameters.html

Suricata User Guide, Release 8.0.0

Check ids and NUMA location of individual CPU cores
cat /proc/cpuinfo | grep 'physical id\|processor'

Check NUMA node of the NIC
cat /sys/class/net/<KERNEL NAME OF THE NIC>/device/numa_node e.g.
cat /sys/class/net/ethl/device/numa_node

Suricata operates in workers runmode. Packet distribution relies on Receive Side Scaling (RSS), which distributes
packets across the NIC queues. Individual Suricata workers then poll packets from the NIC queues. Internally, DPDK
runmode uses a symmetric hash (0x6d5a) that redirects bi-flows to specific workers. Each worker operates on 1 RX
(and 1 TX) queue. The number of RX queues is always equal to the number of threads/workers. The number of
TX queues is the same as the number of RX queues or can be set to O if Suricata runs in IDS mode by configuring
tx-descriptors to 0 or auto in the interface configuration node.

Before Suricata can be run, it is required to allocate a sufficient number of hugepages. For efficiency, hugepages are
continuous chunks of memory (pages) that are larger (2 MB+) than what is typically used in the operating systems (4
KB). A lower count of pages allows faster lookup of page entries. The hugepages need to be allocated on the NUMA
node where the NIC and affiniated CPU cores reside. For example, if the hugepages are allocated only on NUMA node
0 and the NIC is connected to NUMA node 1, then the application will fail to start. As a result, it is advised to identify
the NUMA node to which the NIC is attached before allocating hugepages and setting CPU core affinity to that node.
In case Suricata deployment uses multiple NICs, hugepages must be allocated on each of the NUMA nodes used by
the Suricata deployment.

To check number of allocated hugepages:
sudo dpdk-hugepages.py -s

alternative (older) way

grep Huge /proc/meminfo

Allocate 2 GB in hugepages on all available NUMA nodes:

(number of hugepages depend on the default size of hugepages 2 MB / 1 GB)

sudo dpdk-hugepages.py --setup 2G

alternative (older) way allocates 1024 2 MB hugepages but only on NUMA 0

echo 1024 | sudo tee \
/sys/devices/system/node/node®/hugepages/hugepages-2048kB/nr_hugepages

DPDK memory pools hold packets received from NICs. These memory pools are allocated in hugepages. Each Suricata
worker has independently allocated memory pools per interface. The total size of all mempools of the interface is set
with the mempool-size. The recommend size of the memory pool can be auto-calculated by setting mempool-size:
auto. If mempool-size is set manually (to e.g. mempool-size: 65536), the value is divided by the number of
worker cores of the interface (on 4 worker threads, each worker is assigned with a mempool containing 16383 packet
objects). Memory (in bytes) for interface's memory pools is calculated as: mempool-size * mtu. The sum of memory
pool requirements divided by the size of one hugepage results in the number of required hugepages. It causes no
problem to allocate more memory than required, but it is vital for Suricata to not run out of hugepages.

The mempool cache is local to the individual CPU cores and holds packets that were recently processed. The recom-
mended size of the cache can be auto-calculated by setting mempool-cache-size: auto.

To be able to run DPDK on Intel cards, it is required to change the default Intel driver to either vfio-pci or igb_uio
driver. The process is described in DPDK manual page regarding Linux drivers. The Intel NICs have the amount of
RX/TX descriptors capped at 4096. This should be possible to change by manually compiling the DPDK while changing
the value of respective macros for the desired drivers (e.g. IXGBE_MAX_RING_DESC/I40E_MAX_RING_DESC).
DPDK is natively supported by Mellanox and thus their NICs should work "out of the box".

Current DPDK support involves Suricata running on:

* a physical machine with a physical NICs such as:

358 Chapter 12. Configuration

https://www.ran-lifshitz.com/2014/08/28/symmetric-rss-receive-side-scaling/
https://doc.dpdk.org/guides/linux_gsg/linux_drivers.html

Suricata User Guide, Release 8.0.0

mlx5 (ConnectX-4/ConnectX-5/ConnectX-6)
— ixgbe
— i40e
- ice
* a virtual machine with virtual interfaces such as:
- 1000
— VMXNET3
— virtio-net

Other NICs using the same driver as mentioned above should work as well. The DPDK capture interface has not been
tested neither with the virtual interfaces nor in the virtual environments like VMSs, Docker or similar.

The minimal supported DPDK is version 19.11 which should be available in most repositories of major distributions.
Alternatively, it is also possible to use meson and ninja to build and install DPDK from source files. It is required to
have correctly configured tool pkg-config as it is used to load libraries and CFLAGS during the Suricata configuration
and compilation. This can be tested by querying DPDK version as:

pkg-config --modversion libdpdk

Pf-ring

The Pf_ring is a library that aims to improve packet capture performance over libcap. It performs packet acquisition.
There are three options within Pf_ring: interface, cluster-id and cluster-type.

pfring:
interface: eth® # In this option you can set the network-interface
on which you want the packets of the network to be read.

Pf_ring will load balance packets based on flow. All packet acquisition threads that will participate in the load balancing
need to have the same cluster-id. It is important to make sure this ID is unique for this cluster of threads, so that no
other engine / program is making use of clusters with the same id.

cluster-id: 99

Pf_ring can load balance traffic using pf_ring-clusters. All traffic for pf_ring can be load balanced according to the
configured cluster type value; in a round robin manner or a per flow manner that are part of the same cluster. All traffic
for pf_ring will be load balanced across acquisition threads of the same cluster id.

The "inner" flow means that the traffic will be load balanced based on address tuple after the outer vlan has been
removed.

Cluster Type Value
cluster_flow src ip, src_port, dst ip, dst port, proto, vlan
cluster_inner flow src ip, src port, dst ip, dst port, proto, vlan

cluster_inner_flow_2_tuple | src ip, dstip
cluster_inner_flow_4_tuple | src ip, src port, dst ip, dst port
cluster_inner_flow_5_tuple | src ip, src port, dst ip, dst port, proto
cluster_round_robin not recommended

12.1. Suricata.yaml 359

Suricata User Guide, Release 8.0.0

The cluster_round_robin manner is a way of distributing packets one at a time to each thread (like distributing playing
cards to fellow players). The cluster_flow manner is a way of distributing all packets of the same flow to the same
thread. The flows itself will be distributed to the threads in a round-robin manner.

If your deployment has VLANS, the cluster types with "inner" will use the innermost address tuple for distribution.

The default cluster type is cluster_£flow; the cluster_round_robin is not recommended with Suricata.

cluster-type: cluster_inner_flow_5_tuple

NFQ

Using NFQUEUE in iptables rules, will send packets to Suricata. If the mode is set to 'accept’, the packet that has
been send to Suricata by a rule using NFQ, will by default not be inspected by the rest of the iptables rules after being
processed by Suricata. There are a few more options to NFQ to change this if desired.

If the mode is set to 'repeat’, the packets will be marked by Suricata and be re-injected at the first rule of iptables. To
mitigate the packet from being going round in circles, the rule using NFQ will be skipped because of the mark.

If the mode is set to 'route', you can make sure the packet will be send to another tool after being processed by Suricata.
It is possible to assign this tool at the mandatory option 'route_queue'. Every engine/tool is linked to a queue-number.
This number you can add to the NFQ rule and to the route_queue option.

Add the numbers of the options repeat_mark and route_queue to the NFQ-rule:

iptables -I FORWARD -m mark ! --mark $MARK/$MASK -j NFQUEUE
nfq:

mode: accept #By default the packet will be accepted or dropped by.
—Suricata

repeat-mark: 1 #If the mode is set to 'repeat', the packets will be.

—marked after being
#processed by Suricata.
repeat-mask: 1
route-queue: 2 #Here you can assign the queue-number of the tool that.
—Suricata has to
#send the packets to after processing them.

Example 1 NFQI

mode: accept

360 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

iptables and NFQ
Mode: accept

_NFQUEUE =

? AGC EPT_"ID HDP

Example 2 NFQ

mode: repeat

iptables and NFQ
Mode: repeat

REPEAT/DROP

2 Suricata

Example 3 NFQ

mode: route

12.1. Suricata.yaml 361

Suricata User Guide, Release 8.0.0

iptables and NFQ
Mode: route

3 Suricata Other tool
"

Ipfw
Suricata does not only support Linux, it supports the FreeBSD operating system (this is an open source Unix operating
system) and Mac OS X as well. The in-line mode on FreeBSD uses ipfw (IP-firewall).

Certain rules in ipfw send network-traffic to Suricata. Rules have numbers. In this option you can set the rule to
which the network-traffic will be placed back. Make sure this rule comes after the one that sends the traffic to Suricata,
otherwise it will go around in circles.

The following tells the engine to re-inject packets back into the ipfw firewall at rule number 5500:

ipfw:
ipfw-reinjection-rule-number: 5500

Example 16 Ipfw-reinjection.

362 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

FreeBSD
Ipfw rules

3 Suricata

4 to Suricata S

12.1.18 Rules

Rule Files

Suricata by default is setup for rules to be managed by Suricata-Update with the following rule file configuration:

default-rule-path: /var/lib/suricata/rules
rule-files:
- suricata.rules

A default installation of Suricata-Update will write out the rules to /vat/lib/suricata/rules/suricata.rules.

You may want to edit this section if you are not using Suricata-Update or want to add rule files that are not managed
by Suricata-Update, for example:

default-rule-path: /var/lib/suricata/rules
rule-files:

- suricata.rules

- /etc/suricata/rules/custom.rules

File names can be specific with an absolute path, or just the base name. If just the base name is provided it will be
looked for in the default-rule-path.

If arule file cannot be found, Suricata will log a warning message and continue to load, unless --init-errors-fatal
has been specified on the command line, in which case Suricata will exit with an error code.

For more information on rule management see Rule Management.

12.1. Suricata.yaml 363

Suricata User Guide, Release 8.0.0

Threshold-file

Within this option, you can state the directory in which the threshold-file will be stored. The default directory is:
/etc/suricata/threshold.config

Classifications

The Classification-file is a file which makes the purpose of rules clear.

Some rules are just for providing information. Some of them are to warn you for serious risks like when you are being
hacked etc.

In this classification-file, there is a part submitted to the rule to make it possible for the system-administrator to distin-
guish events.

A rule in this file exists of three parts: the short name, a description and the priority of the rule (in which 1 has the
highest priority and 4 the lowest).

You can notice these descriptions returning in the rule and events / alerts.

Example:
configuration classification: misc-activity,Misc activity,3
Rule:

alert tcp $HOME_NET 21 -> $EXTERNAL_NET any (msg:"ET POLICY FTP Login Successful (non-
<~anonymous)";

flow: from_server,established;flowbits:isset,ET.ftp.user.login; flowbits:isnotset,ftp.
—user.logged_in;

flowbits:set, ftp.user.logged_in; content:"230 ";pcre:!"/A230(\s+USER)?\s+(anonymous | ftp)/
—smi";

classtype:misc-activity; reference:urldoc.emergingthreats.net/2003410, ;
reference:url,www.emergingthreats.net/cgi-bin/cvsweb.cgi/sigs/POLICY/POLICY_FTP_Login;..
,s1d:2003410; rev:7;)

Event/Alert:
10/26/10-10:13:42.904785 [**] [1:2003410:7] ET POLICY FTP Login Successful (non-

—,anonymous) [**]
[Classification: Misc activity[Priority: 3] {TCP} 192.168.0.109:21 -> x.x.x.x:34117

You can set the direction of the classification configuration.

classification-file: /etc/suricata/classification.config

364 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Rule-vars

There are variables which can be used in rules.

Within rules, there is a possibility to set for which IP-address the rule should be checked and for which IP-address it
should not.

This way, only relevant rules will be used. To prevent you from having to set this rule by rule, there is an option in
which you can set the relevant IP-address for several rules. This option contains the address group vars that will be
passed in a rule. So, after HOME_NET you can enter your home IP-address.

vars:
address-groups:
HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]" #By using [], it is.
—possible to set
#complicated variables.
EXTERNAL_NET: any
HTTP_SERVERS: "$HOME_NET" #The $-sign tells that.
—what follows 1is
#a variable.
SMTP_SERVERS: "$HOME_NET"
SQL_SERVERS: "$HOME_NET"
DNS_SERVERS: "$HOME_NET"
TELNET_SERVERS: "$HOME_NET"
AIM_SERVERS: any

It is a convention to use upper-case characters.

There are two kinds of variables: Address groups and Port-groups. They both have the same function: change the rule
so it will be relevant to your needs.

In a rule there is a part assigned to the address and one to the port. Both have their variable.

All options have to be set. If it is not necessary to set a specific address, you should enter 'any'.

port-groups:
HTTP_PORTS: "80"
SHELLCODE_PORTS: "!80"
ORACLE_PORTS: 1521
SSH_PORTS: 22
SIP_PORTS: "[5060, 5061]"

Host-os-policy

Operating systems differ in the way they process fragmented packets and streams. Suricata performs differently with
anomalies for different operating systems. It is important to set of which operating system your IP-address makes use
of, so Suricata knows how to process fragmented packets and streams. For example in stream-reassembly there can be
packets with overlapping payloads.

Example 17 Overlapping payloads

12.1. Suricata.yaml 365

Suricata User Guide, Release 8.0.0

Src IP

Stream

AR AAA BB CC
Or
AA BEB BB CC

In the configuration-file, the operating-systems are listed. You can add your IP-address behind the name of the operating
system you make use of.

host-os-policy:
windows: [0.0.0.0/0]
bsd: []
bsd-right: []
old-linux: []
linux: [10.0.0.0/8, 192.168.1.100, "8762:2352:6241:7245:E000:0000:0000:0000"]
old-solaris: []
solaris: ["::1"]
hpux10: []
hpux11: []
irix: []
macos: []
vista: []
windows2k3: []

12.1.19 Engine analysis and profiling

Suricata offers several ways of analyzing performance of rules and the engine itself.

366 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Engine-analysis
The option engine-analysis provides information for signature writers about how Suricata organizes signatures inter-
nally.

Like mentioned before, signatures have zero or more patterns on which they can match. Only one of these patterns will
be used by the multi pattern matcher (MPM). Suricata determines which patterns will be used unless the fast-pattern
rule option is used.

The option engine-analysis creates a new log file in the default log dir. In this file all information about signatures and
patterns can be found so signature writers are able to see which pattern is used and change it if desired.

To create this log file, you have to run Suricata with ./src/suricata -c suricata.yaml --engine-analysis.

engine-analysis:
rules-fast-pattern: yes

Example:

[10703] 26/11/2010 -- 11:41:15 - (detect.c:560) <Info> (SigLoadSignatures)
-- Engine-Analysis for fast_pattern printed to file - /var/log/suricata/rules_fast_
—pattern.txt

alert tcp any any -> any any (content:"Volume Serial Number"; sid:1292;)

== Sid: 1292 ==

Fast pattern matcher: content

Fast pattern set: no

Fast pattern only set: no

Fast pattern chop set: no

Content negated: no

Original content: Volume Serial Number
Final content: Volume Serial Number

alert tcp any any -> any any (content:"abc"; content:'"defghi"; sid:1;)

== Sid: ==

Fast pattern matcher: content
Fast pattern set: no

Fast pattern only set: no
Fast pattern chop set: no
Content negated: no

Original content: defghi
Final content: defghi

alert tcp any any -> any any (content:"abc"; fast_pattern:only; content:"defghi"; sid:1;)
== Sld: ==

Fast pattern matcher: content

Fast pattern set: yes

Fast pattern only set: yes

(continues on next page)

12.1. Suricata.yaml 367

Suricata User Guide, Release 8.0.0

(continued from previous page)

Fast pattern chop set: no
Content negated: no
Original content: abc
Final content: abc

alert tcp any any -> any any (content:"abc"; fast_pattern; content:"defghi"; sid:1;)
== Sid: 1 ==

Fast pattern matcher: content

Fast pattern set: yes

Fast pattern only set: no

Fast pattern chop set: no

Content negated: no

Original content: abc

Final content: abc

alert tcp any any -> any any (content:"abc"; fast_pattern:1,2; content:"defghi"; sid:1;)

== Sid: ==

Fast pattern matcher: content
Fast pattern set: yes

Fast pattern only set: no

Fast pattern chop set: yes

Fast pattern offset, length: 1, 2
Content negated: no

Original content: abc

Final content: bc

Rule and Packet Profiling settings

Rule profiling is a part of Suricata to determine how expensive rules are. Some rules are very expensive while inspecting
traffic. Rule profiling is convenient for people trying to track performance problems and resolving them. Also for people
writing signatures.

Compiling Suricata with rule-profiling will have an impact on performance, even if the option is disabled in the con-
figuration file.

To observe the rule-performance, there are several options.

profiling:
rules:
enabled: yes

This engine is not used by default. It can only be used if Suricata is compiled with:

-- enable-profiling

At the end of each session, Suricata will display the profiling statistics. The list will be displayed sorted.

368 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

This order can be changed as pleased. The choice is between ticks, avgticks, checks, maxticks and matches. The setting
of your choice will be displayed from high to low.

The amount of time it takes to check the signatures, will be administrated by Suricata. This will be counted in ticks.
One tick is one CPU computation. 3 GHz will be 3 billion ticks.

Beside the amount of checks, ticks and matches it will also display the average and the maximum of a rule per session
at the end of the line.

The option Limit determines the amount of signatures of which the statistics will be shown, based on the sorting.

sort: avgticks
limit: 100

Example of how the rule statistics can look like;

Rule Ticks % Checks Matches Max Tick o
—Avg

Ticks

7560 107766621 0.02 138 37 105155334 o
-,780917.54

11963 1605394413 0.29 2623 1 144418923 o
—-612045.14

7040 1431034011 0.26 2500 0 106018209 o
—572413.60

5726 1437574662 0.26 2623 1 115632900 o
-»548065.06

7037 1355312799 0.24 2562 0 116048286 o
—529005.78

11964 1276449255 0.23 2623 1 96412347 o
-486637.15

7042 1272562974 0.23 2623 1 96405993 o
—485155.54

5719 1233969192 0.22 2562 0 106439661 o
—481642.93

5720 1204053246 0.21 2562 0 125155431 o
-+469966. 14

Packet Profiling

packets:

Profiling can be disabled here, but it will still have a
performance impact if compiled in.

enabled: yes #this option is enabled by default
filename: packet_stats.log #name of the file in which packet.
—profiling information will be
#stored.
append: yes #If set to yes, new packet profiling.,

—iIinformation will be added to the
#information that was saved last in the.

(continues on next page)

12.1. Suricata.yaml 369

Suricata User Guide, Release 8.0.0

(continued from previous page)

—~file.

per packet csv output
csv:

Output can be disabled here, but it will still have a
performance impact if compiled in.

enabled: no #the sending of packet output to a csv-
—file is by default disabled.
filename: packet_stats.csv #name of the file in which csv packet.

—profiling information will be
#stored

Packet profiling is enabled by default in suricata.yaml but it will only do its job if you compiled Suricata with --enable
profiling.

The filename in which packet profiling information will be stored, is packet-stats.log. Information in this file can be
added to the last information that was saved there, or if the append option is set to no, the existing file will be overwritten.

Per packet, you can send the output to a csv-file. This file contains one line for each packet with all profiling information
of that packet. This option can be used only if Suricata is build with --enable-profiling and if the packet profiling option
is enabled in yaml.

It is best to use runmode 'single' if you would like to profile the speed of the code. When using a single thread, there is
no situation in which two threads have to wait for each other. When using two threads, the time threads might have to
wait for each other will be taken in account when/during profiling packets. For more information see Packet Profiling.

12.1.20 Decoder

Teredo

The Teredo decoder can be disabled. It is enabled by default.

decoder:

Teredo decoder is known to not be completely accurate

it will sometimes detect non-teredo as teredo.

teredo:
enabled: true
ports to look for Teredo. Max 4 ports. If no ports are given, or
the value is set to 'any', Teredo detection runs on _all_ UDP packets.
ports: $TEREDO_PORTS # syntax: '[3544, 1234]'

Using this default configuration, Teredo detection will run on UDP port 1. If the ports parameter is missing, or set to
any, all ports will be inspected for possible presence of Teredo.

370 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Recursion Level

Flow matching via recursion level can be disabled. It is enabled by default.

decoder:
Depending on packet pickup, incoming and outgoing tunnelled packets
can be scanned before the kernel has stripped and encapsulated headers,
respectively, leading to incoming and outgoing flows not being associated.
recursion-level:
use-for-tracking: true

Using this default setting, flows will be associated only if the compared packet headers are encapsulated in the same
number of headers.

12.1.21 Advanced Options

stacktrace

Display diagnostic stacktraces when a signal unexpectedly terminates Suricata, e.g., such as SIGSEGV or SIGABRT.
Requires the 1ibunwind library to be available. The default value is to display the diagnostic message if a signal
unexpectedly terminates Suricata -- e.g., SIGABRT or SIGSEGV occurs while Suricata is running.

logging:
Requires libunwind to be available when Suricata is configured and built.
If a signal unexpectedly terminates Suricata, displays a brief diagnostic
message with the offending stacktrace if enabled.
#stacktrace-on-signal: on

12.1.22 Configuration hardening

The security section of suricata.yaml is meant to provide in-depth security configuration options.

Besides landlock, (see Using Landlock LSM), one setting is available. limit-noproc is a boolean to prevent process
creation by Suricata. If you do not need Suricata to create other processes or threads (you may need it for LUA scripts
for instance or plugins), enable this to call setrlimit with RLIMIT_NPROC argument (see man setrlimit). This prevents
potential exploits against Suricata to fork a new process, even if it does not prevent the call of exec.

Warning! This has no effect on Linux when running as root. If you want a hardened configuration, you probably want
to set run-as configuration parameter so as to drop root privileges.

Beyond suricata.yaml, other ways to harden Suricata are - compilation : enabling ASLR and other exploit mitigation
techniques. - environment : running Suricata on a device that has no direct access to Internet.

12.1. Suricata.yaml 371

Suricata User Guide, Release 8.0.0

Lua

Suricata 8.0 sandboxes Lua rules by default. The restrictions on the sandbox for Lua rules can be modified in the
security.lua section of the configuration file. This section also applies to Lua transforms. Additionally, Lua rules
can be completely disabled in the same way as for as the Suricata 7.0 default:

security:
lua:
Allow Lua rules. Enabled by default.
#allow-rules: true

Upper bound of allocations by a Lua rule before it will fail
#max-bytes: 500000

Upper bound of lua instructions by a Lua rule before it will fail
#max-instructions: 500000

Allow dangerous lua operations like external packages and file io
#allow-restricted-functions: false

12.2 Global-Thresholds

Thresholds can be configured in the rules themselves, see Thresholding Keywords. They are often set by rule writers
based on their intelligence for creating a rule combined with a judgement on how often a rule will alert.

Thresholds are tracked in a hash table that is sized according to configuration, see: Thresholding Settings.

12.2.1 Threshold Config

Next to rule thresholding more thresholding can be configured on the sensor using the threshold.config.

threshold/event_filter

Syntax:

threshold gen_id <gid>, sig_id <sid>, type <threshold|limit|both>, \
track <by_src|by_dst|by_rule|by_both|by_flow>, count <N>, seconds <T>

rate_filter

Rate filters allow changing of a rule action when a rule matches.

Syntax:

rate_filter: rate_filter gen_id <gid>, sig_id <sid>, track <tracker>, \
count <c>, seconds <s>, new_action <action>, timeout <timeout>

Example:

rate_filter gen_id 1, sig_id 1000, track by_rule, count 100, seconds 60, \
new_action alert, timeout 30

372 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

gen_id

Generator id. Normally 1, but if a rule uses the gid keyword to set another value it has to be matched in the gen_id.

sig_id

Rule/signature id as set by the rule sid keyword.

track

Where to track the rule matches. When using by_src/by_dst the tracking is done per IP-address. The Host table is used
for storage. When using by_rule it's done globally for the rule. Option by_both used to track per IP pair of source and
destination. Packets going to opposite directions between same addresses tracked as the same pair. The by_flow option
tracks the rule matches in the flow.

count

Number of rule hits before the rate_filter is activated.

seconds

Time period within which the count needs to be reached to activate the rate_filter

new_action

New action that is applied to matching traffic when the rate_filter is in place.

Values:

<alert|drop|pass|reject>

Note: 'sdrop' and 'log' are supported by the parser but not implemented otherwise.

timeout

Time in seconds during which the rate_filter will remain active.

Example

Let's say we want to limit incoming connections to our SSH server. The rule 888 below simply alerts on SYN packets
to the SSH port of our SSH server. If an IP-address triggers this more than 10 or more with a minute, the drop
rate_filter is set with a timeout of 5 minutes.

Rule:

alert tcp any any -> $MY_SSH_SERVER 22 (msg:"Connection to SSH server"; \
flow:to_server; flags:S,12; sid:888;)

12.2. Global-Thresholds 373

Suricata User Guide, Release 8.0.0

Rate filter:

rate_filter gen_id 1, sig_id 888, track by_src, count 10, seconds 60, \
new_action drop, timeout 300

suppress

Suppressions can be used to suppress alerts for a rule or a host/network. Actions performed when a rule matches, such
as setting a flowbit, are still performed.

Syntax:

suppress gen_id <gid>, sig_id <sid>
suppress gen_id <gid>, sig_id <sid>, track <by_src|by_dst|by_either>, ip
—»<ip|subnet |addressvar>

Examples:

suppress gen_id 1, sig_id 2002087, track by_src, ip 209.132.180.67

This will make sure the signature 2002087 will never match for src host 209.132.180.67.

Other possibilities/examples:

suppress gen_id 1, sig_id 2003614, track by_src, ip 217.110.97.128/25

suppress gen_id 1, sig_id 2003614, track by_src, ip [192.168.0.0/16,10.0.0.0/8,172.16.0.
—0/12]

suppress gen_id 1, sig_id 2003614, track by_src, ip $HOME_NET

suppress gen_id 1, sig_id 2003614, track by_either, ip 217.110.97.128/25

In the last example above, the by_either tracking means that if either the source ip or destination ip matches
217.110.97.128/25 the rule with sid 2003614 is suppressed.

12.2.2 Global thresholds vs rule thresholds

Note: this section applies to 1.4+ In 1.3 and before mixing rule and global thresholds is not supported.
When a rule has a threshold/detection_filter set a rule can still be affected by the global threshold file.

The rule below will only fire if 10 or more emails are being delivered/sent from a host within 60 seconds.

alert tcp any any -> any 25 (msg:"ET POLICY Inbound Frequent Emails - Possible Spambot.
—Inbound"; \

flow:established; content:"mail from|3a|"; nocase; o
o \

threshold: type threshold, track by_src, count 10, seconds 60; o
- \

reference:url,doc.emergingthreats.net/2002087; classtype:misc-activity; sid:2002087;
- rev:10;)

Next, we'll see how global settings affect this rule.

374 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

Suppress

Suppressions can be combined with rules with thresholds/detection_filters with no exceptions.

suppress gen_id 1, sig_id 2002087, track by_src, ip 209.132.180.67
suppress gen_id 0, sig_id 0, track by_src, ip 209.132.180.67
suppress gen_id 1, sig_id 0, track by_src, ip 209.132.180.67

Each of the rules above will make sure 2002087 doesn't alert when the source of the emails is 209.132.180.67. It will
alert for all other hosts.

suppress gen_id 1, sig_id 2002087

This suppression will simply convert the rule to "noalert”, meaning it will never alert in any case. If the rule sets a
flowbit, that will still happen.

Threshold/event_filter

When applied to a specific signature, thresholds and event_filters (threshold from now on) will override the signature
setting. This can be useful for when the default in a signature doesn't suit your environment.

threshold gen_id 1, sig_id 2002087, type both, track by_src, count 3, seconds 5
threshold gen_id 1, sig_id 2002087, type threshold, track by_src, count 10, seconds 60
threshold gen_id 1, sig_id 2002087, type limit, track by_src, count 1, seconds 15

Each of these will replace the threshold setting for 2002087 by the new threshold setting.

Note: overriding all gids or sids (by using gen_id O or sig_id 0) is not supported. Bug https://redmine.
openinfosecfoundation.org/issues/425.

Rate_filter

see https://redmine.openinfosecfoundation.org/issues/425.

12.3 Exception Policies

Suricata has a set of configuration variables to indicate what should the engine do when certain exception conditions,
such as hitting a memcap, are reached.

They are called Exception Policies and are configurable via suricata.yaml. If enabled, the engine will call them when
it reaches exception states. Stats for any applied exception policies can be found in counters related to the specific
configuration setting (read more). Some configuration is available directly via the stats settings.

For developers or for researching purposes, there are also simulation options exposed in debug mode and passed via
command-line. These exist to force or simulate failures or errors and understand Suricata behavior under such condi-
tions. See Command-line Options for Simulating Exceptions for those.

12.3. Exception Policies 375

https://redmine.openinfosecfoundation.org/issues/425
https://redmine.openinfosecfoundation.org/issues/425
https://redmine.openinfosecfoundation.org/issues/425

Suricata User Guide, Release 8.0.0

12.3.1 Master Switch

It is possible to set all configuration policies via what we call "master switch". This offers a quick way to define what
the engine should do in case of traffic exceptions, while still allowing for the flexibility of indicating a different behavior
for specific exception policies your setup/environment may have the need to.

Define a common behavior for all exception policies.

In IPS mode, the default is drop-flow. For cases when that's not possible, the
engine will fall to drop-packet. To fallback to old behavior (setting each of
them individually, or ignoring all), set this to ignore.

All values available for exception policies can be used, and there is one
extra option: auto - which means drop-flow or drop-packet (as explained above)
in IPS mode, and ignore in IDS mode. Exception policy values are: drop-packet,
drop-flow, reject, bypass, pass-packet, pass-flow, ignore (disable).
exception-policy: auto

FHOH O R W R W% W

This value will be overwritten by specific exception policies whose settings are also defined in the yaml file.

Auto

In IPS mode, the default behavior for most of the exception policies is to fail close. This means dropping the flow,
or the packet, when the flow action is not supported. The default policy for the midstream exception will be ignore if
midstream flows are accepted.

It is possible to disable this default, by setting the exception policies' "master switch" yaml config option to ignore.

In IDS mode, setting auto mode actually means disabling the master-switch, or ignoring the exception policies.

Note: If no exception policy is enabled, Suricata will not log exception policy stats.

12.3.2 Specific settings

Exception policies are implemented for:

Table 1: Exception Policy configuration variables

Config setting Policy variable Affects Expected behavior

stream.memcap memcap-policy Flow or packet If a stream memcap limit is reached, apply the
memcap policy to the packet and/or flow.

stream.midstream | midstream-policy | Flow If a session is picked up midstream, apply the mid-
stream policy to the flow.

stream.reassembly. memeayrap-policy Flow or packet If stream reassembly reaches memcap limit, apply
memcap policy to the packet and/or flow.

flow.memcap memcap-policy Packet Apply policy when the memcap limit for flows is

reached and no flow could be freed up. Policy can
only be applied to the packet.

defrag.memcap memcap-policy Packet Apply policy when the memcap limit for defrag is
reached and no tracker could be picked up. Policy
can only be applied to the packet.

app-layer error-policy Flow or packet Apply policy if a parser reaches an error state. Pol-
icy can be applied to packet and/or flow.

376 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

To change any of these, go to the specific section in the suricata.yaml file (for more configuration details, check the
suricata.yaml's documentation).

The possible values for the exception policies, and the resulting behaviors, are:

e drop-flow: disable decoding and parsing for the whole flow (packets, payload, application layer protocol), drop
the packet and all future packets in the flow.

e drop-packet: drop the packet.

* reject: same as drop-flow, but reject the current packet as well (see reject action in Rule's Action).

* bypass: bypass the flow. No further decoding or parsing is done. Bypass may be offloaded.

* pass-flow: disable payload and packet detection; stream reassembly, app-layer parsing and logging still happen.

» pass-packet: disable detection, still does stream updates and app-layer parsing (depending on which policy
triggered it).

* ignore: do not apply exception policies (default behavior).

The drop, pass and reject are similar to the rule actions described in rule actions.

12.3.3 Exception Policies and Midstream Pick-up Sessions

Suricata behavior can be difficult to track in case of midstream session pick-ups. Consider this matrix illustrating the
different interactions for midstream pick-ups enabled or not and the various exception policy values:

Table 2: Exception Policy Behaviors - IDS Mode

Excep- Midstream pick-up sessions ENABLED | Midstream pick-up sessions DISABLED

tion (stream.midstream=true) (stream.midstream=false)

Policy

Ignore Session and app-layer traffic tracked and | Session not tracked. No app-layer parsing or log-
parsed, log app-layer traffic, do detection. ging. No stream reassembly. No detection.

Drop- Not valid.* Not valid.*

flow

Drop- Not valid.* Not valid.*

packet

Reject Not valid.* Session not tracked, flow REJECTED.

Pass- Session and app-layer traffic tracked and | Session not tracked. No app-layer parsing or log-

flow parsed, log app-layer traffic, no detection. ging. No stream reassembly. No detection.

Pass- Not valid.* Not valid.*

packet

Bypass Not valid.* Session not tracked. No app-layer parsing or log-

ging. No stream reassembly. No detection.

Auto Midstream policy applied: "ignore". Same be- | Midstream policy applied: "ignore". Same behav-

havior. ior.

The main difference between IDS and IPS scenarios is that in IPS mode flows can be allowed or blocked (as in with
the PASS and DROP rule actions). Packet actions are not valid, as midstream pick-up is a configuration that affects the

whole flow.

12.3. Exception Policies

377

Suricata User Guide, Release 8.0.0

Table 3: Exception Policy Behaviors - IPS Mode

Exception Midstream pick-up sessions ENABLED | Midstream pick-up sessions DISABLED

Policy (stream.midstream=true) (stream.midstream=false)

Ignore Session and app-layer traffic tracked and | Session not tracked. No app-layer parsing or
parsed, log app-layer traffic, do detection. logging. No stream reassembly. No detection.

Drop-flow Not valid.* Session not tracked. No app-layer parsing or

logging. No stream reassembly. No detection.
Flow DROPPED.

Drop-packet | Not valid.* Not valid.*

Reject Not valid.* Session not tracked, flow DROPPED and RE-
JECTED.

Pass-flow Track session, parse and log app-layer traffic, | Session not tracked. No app-layer parsing or

no detection.

logging. No stream reassembly. No detection.

Pass-packet | Not valid.* Not valid.*
Bypass Not valid.* Session not tracked. No app-layer parsing or
logging. No stream reassembly. No detection.
Packets ALLOWED.
Auto Midstream policy applied: "ignore". Same be- | Midstream policy applied: "drop-flow". Same
havior. behavior.
Notes:

¢ Not valid means that Suricata will error out and won't start.

* REJECT will make Suricata send a Reset-packet unreach error to the sender of the matching packet.

12.3.4 Log Output

Flow Event

When an Exception Policy is triggered, this will be indicated in the flow log event for the associated flow, also indicating
which target triggered that, and what policy was applied. If no exception policy is triggered, that field won't be present

in the logs.

Note that this is true even if the policy is applied only to certain packets from a flow.

In the log sample below, the flow triggered the midstream policy, leading to Suricata applying the behavior that had
been configured for such scenario: o pass the flow (pass_flow). It also did trigger the app_layer_error exception
policy, but that is set up to ignore:

"flow": {

"pkts_toserver": 4,
"pkts_toclient": 5,
"bytes_toserver": 495,
"bytes_toclient": 351,

"start": "2016-07-13T22:42:07.199672+0000",
"end": "2016-07-13T22:42:07.573174+0000",
"age": O,

"state": "new",

"reason": "shutdown",

"alerted": false,

"action": "pass",

"exception_policy": [

(continues on next page)

378 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

(continued from previous page)

{
"target": "stream_midstream",
"policy": "pass_flow"

3

{
"target": "app_layer_error",
"policy": "ignore"

}

Available Stats

There are stats counters for each supported exception policy scenario that will be logged when exception policies are
enabled:

Table 4. Exception Policy Stats Counters

Setting Counters
stream.memcap exception_policy.tcp.ssn_memcap
stream.reassembly.memcap exception_policy.tcp.reassembly.memcap
stream.midstream exception_policy.tcp.midstream
defrag.memcap exception_policy.defrag.memcap
flow.memcap exception_policy.flow.memcap
app-layer.error * exception_policy.app_layer.error

* app_layer.error.exception_policy

If a given exception policy does not apply for a setting, no related counter is logged.

Stats for application layer errors are available in summarized form or per application layer protocol. As the latter is
extremely verbose, by default Suricata logs only the summary. If any further investigation is needed, it is recommended
to enable per-app-proto exception policy error counters temporarily (for more, read stats configuration).

Command-line Options for Simulating Exceptions

It is also possible to force specific exception scenarios, to check engine behavior under failure or error conditions.
The available command-line options are:

e simulate-applayer-error-at-offset-ts: force an applayer error in the to server direction at the given
offset.

e simulate-applayer-error-at-offset-tc: force an applayer error in the to client direction at the given
offset.

e simulate-packet-loss: simulate that the packet with the given number (pcap_cnt) from the session was
lost.

e simulate-packet-tcp-reassembly-memcap: simulate that the TCP stream reassembly reached memcap for
the specified packet.

e simulate-packet-tcp-ssn-memcap: simulate that the TCP session hit the memcap for the specified packet.

12.3. Exception Policies 379

Suricata User Guide, Release 8.0.0

* simulate-packet-flow-memcap: force the engine to assume that flow memcap is hit at the given packet.

* simulate-packet-defrag-memcap: force Suricata to assume memcap is hit when defragmenting specified
packet.

e simulate-alert-queue-realloc-failure: prevent the engine from dynamically growing the temporary
alert queue, during alerts processing.

Glossary

¢ decoding: traffic parsing on the packet level;
* [app-layer] parsing: traffic is parsed on the application layer level for events, anomalies and logging;

¢ detection: evaluate traffic against loaded rules to generate alerts and/ or block or allow traffic.

Common abbreviations

* applayer/ app-layer: application layer protocol
* memcap: (maximum) memory capacity available

¢ defrag: defragmentation

12.4 Snort.conf to Suricata.yaml

This guide is meant for those who are familiar with Snort and the snort.conf configuration format. This guide will
provide a 1:1 mapping between Snort and Suricata configuration wherever possible.

12.4.1 Variables

snort.conf

ipvar HOME_NET any
ipvar EXTERNAL_NET any

portvar HTTP_PORTS [80,81,311,591,593,901,1220,1414,1741,1830,2301,2381,2809,3128,3702,
—4343,4848,5250,7001,7145,7510,7777,7779,8000,8008,8014,8028,8080,3088,8090,8118,8123,
-8180,8181,8243,8280,8800,8888,8899,9000,9080,9090,9091,9443,9999,11371,55555]

portvar SHELLCODE_PORTS !80

suricata.yaml

vars:
address-groups:

HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"
EXTERNAL_NET: "!$HOME_NET"

port-groups:

(continues on next page)

380 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

(continued from previous page)

HTTP_PORTS: "80"
SHELLCODE_PORTS: "!180"

Note that Suricata can automatically detect HTTP traffic regardless of the port it uses. So the HTTP_PORTS variable
is not nearly as important as it is with Snort, if you use a Suricata enabled ruleset.

12.4.2 Decoder alerts

snort.conf

Stop generic decode events:

config disable_decode_alerts

Stop Alerts on experimental TCP options
config disable_tcpopt_experimental_alerts
Stop Alerts on obsolete TCP options
config disable_tcpopt_obsolete_alerts

Stop Alerts on T/TCP alerts

config disable_tcpopt_ttcp_alerts

Stop Alerts on all other TCPOption type events:
config disable_tcpopt_alerts

Stop Alerts on invalid ip options
config disable_ipopt_alerts

suricata.yaml

Suricata has no specific decoder options. All decoder related alerts are controlled by rules. See #Rules below.

12.4.3 Checksum handling
snort.conf
config checksum_mode: all

suricata.yaml

Suricata's checksum handling works on-demand. The stream engine checks TCP and IP checksum by default:

Stream:

checksum-validation: yes # reject wrong csums

Alerting on bad checksums can be done with normal rules. See #Rules, decoder-events.rules specifically.

12.4. Snort.conf to Suricata.yaml

381

Suricata User Guide, Release 8.0.0

12.4.4 Various configs

Active response

snort.conf

Configure active response for non inline operation. For more information, see REAMDE.
—active
config response: eth® attempts 2

suricata.yaml

Active responses are handled automatically w/o config if rules with the "reject" action are used.

Dropping privileges

snort.conf

Configure specific UID and GID to run snort as after dropping privs. For more.
< Iinformation see snort -h command line options

#

config set_gid:

config set_uid:

Suricata

To set the user and group use the --user <username> and --group <groupname> command-line options.

Snaplen

snort.conf

Configure default snaplen. Snort defaults to MTU of in use interface. For more.
—information see README

#

config snaplen:

#

Suricata always works at full snap length to provide full traffic visibility.

Bpf

snort.conf

Configure default bpf_file to use for filtering what traffic reaches snort. For more.
—Iinformation see snort -h command line options (-F)

#

config bpf_ file:

#

suricata.yaml

BPF filters can be set per packet acquisition method, with the "bpf-filter: <file>" yaml option and in a file using the -F
command line option.

382 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

For example:

pcap:

- interface: eth®
#buffer-size: 16777216
#bpf-filter: "tcp and port 25"
#checksum-checks: auto
#threads: 16
#promisc: no
#snaplen: 1518

12.4.5 Log directory

snort.conf

Configure default log directory for snort to log to. For more information see snort -
—h command line options (-1)

#

config logdir:

suricata.yaml

default-log-dir: /var/log/suricata/

This value is overridden by the -1 command-line option.

12.4.6 Packet acquisition

snort.conf

Configure DAQ related options for inline operation. For more information, see READVME.
—daq

#

config daq: <type>

config daq_dir: <dir>

config daq_mode: <mode>

config dag_var: <var>

#

<type> ::= pcap | afpacket | dump | nfq | ipq | ipfw
<mode> ::= read-file | passive | inline

<var> ::= arbitrary <name>=<value passed to DAQ

<dir> ::= path as to where to look for DAQ module so's

suricata.yaml

Suricata has all packet acquisition support built-in. It's configuration format is very verbose.

pcap:
- interface: eth®
#buffer-size: 16777216
#bpf-filter: "tcp and port 25"
#checksum-checks: auto

(continues on next page)

12.4. Snort.conf to Suricata.yaml 383

Suricata User Guide, Release 8.0.0

(continued from previous page)

#threads: 16
#promisc: no
#snaplen: 1518

pfring:

afpacket:

nfq:

ipfw:

Passive vs inline vs reading files is determined by how Suricata is invoked on the command line.

12.4.7 Rules

snort.conf:

In snort.conf a RULE_PATH variable is set, as well as variables for shared object (SO) rules and preprocessor rules.

var RULE_PATH ../rules
var SO_RULE_PATH ../so_rules
var PREPROC_RULE_PATH ../preproc_rules

include $RULE_PATH/local.rules
include $RULE_PATH/emerging-activex.rules

suricata.yaml:

In the suricata.yaml the default rule path is set followed by a list of rule files. Suricata does not have a concept of shared
object rules or preprocessor rules. Instead of preprocessor rules, Suricata has several rule files for events set by the
decoders, stream engine, http parser etc.

default-rule-path: /etc/suricata/rules
rule-files:

- local.rules

- emerging-activex.rules

The equivalent of preprocessor rules are loaded like normal rule files:

rule-files:

- decoder-events.rules
- stream-events.rules
- http-events.rules

- smtp-events.rules

384 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

12.5 Multi Tenancy

12.5.1 Introduction

Multi tenancy support allows different tenants to use different rule sets with different rule variables.

Tenants are identified by their selector; a selector can be a VLAN, interface/device, or from a pcap file ("direct").

12.5.2 YAML

Add a new section in the main ("master") Suricata configuration file -- suricata.yaml -- named multi-detect.
Settings:
* enabled: yes/no -> is multi-tenancy support enabled
* selector: direct (for unix socket pcap processing, see below), VLAN or device
* loaders: number of loader threads, for parallel tenant loading at startup
* tenants: list of tenants
* config-path: path from where the tenant yamls are loaded
— id: tenant id (numeric values only)
— yaml: separate yaml file with the tenant specific settings
* mappings:
— VLAN id or device: The outermost VLAN is used to match.

— tenant id: tenant to associate with the VLAN id or device

multi-detect:
enabled: yes
#selector: direct # direct or vlan or device
selector: vlan
loaders: 3

tenants:
- id: 1

yaml: tenant-1.yaml
- id: 2

yaml: tenant-2.yaml
- id: 3

yaml: tenant-3.yaml

mappings:

- vlan-id: 1000
tenant-id: 1

- vlan-id: 2000
tenant-id: 2

- vlan-id: 1112
tenant-id: 3

The tenant-1.yaml, tenant-2.yaml, tenant-3.yaml each contain a partial configuration:

12.5. Multi Tenancy 385

Suricata User Guide, Release 8.0.0

Set the default rule path here to search for the files.
if not set, it will look at the current working dir
default-rule-path: /etc/suricata/rules
rule-files:

- rulesl

You can specify a threshold config file by setting "threshold-file"
to the path of the threshold config file:
threshold-file: /etc/suricata/threshold.config

classification-file: /etc/suricata/classification.config
reference-config-file: /etc/suricata/reference.config

Holds variables that would be used by the engine.
vars:

Holds the address group vars that would be passed in a Signature.
These would be retrieved during the Signature address parsing stage.
address-groups:

HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"

EXTERNAL_NET: "!$HOME_NET"

port-groups:
HTTP_PORTS: "80"

SHELLCODE_PORTS: "!80"

vlan-id

Assign tenants to VLAN ids. Suricata matches the outermost VLAN id with this value. Multiple VLANS can have the
same tenant id. VLAN id values must be between 1 and 4094.

Example of VLAN mapping:

mappings:

- vlan-id: 1000
tenant-id: 1

- vlan-id: 2000
tenant-id: 2

- vlan-id: 1112
tenant-id: 3

The mappings can also be modified over the unix socket, see below.

Note: can only be used if vlan.use-for-tracking is enabled.

386 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

device

Assign tenants to devices. A single tenant can be assigned to a device. Multiple devices can have the same tenant id.

Example of device mapping:

mappings:

- device: ens5f0
tenant-id: 1

- device: ens5fl
tenant-id: 3

The mappings are static and cannot be modified over the unix socket.
Note: Not currently supported for IPS.

Note: support depends on a capture method using the 'livedev' APIL. Currently these are: pcap, AF_PACKET, PF_RING
and Netmap.

12.5.3 Per tenant settings

The following settings are per tenant:
¢ default-rule-path
* rule-files
* classification-file
* reference-config-file
* threshold-file
* address-vars

® port-vars

12.5.4 Unix Socket

Registration

register-tenant <id> <yaml>

Examples:

register-tenant
register-tenant
register-tenant
register-tenant
register-tenant

tenant-1.yaml
tenant-2.yaml
tenant-3.yaml
tenant-5.yaml
tenant-7.yaml

N oUW N =

unregister-tenant <id>

unregister-tenant 2
unregister-tenant 1

12.5. Multi Tenancy 387

Suricata User Guide, Release 8.0.0

Unix socket runmode (pcap processing)

The Unix Socket pcap-file command is used to associate the tenant with the pcap:

pcap-file trafficl.pcap /logsl/ 1
pcap-file traffic2.pcap /logs2/ 2
pcap-file traffic3.pcap /logs3/ 3
pcap-file traffic4.pcap /logs5/ 5
pcap-file traffic5.pcap /logs7/ 7

This runs the trafficl.pcap against tenant 1 and it logs into /logs1/, traffic2.pcap against tenant 2 and logs to /logs2/ and
SO on.

Live traffic mode

Multi-tenancy supports both VLAN and devices with live traffic.

In the master configuration yaml file, specify device or vlan for the selector setting.
Registration

Tenants can be mapped to vlan ids.

register-tenant-handler <tenant id> vlan <vlan id>

register-tenant-handler 1 vlan 1000

unregister-tenant-handler <tenant id> vlan <vlan id>

unregister-tenant-handler 4 vlan 1111
unregister-tenant-handler 1 vlan 1000

The registration of tenant and tenant handlers can be done on a running engine.

Reloads

Reloading all tenants:

reload-tenants

reload-tenants

Reloading a single tenant:

reload-tenant <tenant id> [yaml path]

reload-tenant 1 tenant-1.yaml
reload-tenant 5

The [yaml path] is optional. If it isn't provided, the original path of the tenant will be used during the reload.

388 Chapter 12. Configuration

Suricata User Guide, Release 8.0.0

12.5.5 Eve JSON output

When multi-tenant support is configured and the detect engine is active then all EVE-types that report based on flows
will also report the corresponding tenant_id for events matching a tenant configuration.

12.6 Dropping Privileges After Startup

Currently, 1ibcap-ng is needed for dropping privileges on Suricata after startup. For libcap, see status of feature
request number #276 -- Libcap support for dropping privileges.

Most distributions have 1ibcap-ng in their repositories.

To download the current version of libcap-ng from upstream, see also http://people.redhat.com/sgrubb/libcap-ng/
ChangelLog

wget http://people.redhat.com/sgrubb/libcap-ng/libcap-ng-0.7.8.tar.gz
tar -xzvf libcap-ng-0.7.8.tar.gz

cd libcap-ng-0.7.8

./configure

make

make install

Download, configure, compile and install Suricata for your particular setup. See Installation. Depending on your
environment, you may need to add the --with-libpcap_ng-libraries and --with-libpcap_ng-includes options during the
configure step. e.g:

./configure --with-libcap_ng-libraries=/usr/local/lib \
--with-libcap_ng-includes=/usr/local/include

Now, when you run Suricata, tell it what user and/or group you want it to run as after startup with the --user and --group
options. e.g. (this assumes a 'suri' user and group):

suricata -D -i eth® --user=suri --group=suri

You will also want to make sure your user/group permissions are set so Suricata can still write to its log files which are
usually located in /var/log/suricata.

mkdir -p /var/log/suricata
chown -R root:suri /var/log/suricata
chmod -R 775 /var/log/suricata

12.7 Using Landlock LSM

Landlock is a Linux Security Module that has been introduced in Linux 5.13. It allows an application to sandbox itself
by selecting access right to directories using a deny by default approach.

Given its nature, Suricata knows where it is going to read files and where it is going to write them. So it is possible to
implement an efficient Landlock sandboxing policy.

Landlock is not active by default and needs to be activated in the YAML configuration. Configuration should come
with sane default (defined at build time) and the command line options are used to dynamically add some permissions.

Please note that Landlock is in blocking mode by default so careful testing is needed in production.

12.6. Dropping Privileges After Startup 389

http://people.redhat.com/sgrubb/libcap-ng/ChangeLog
http://people.redhat.com/sgrubb/libcap-ng/ChangeLog

Suricata User Guide, Release 8.0.0

To enable Landlock, edit the YAML and set enabled to yes:

landlock:
enabled: yes
directories:
write:
- /var/log/suricata/
- /var/run/
read:
- /usr/
- /etc/
- /etc/suricata/

Following your running configuration you may have to add some directories. There are two lists you can use, write
to add directories where write is needed and read for directories where read access is needed.

Landlock is not active in some distributions and you may need to activate it at boot by adding 1sm=1andock to the Linux
command line. For example, on a Debian distribution with at least a linux 5.13, you can edit /etc/default/grub
and update the GRUB_CMDLINE_LINUX_DEFAULT option:

GRUB_CMDLINE_LINUX_DEFAULT="quiet lsm=landlock"

Then run sudo update-grub and reboot.

You can check at boot if it is running by doing:

sudo dmesg | grep landlock || journalctl -kg landlock

If you are interested in reading more about Landlock, you can use https://docs.kernel.org/userspace-api/landlock.html
as entry point.

12.8 systemd notification

12.8.1 Introduction

Suricata supports systemd notification with the aim of notifying the service manager of successful initialisation. The
purpose is to enable the ability to start upon/await successful start-up for services/test frameworks that depend on a
fully initialised Suricata .

During the initialisation phase Suricata synchronises the initialisation thread with all active threads to ensure they are in
arunning state. Once synchronisation has been completed a READY=1 status notification is sent to the service manager
using across the Systemd UNIX socket.

The path of the UNIX socket is taken from the NOTIFY_SOCKET env var.

390 Chapter 12. Configuration

https://docs.kernel.org/userspace-api/landlock.html

Suricata User Guide, Release 8.0.0

12.8.2 Example

A test framework requires Suricata to be capturing before the tests can be carried out. Writing a test.service and
ensuring the correct execution order with After=suricata.service forces the unit to be started after suricata.
service. This does not enforce Suricata has fully initialised. By configuring suricata.service as Type=notify
instructs the service manager to wait for the notification before starting test.service.

12.8.3 Requirements

This feature is only supported for distributions under the following conditions:
1. Any distribution that runs under systemd
2. Unit file configuration: Type=notify

For notification to the service manager the unit file must be configured as shown in requirement [2]. Upon all require-
ments being met the service manager will start and await READY=1 status from Suricata. Otherwise the service manager
will treat the service unit as Type=simple and consider it started immediately after the main process ExecStart= has
been forked.

12.8.4 Additional Information

To confirm the system is running under systemd:

ps --no-headers -o comm 1

See https://www.freedesktop.org/software/systemd/man/systemd.service.html for help writing systemd unit files.

See https://www.freedesktop.org/software/systemd/man/devel/sd_notify.html#Notes for a discussion of the UNIX
socket based notification.

12.9 Includes

A Suricata configuration file (typically /etc/suricata/suricata.yaml) may include other files allowing a config-
uration file to be broken into multiple files. The special field name include is used to include one or more files.

The contents of the include file are inlined at the level of the include statement. Include fields may also be included
at any level within a mapping.

12.9.1 Including a Single File

include: filename.yaml

12.9. Includes 391

https://www.freedesktop.org/software/systemd/man/systemd.service.html
https://www.freedesktop.org/software/systemd/man/devel/sd_notify.html#Notes

Suricata User Guide, Release 8.0.0

12.9.2 Including Multiple Files

include:
- filenamel.yaml
- filename2.yaml

12.9.3 Include Inside a Mapping

vars:
address-groups:
include: address-groups.yaml

where address-groups.yaml contains:

%YAML 1.1

HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"

is the equivalent of:

vars:
address-groups:
HOME_NET: "[192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]"

Note: Suricata versions less than 7 required multiple include statements to be specified to include more than one file.
While Suricata 7.0 still supports this it will issue a deprecation warning. Suricata 8.0 will not allow multiple include
statements at the same level as this is not allowed by YAML.

392 Chapter 12. Configuration

CHAPTER
THIRTEEN

REPUTATION

13.1 IP Reputation

13.1.1 IP Reputation Config

IP reputation has a few configuration directives, all disabled by default.

IP Reputation

#reputation-categories-file: /etc/suricata/iprep/categories.txt
#default-reputation-path: /etc/suricata/iprep
#reputation-files:

- reputation.list

reputation-categories-file

The categories file mapping numbered category values to short names.

reputation-categories-file: /etc/suricata/iprep/categories.txt

default-reputation-path

Path where reputation files from the "reputation-files" directive are loaded from by default.

default-reputation-path: /etc/suricata/iprep

reputation-files

YAML list of file names to load. In case of a absolute path the file is loaded directly, otherwise the path from "default-
reputation-path" is pre-pended to form the final path.

reputation-files:
- badhosts.list
- knowngood.list
- sharedhosting.list

393

Suricata User Guide, Release 8.0.0

Hosts

IP reputation information is stored in the host table, so the settings of the host table affect it.

Depending on the number of hosts reputation information is available for, the memcap and hash size may have to be
increased.

Reloads

Sending Suricata a USR2 signal will reload the IP reputation data, along with the normal rules reload.

During the reload the host table will be updated to contain the new data. The iprep information is versioned. When the
reload is complete, Suricata will automatically clean up the old iprep information.

Only the reputation files will be reloaded, the categories file won't be. If categories change, Suricata should be restarted.
File format

The format of the reputation files is described in the /P Reputation Format page.

13.1.2 IP Reputation Format

Description of IP Reputation file formats. For the configuration see /P Reputation Config and IP Reputation Keyword
for the rule format.

Categories file

The categories file provides a mapping between a category number, short name, and long description. It's a simple
CSV file:

<id>,<short name>,<description>

Example:

1,BadHosts,Known bad hosts
2,Google,Known google host

The maximum value for the category id is hard coded at 60 currently.

Reputation file

The reputation file lists a reputation score for hosts in the categories. It's a simple CSV file:

<ip>,<category>,<reputation score>

The IP is an IPv4 address in the quad-dotted notation or an IPv6 address. Both IP types support networks in CIDR
notation. The category is the number as defined in the categories file. The reputation score is the confidence that this
IP is in the specified category, represented by a number between 1 and 127 (0 means no data).

Example:

1.2.3.4,1,101
1.1.1.0/24,6,88

394 Chapter 13. Reputation

Suricata User Guide, Release 8.0.0

If an IP address has a score in multiple categories it should be listed in the file multiple times.

Example:

1,1,10
1

1.1.1.1,1
1.1.1.1,2,10

This lists 1.1.1.1 in categories 1 and 2, each with a score of 10.

The purpose of the IP reputation component is the ranking of IP Addresses within the Suricata Engine. It will collect,
store, update and distribute reputation intelligence on IP Addresses. The hub and spoke architecture will allows the
central database (The Hub) to collect, store and compile updated IP reputation details that are then distributed to user-
side sensor databases (Spokes) for inclusion in user security systems. The reputation data update frequency and security
action taken, is defined in the user security configuration.

The intent of IP Reputation is to allow sharing of intelligence regarding a vast number of IP addresses. This can be
positive or negative intelligence classified into a number of categories. The technical implementation requires three
major efforts; engine integration, the hub that redistributes reputation, and the communication protocol between hubs
and sensors. The hub will have a number of responsibilities. This will be a separate module running on a separate
system as any sensor. Most often it would run on a central database that all sensors already have communication with.
It will be able to subscribe to one or more external feeds. The local admin should be able to define the feeds to be
subscribed to, provide authentication credentials if required, and give a weight to that feed. The weight can be an
overall number or a by category weight. This will allow the admin to minimize the influence a feed has on their overall
reputation if they distrust a particular category or feed, or trust another implicitly. Feeds can be configured to accept
feedback or not and will report so on connect. The admin can override and choose not to give any feedback, but the
sensor should report these to the Hub upstream on connect. The hub will take all of these feeds and aggregate them
into an average single score for each IP or IP Block, and then redistribute this data to all local sensors as configured. It
should receive connections from sensors. The sensor will have to provide authentication and will provide feedback. The
hub should redistribute that feedback from sensors to all other sensors as well as up to any feeds that accept feedback.
The hub should also have an API to allow outside statistical analysis to be done to the database and fed back into the
stream. For instance a local site may choose to change the reputation on all Russian IP blocks, etc.

For more information about IP Reputation see /P Reputation Config, IP Reputation Keyword and IP Reputation Format.

13.1. IP Reputation 395

Suricata User Guide, Release 8.0.0

396 Chapter 13. Reputation

CHAPTER
FOURTEEN

INIT SCRIPTS

For Ubuntu with Upstart, the following can be used in /etc/init/suricata.conf:

suricata

description "Intrusion Detection System Daemon"

start on runlevel [2345]

stop on runlevel [!2345]

expect fork

exec suricata -D --pidfile /var/run/suricata.pid -c /etc/suricata/suricata.yaml -i ethl

397

Suricata User Guide, Release 8.0.0

398 Chapter 14. Init Scripts

CHAPTER
FIFTEEN

SETTING UP IPS/INLINE FOR LINUX

15.1 Setting up IPS with Netfilter

In this guide, we'll discuss how to work with Suricata in layer3 inline mode using iptables.

First, start by compiling Suricata with NFQ support. For instructions see Ubuntu Installation. For more information
about NFQ and iptables, see NFQ.

To check if you have NFQ enabled in your Suricata build, enter the following command:

suricata --build-info

and make sure that NFQ is listed in the output.

To run Suricata with the NFQ mode, you have to make use of the -q option. This option tells Suricata which queue
numbers it should use.

sudo suricata -c /etc/suricata/suricata.yaml -q 0O

15.1.1 Iptables configuration

First of all, it is important to know which traffic you would like to send to Suricata. There are two choices:
1. Traffic that passes your computer

2. Traffic that is generated by your computer.
Scenans 1

Metwork ~
Galeway

) o o

L
L— Farvward

399

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Ubuntu_Installation

Suricata User Guide, Release 8.0.0

Scenana 2
. e i
o
_ ./'J
Suricata T Internet
- {
INPUT
QUTPUT

If Suricata is running on a gateway and is meant to protect the computers behind that gateway you are dealing with the
first scenario: forward_ing .

If Suricata has to protect the computer it is running on, you are dealing with the second scenario: host (see drawing 2).
These two ways of using Suricata can also be combined.

The easiest rule in case of the gateway-scenario to send traffic to Suricata is:

sudo iptables -I FORWARD -j NFQUEUE

In this case, all forwarded traffic goes to Suricata.

In case of the host situation, these are the two most simple iptables rules;

sudo iptables -I INPUT -j NFQUEUE
sudo iptables -I OUTPUT -j NFQUEUE

It is possible to set a queue number. If you do not, the queue number will be 0 by default.

Imagine you want Suricata to check for example just TCP traffic, or all incoming traffic on port 80, or all traffic on
destination-port 80, you can do so like this:

sudo iptables -I INPUT -p tcp -j NFQUEUE
sudo iptables -I OUTPUT -p tcp -j NFQUEUE

In this case, Suricata checks just TCP traffic.

sudo iptables -I INPUT -p tcp --sport 80 -j NFQUEUE
sudo iptables -I OUTPUT -p tcp --dport 80 -j NFQUEUE

In this example, Suricata checks all packets for outgoing connections to port 80.

- e
Y by
source port 80 ,f-“l
T

b

Intermet
e

destination port B0

400 Chapter 15. Setting up IPS/inline for Linux

Suricata User Guide, Release 8.0.0

Suricata

To see if you have set your iptables rules correct make sure Suricata is running and enter:

sudo iptables -vnL

In the example you can see if packets are being logged.

5, 43968
tep spt:80 NFQUELE num B

tes)

SouUrce destination

tep dpt:88 HFMIEUE num 8

This description of the use of iptables is the way to use it with IPv4. To use it with IPv6 all previous mentioned
commands have to start with ip6tables. It is also possible to let Suricata check both kinds of traffic.

There is also a way to use iptables with multiple networks (and interface cards). Example:

ethl

Suricata
pppl

sudo iptables -I FORWARD -i eth® -o ethl -j NFQUEUE
sudo iptables -I FORWARD -i ethl -o eth® -j NFQUEUE

The options -i (input) -o (output) can be combined with all previous mentioned options.

If you would stop Suricata and use internet, the traffic will not come through. To make internet work correctly, first
delete all iptables rules.

To erase all iptables rules, enter:

15.1. Setting up IPS with Netfilter 401

Suricata User Guide, Release 8.0.0

sudo iptables -F

15.1.2 NFtables configuration

The NFtables configuration is straight forward and allows mixing firewall rules with IPS. The concept is to create a
dedicated chain for the IPS that will be evaluated after the firewalling rule. If your main table is named filter it can be
created like so:

nft> add chain filter IPS { type filter hook forward priority 10;}

To send all forwarded packets to Suricata one can use

nft> add rule filter IPS queue

To only do it for packets exchanged between ethO and ethl

nft> add rule filter IPS iif eth® oif ethl queue
nft> add rule filter IPS iif ethl oif eth® queue

15.1.3 NFQUEUE advanced options

The NFQUEUE mechanism supports some interesting options. The nftables configuration will be shown there but
the features are also available in iptables.

The full syntax of the queuing mechanism is as follows:

nft add rule filter IPS queue num 3-5 options fanout,bypass

This rule sends matching packets to 3 load-balanced queues starting at 3 and ending at 5. To get the packets in Suricata
with this setup, you need to specify multiple queues on command line:

suricata -q 3 -q 4 -q 5

fanout and bypass are the two available options:

* fanout: When used together with load balancing, this will use the CPU ID instead of connection hash as an index
to map packets to the queues. The idea is that you can improve performance if there’s one queue per CPU. This
requires total with a number of queues superior to 1 to be specified.

* bypass: By default, if no userspace program is listening on an Netfilter queue, then all packets that are to be
queued are dropped. When this option is used, the queue rule behaves like ACCEPT if there is no program
listening, and the packet will move on to the next table.

The bypass option can be used to avoid downtime of link when Suricata is not running but this also means that the
blocking feature will not be present.

402 Chapter 15. Setting up IPS/inline for Linux

Suricata User Guide, Release 8.0.0

15.2 Setting up IPS at Layer 2

15.2.1 AF_PACKET IPS mode

AF_PACKET capture method is supporting a IPS/Tap mode. In this mode, you just need the interfaces to be up.
Suricata will take care of copying the packets from one interface to the other. No iptables or nftables configuration
is necessary.

You need to dedicate two network interfaces for this mode. The configuration is made via configuration variable
available in the description of an AF_PACKET interface.

For example, the following configuration will create a Suricata acting as IPS between interface eth® and eth1:

af-packet:

- interface: eth®
threads: 1
defrag: no
cluster-type: cluster_flow
cluster-id: 98
copy-mode: ips
copy-iface: ethl
buffer-size: 64535

- interface: ethl
threads: 1
cluster-id: 97
defrag: no
cluster-type: cluster_flow
copy-mode: ips
copy-iface: eth®
buffer-size: 64535

This is a basic af-packet configuration using two interfaces. Interface eth® will copy all received packets to ethl
because of the copy-* configuration variable

copy-mode: ips
copy-iface: ethl

The configuration on ethl is symmetric

copy-mode: ips
copy-iface: eth®

There are some important points to consider when setting up this mode:

* MTU on both interfaces have to be equal: the copy from one interface to the other is direct and packets bigger
then the MTU will be dropped by kernel.

¢ Set different values of cluster-id on both interfaces to avoid conflict.

* Any network card offloading creating bigger then physical layer datagram (like GRO, LRO, TSO) will result in
dropped packets as the transmit path can not handle them.

 Set stream.inline to auto or yes so Suricata switches to blocking mode.
The copy-mode variable can take the following values:

¢ ips: the drop keyword is honored and matching packets are dropped.

15.2. Setting up IPS at Layer 2 403

Suricata User Guide, Release 8.0.0

* tap: no drop occurs, Suricata acts as a bridge

Some specific care must be taken to scale the capture method on multiple threads. As we can't use defrag that will
generate too big frames, the in kernel load balancing will not be correct: the IP-only fragment will not reach the same
thread as the full featured packet of the same flow because the port information will not be present.

A solution is to use eBPF load balancing to get an IP pair load balancing without fragmentation. The AF_PACKET
IPS Configuration using multiple threads and eBPF load balancing looks like the following:

af-packet:

- interface: eth®
threads: 16
defrag: no
cluster-type: cluster_ebpf
ebpf-1b-file: /usr/libexec/suricata/ebpf/lb.bpf
cluster-id: 98
copy-mode: ips
copy-iface: ethl
buffer-size: 64535

- interface: ethl
threads: 16
cluster-id: 97
defrag: no
cluster-type: cluster_ebpf
ebpf-1b-file: /usr/libexec/suricata/ebpf/lb.bpf
copy-mode: ips
copy-iface: eth®
buffer-size: 64535

The eBPF file /usr/libexec/suricata/ebpf/1lb.bpf may not be present on disk. See ¢eBPF and XDP for more
information.

15.2.2 DPDK IPS mode

In the same way as you would configure AF_PACKET IPS mode, you can configure the DPDK capture module. Prior
to starting with IPS (inline) setup, it is recommended to go over Data Plane Development Kit (DPDK) manual page to
understand the setup essentials.

DPDK IPS mode, similarly to AF-Packet, uses two interfaces. Packets received on the first network interface
(0000:3b:00. 1) are transmitted by the second network interface (0000:3b:00.0) and similarly, packets received on
the second interface (0000:3b:00.0) are transmitted by the first interface (0000:3b:00.1). Packets are not altered
in any way in this mode.

The following configuration snippet configures Suricata DPDK IPS mode between two NICs:

dpdk:
eal-params:
proc-type: primary

interfaces:

- interface: 0000:3b:00.1
threads: 4
promisc: true
multicast: true
checksum-checks: true

(continues on next page)

404 Chapter 15. Setting up IPS/inline for Linux

Suricata User Guide, Release 8.0.0

(continued from previous page)

checksum-checks-offload: true
mempool-size: 262143
mempool-cache-size: 511
rx-descriptors: 4096
tx-descriptors: 4096
copy-mode: ips

copy-iface: 0000:3b:00.0

mtu: 3000

interface: 0000:3b:00.0
threads: 4

promisc: true

multicast: true
checksum-checks: true
checksum-checks-offload: true
mempool-size: 262143
mempool-cache-size: 511
rx-descriptors: 4096
tx-descriptors: 4096
copy-mode: ips
copy-iface: 0000:3b:00.1
mtu: 3000

The previous DPDK configuration snippet outlines several things to consider:

copy-mode - see Section AF_PACKET IPS mode for more details.
copy-iface - see Section AF_PACKET IPS mode for more details.

threads - all interface entries must have their thread count configured and paired/connected interfaces must be

configured with the same amount of threads.

mtu - MTU must be the same on both paired interfaces.

DPDK capture module also requires having CPU affinity set in the configuration file. For the best performance, ev-
ery Suricata worker should be pinned to a separate CPU core that is not shared with any other Suricata thread (e.g.
management threads). The following snippet shows a possible Threading configuration set-up for DPDK IPS mode.

threading:
set-cpu-affinity: yes
cpu-affinity:

management-cpu-set:
cpu: [0]
worker-cpu-set:
cpu: [2,4,6,8,10,12,14,16]

15.2. Setting up IPS at Layer 2

405

Suricata User Guide, Release 8.0.0

15.2.3 Netmap IPS mode

Using Netmap to support IPS requires setting up pairs of interfaces; packets are received on one interface within the
pair, inspected by Suricata, and transmitted on the other paired interface. You can use native or host stack mode; host
stack mode is used when the interface name contains the # character, e.g, enp6s®£04. host stack mode does not require
multiple physical network interfaces.

Netmap Host Stack Mode

Netmap's host stack mode allows packets that flow through Suricata to be used with other host OS applications, e.g., a
firewall or similar. Additionally, host stack mode allows traffic to be received and transmitted on one network interface
card.

With host stack mode, Netmap establishes a pair of host stack mode rings (one each for RX and TX). Packets pass
through the host operating system network protocol stack. Ingress network packets flow from the network interface
card to the network protocol stack and then into the host stack mode rings. Outbound packets flow from the host stack
mode rings to the network protocol stack and finally, to the network interface card. Suricata receives packets from
the host stack mode rings and, in IPS mode, places packets to be transmitted into the host stack mode rings. Packets
transmitted by Suricata into the host stack mode rings are available for other host OS applications.

Paired network interfaces are specified in the netmap configuration section. For example, the following configuration
will create a Suricata acting as IPS between interface enp6s0£0 and enp6s0£1

netmap:

- interface: enp6s0£f0
threads: auto
copy-mode: ips
copy-iface: enp6s0f1l

- interface: enp6s0fl
threads: auto
copy-mode: ips
copy-iface: enp6s0£f0

You can specify the threads value; the default value of auto will create a thread for each queue supported by the
NIC,; restrict the thread count by specifying a value, e.g., threads: 1

This is a basic netmap configuration using two interfaces. Suricata will copy packets between interfaces enp6s0£0
and en60sf1 because of the copy-* configuration variable in interface's enp6s0f® configuration

copy-mode: ips
copy-iface: enp6s0fl

The configuration on enp6s0£f1 is symmetric

copy-mode: ips
copy-iface: enp6s0f®

The host stack mode feature of Netmap can be used. host stack mode doesn't require a second network interface.

This example demonstrates host stack mode with a single physical network interface enp6s0£01

- interface: enp60s0f0
copy-mode: ips
copy-iface: enp6s0f0*

406 Chapter 15. Setting up IPS/inline for Linux

Suricata User Guide, Release 8.0.0

The configuration on enp6s0f04 is symmetric

- interface: enp60s0f0*
copy-mode: ips
copy-iface: enp6s0£f®

Suricata will use zero-copy mode when the runmode is workers.
There are some important points to consider when setting up this mode:

* Any network card offloading creating bigger then physical layer datagram (like GRO, LRO, TSO) will result in
dropped packets as the transmit path can not handle them.

* Set stream.inline to auto or yes so Suricata switches to blocking mode. The default value is auto.
The copy-mode variable can take the following values:
* ips: the drop keyword is honored and matching packets are dropped.

* tap: no drop occurs, Suricata acts as a bridge

15.2. Setting up IPS at Layer 2 407

Suricata User Guide, Release 8.0.0

408 Chapter 15. Setting up IPS/inline for Linux

CHAPTER
SIXTEEN

SETTING UP IPS/INLINE FOR WINDOWS

This guide explains how to work with Suricata in layer 4 inline mode using WinDivert on Windows.

First start by compiling Suricata with WinDivert support. For instructions, see Windows Installation. This documenta-
tion has not yet been updated with WinDivert information, so make sure to add the following flags before configuring
Suricata with configure:

--enable-windivert=yes --with-windivert-include=<include-dir> --with-windivert-libraries=
—<libraries-dir>

WinDivert.dll and WinDivert.sys must be in the same directory as the Suricata executable. WinDivert automatically
installs the driver when it is run. For more information about WinDivert, see https://www.reqrypt.org/windivert-doc.
html.

To check if you have WinDivert enabled in your Suricata, enter the following command in an elevated command prompt
or terminal:

suricata -c suricata.yaml --windivert [filter string]

For information on the WinDivert filter language, see https://www.reqrypt.org/windivert-doc.html#filter_language

If Suricata is running on a gateway and is meant to protect the network behind that gateway, you need to run WinDivert
at the NETWORK_FORWARD layer. This can be achieved using the following command:

suricata -c suricata.yaml --windivert-forward [filter string]

The filter is automatically stopped and normal traffic resumes when Suricata is stopped.

A quick start is to examine all traffic, in which case you can use the following command:

suricata -c suricata.yaml --windivert[-forward] true

A few additional examples:

Only TCP traffic:

suricata -c suricata.yaml --windivert tcp

Only TCP traffic on port 80:

suricata -c suricata.yaml --windivert "tcp.DstPort == 80"

TCP and ICMP traffic:

suricata -c suricata.yaml --windivert "tcp or icmp"

409

https://redmine.openinfosecfoundation.org/attachments/download/1175/SuricataWinInstallationGuide_v1.4.3.pdf
https://www.reqrypt.org/windivert-doc.html
https://www.reqrypt.org/windivert-doc.html
https://www.reqrypt.org/windivert-doc.html#filter_language

Suricata User Guide, Release 8.0.0

410 Chapter 16. Setting up IPS/inline for Windows

CHAPTER
SEVENTEEN

OUTPUT

17.1 EVE

17.1.1 Eve JSON Output

The EVE output facility outputs alerts, anomalies, metadata, file info and protocol specific records through JSON.

The most common way to use this is through 'EVE', which is a firehose approach where all these logs go into a single
file.

outputs:

Extensible Event Format (nicknamed EVE) event log in JSON format

- eve-log:
enabled: yes
filetype: regular #regular|syslog|unix_dgram|unix_stream|redis
filename: eve.json
Enable for multi-threaded eve.json output; output files are amended with
an identifier, e.g., eve.9.json
#threaded: false
Specify the amount of buffering, in bytes, for
this output type. The default value 0 means '"no
buffering".
#buffer-size: 0
#prefix: "@cee: " # prefix to prepend to each log entry
the following are valid when type: syslog above
#identity: "suricata"
#facility: local5
#level: Info ## possible levels: Emergency, Alert, Critical,

Error, Warning, Notice, Info, Debug
#ethernet: no # log ethernet header in events when available
#redis:
server: 127.0.0.1
port: 6379
async: true ## if redis replies are read asynchronously
mode: list ## possible values: list|[lpush (default), rpush, channel|publish,..
—xadd|stream

lpush and rpush are using a Redis list. "list" is an alias for.
< 1push

publish is using a Redis channel. "channel" is an alias for.
—publish

xadd is using a Redis stream. "stream" is an alias for xadd

(continues on next page)

411

Suricata User Guide, Release 8.0.0

(continued from previous page)

key: suricata ## string denoting the key/channel/stream to use (default to.

—suricata)
stream-maxlen: 100000 ## Automatically trims the stream length to at most
this number of events. Set to 0 to disable.
—trimming.

Only used when mode is set to xadd/stream.
stream-trim-exact: false ## Trim exactly to the maximum stream length above.
Default: use inexact trimming (inexact by a few
tens of items)
Only used when mode is set to xadd/stream.
Redis pipelining set up. This will enable to only do a query every
'batch-size' events. This should lower the latency induced by network
connection at the cost of some memory. There is no flushing implemented
so this setting should be reserved to high traffic Suricata deployments.
pipelining:
enabled: yes ## set enable to yes to enable query pipelining
batch-size: 10 ## number of entries to keep in buffer

O W R W W R

Include top level metadata. Default yes.
#metadata: no

include the name of the input pcap file in pcap file processing mode
pcap-file: false

Community Flow ID

Adds a 'community-id' field to EVE records. These are meant to give
records a predictable flow ID that can be used to match records to
output of other tools such as Zeek (Bro).

Takes a 'seed' that needs to be same across sensors and tools
to make the id less predictable.

oW W W W W R

enable/disable the community id feature.

community-id: false

Seed value for the ID output. Valid values are 0-65535.
community-id-seed:

HTTP X-Forwarded-For support by adding an extra field or overwriting
the source or destination IP address (depending on flow direction)
with the one reported in the X-Forwarded-For HTTP header. This is
helpful when reviewing alerts for traffic that is being reverse
or forward proxied.
xff:
enabled: no
Two operation modes are available: "extra-data" and "overwrite".
mode: extra-data
Two proxy deployments are supported: "reverse" and "forward". In
a "reverse" deployment the IP address used is the last one, in a
"forward" deployment the first IP address is used.
deployment: reverse
Header name where the actual IP address will be reported. If more
than one IP address is present, the last IP address will be the

(continues on next page)

412

Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

one taken into consideration.
header: X-Forwarded-For

types:
- alert:
payload: yes # enable dumping payload in Base64
payload-buffer-size: 4kb # max size of payload buffer to output in eve-log
payload-printable: yes # enable dumping payload in printable (lossy).

— format

payload-length: yes # enable dumping payload length, including the.
—gaps

packet: yes # enable dumping of packet (without stream.
—.segments)

metadata: no # enable inclusion of app layer metadata with.

—alert. Default yes
If you want metadata, use:
metadata:
Include the decoded application layer (ie. http, dns)
#app-layer: true
Log the current state of the flow record.
#flow: true
#rule:
Log the metadata field from the rule in a structured
format.
#metadata: true
Log the raw rule text.
#raw: false
#reference: false # include reference information from the rule
http-body: yes # Requires metadata; enable dumping of HTTP body.
—1in Baseb64
http-body-printable: yes # Requires metadata; enable dumping of HTTP body.
—1in printable format
websocket-payload: yes # Requires metadata; enable dumping of WebSocket.
—Payload in Base64
websocket-payload-printable: yes # Requires metadata; enable dumping of.
—.WebSocket Payload in printable format

Enable the logging of tagged packets for rules using the
"tag" keyword.
tagged-packets: yes
Enable logging the final action taken on a packet by the engine
(e.g: the alert may have action 'allowed' but the verdict be
'drop' due to another alert. That's the engine's verdict)
verdict: yes
app layer frames
- frame:
disabled by default as this is very verbose.
enabled: no
payload-buffer-size: 4kb # max size of frame payload buffer to output in,
—eve-log
- anomaly:
Anomaly log records describe unexpected conditions such

(continues on next page)

17.1. EVE 413

Suricata User Guide, Release 8.0.0

(continued from previous page)

as truncated packets, packets with invalid IP/UDP/TCP
length values, and other events that render the packet
invalid for further processing or describe unexpected
behavior on an established stream. Networks which
experience high occurrences of anomalies may experience
packet processing degradation.

Anomalies are reported for the following:

1. Decode: Values and conditions that are detected while
decoding individual packets. This includes invalid or
unexpected values for low-level protocol lengths as well
as stream related events (TCP 3-way handshake issues,
unexpected sequence number, etc).

2. Stream: This includes stream related events (TCP
3-way handshake issues, unexpected sequence number,
etc).

3. Application layer: These denote application layer
specific conditions that are unexpected, invalid or are
unexpected given the application monitoring state.

By default, anomaly logging is enabled. When anomaly
logging is enabled, applayer anomaly reporting is
also enabled.
enabled: yes
#
Choose one or more types of anomaly logging and whether to enable
logging of the packet header for packet anomalies.
types:

decode: no

stream: no

applayer: yes
#packethdr: no

S T R R IR R R R R R S S R R I T

- http:

extended: yes # enable this for extended logging information

custom allows additional HTTP fields to be included in eve-log.

the example below adds three additional fields when uncommented
#custom: [Accept-Encoding, Accept-Language, Authorization]

set this value to one and only one from {both, request, response}
to dump all HTTP headers for every HTTP request and/or response
dump-all-headers: none

- dns:

This configuration uses the new DNS logging format,
the old configuration is still available:
https://docs.suricata.io/en/latest/output/eve/eve-json-output.html#dns-vi-

— format

As of Suricata 5.0, version 2 of the eve dns output

format is the default.

#version: 2

Enable/disable this logger. Default: enabled.

#enabled: yes

(continues on next page)

414 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

Control logging of requests and responses:

- requests: enable logging of DNS queries

- responses: enable logging of DNS answers

By default both requests and responses are logged.
#requests: no

#responses: no

Format of answer logging:

- detailed: array item per answer

- grouped: answers aggregated by type
Default: all

#formats: [detailed, grouped]

DNS record types to log, based on the query type.
Default: all.
#types: [a, aaaa, cname, mx, ns, ptr, txt]
- tls:
extended: yes # enable this for extended logging information
output TLS transaction where the session is resumed using a
session id
#session-resumption: no
custom controls which TLS fields that are included in eve-log
WARNING: enabling custom disables extended logging.
#custom: [subject, issuer, session_resumed, serial, fingerprint, sni,.
—sversion, not_before, not_after, certificate, chain, ja3, ja3s, ja4, subjectaltname,.
—client, client_certificate, client_chain, client_alpns, server_alpns]
- files:
force-magic: no # force logging magic on all logged files
force logging of checksums, available hash functions are md5,
shal and sha256
#force-hash: [md5]

#- drop:

alerts: yes # log alerts that caused drops

flows: all # start or all: 'start' logs only a single drop
per flow direction. All logs each dropped pkt.

Enable logging the final action taken on a packet by the engine
(will show more information in case of a drop caused by 'reject’)
verdict: yes
- smtp:
#extended: yes # enable this for extended logging information
this includes: bcc, message-id, subject, x_mailer, user-agent
custom fields logging from the list:
reply-to, bcc, message-id, subject, x-mailer, user-agent, received,
x-originating-ip, in-reply-to, references, importance, priority,
sensitivity, organization, content-md5, date
#custom: [received, x-mailer, x-originating-ip, relays, reply-to, bcc]
output md5 of fields: body, subject
for the body you need to set app-layer.protocols.smtp.mime.body-md5
to yes
#md5: [body, subject]

(continues on next page)

17.1. EVE 415

Suricata User Guide, Release 8.0.0

(continued from previous page)

#- dnp3

websocket

- ftp

- ftp-data

- rdp

- nfs

- smb

- tftp

- ike

- dcerpc

- krb5

- bittorrent-dht

- ssh

- arp:
enabled: no

- snmp

- rfb

- sip

- quic

- dhcp:
enabled: yes
When extended mode is on, all DHCP messages are logged
with full detail. When extended mode is off (the
default), just enough information to map a MAC address
to an IP address is logged.
extended: no

- mgtt:

passwords: yes # enable output of passwords
string-log-limit: 1kb # limit size of logged strings in bytes.
Can be specified in kb, mb, gb. Just a number
is parsed as bytes. Default is 1KB.
Use a value of 0 to disable limiting.
Note that the size is also bounded by
the maximum parsed message size (see
app-layer configuration)
- http2
- pgsql:
enabled: no
passwords: yes # enable output of passwords. Disabled by default
- stats:
totals: yes # stats for all threads merged together
threads: no # per thread stats
deltas: no # include delta values

Don't log stats counters that are zero. Default: true

#null-values: false # False will NOT log stats counters: 0

bi-directional flows

- flow

uni-directional flows

#- netflow

Metadata event type. Triggered whenever a pktvar is saved

H

and will include the pktvars, flowvars, flowbits and

(continues on next page)

416

Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

flowints.
#- metadata

EXPERIMENTAL per packet output giving TCP state tracking details
including internal state, flags, etc.

This output is experimental, meant for debugging and subject to
change in both config and output without any notice.

#- stream:

all: false # log all TCP packets

event-set: false # log packets that have a decoder/stream.
—event

state-update: false # log packets triggering a TCP state update

spurious-retransmission: false # log spurious retransmission packets

#
heartbeat:

The output-flush-interval value governs how often Suricata will instruct the
detection threads to flush their EVE output. Specify the value in seconds [1-60]
and Suricata will initiate EVE log output flushes at that interval. A value
of 0 means no EVE log output flushes are initiated. When the EVE output
buffer-size value is non-zero, some EVE output that was written may remain
buffered. The output-flush-interval governs how much buffered data exists.

oW R R W W W

The default value is: 0 (never instruct detection threads to flush output)
#output-flush-interval: 0

Each alert, http log, etc will go into this one file: 'eve.json'. This file can then be processed by 3rd party tools like
Logstash (ELK) or jq.

If ethernet is set to yes, then ethernet headers will be added to events if available. If the pkt_src value is stream
(flow timeout), then the ethernet value will be populated with mac addresses from the flow's first packet with
ethernet header.

If suricata-version is set to yes, then Suricata version, with its git revision if available, will be added to events as
suricata_version.

Output Buffering

Output flushing is controlled by values in the configuration section heartbeat. By default, Suricata's output is syn-
chronous with little possibility that written data will not be persisted. However, if output.buffer-size has a non-
zero value, then some data may be written for the output, but not actually flushed. buffer-size bytes may be held in
memory and written a short time later opening the possibility -- but limited -- for output data loss.

Hence, a heartbeat mechanism is introduced to limit the amount of time buffered data may exist before being flushed.
Control is provided to instruct Suricata's detection threads to flush their EVE output. With default values, there is
no change in output buffering and flushing behavior. output-flush-interval controls how often Suricata's detect
threads will flush output in a heartbeat fashion. A value of ® means "never"; non-zero values must be in [1-60]
seconds.

Flushing should be considered when outputs.buffer-size is greater than O to limit the amount and age of buffered,
but not persisted, output data. Flushing is never needed when buffer-size is 0.

heartbeat:
#output-flush-interval: 0

17.1. EVE 417

Suricata User Guide, Release 8.0.0

Output types

EVE can output to multiple methods. regular is anormal file. Other options are syslog, unix_dgram, unix_stream
and redis.

Output types:

filetype: regular #regular|syslog|unix_dgram|unix_stream|redis

filename: eve.json

Enable for multi-threaded eve.json output; output files are amended

with an identifier, e.g., eve.9.json. Default: off

#threaded: off

Specify the amount of buffering, in bytes, for

this output type. The default value ® means '"no

buffering".

#buffer-size: 0

#prefix: "@cee: " # prefix to prepend to each log entry

the following are valid when type: syslog above

#identity: "suricata"

#facility: local5

#level: Info ## possible levels: Emergency, Alert, Critical,
Error, Warning, Notice, Info, Debug

#ethernet: no # log ethernet header in events when available

#suricata-version: no # include suricata version. Default no.

#redis:

server: 127.0.0.1

port: 6379

async: true ## if redis replies are read asynchronously

mode: list ## possible values: list|lpush (default), rpush, channel|publish,..

—xadd|stream

lpush and rpush are using a Redis list. "list" is an alias for Ilpush
publish is using a Redis channel. "channel" is an alias for publish

xadd is using a Redis stream. "stream" is an alias for xadd

key: suricata ## string denoting the key/channel/stream to use (default to suricata)
stream-maxlen: 100000 ## Automatically trims the stream length to at most

this number of events. Set to 0 to disable trimming.
Only used when mode is set to xadd/stream.

stream-trim-exact: false ## Trim exactly to the maximum stream length above.
Default: use inexact trimming (inexact by a few
tens of items)
Only used when mode is set to xadd/stream.

Redis pipelining set up. This will enable to only do a query every

'batch-size' events. This should lower the latency induced by network

connection at the cost of some memory. There is no flushing implemented

so this setting as to be reserved to high traffic suricata.

pipelining:

enabled: yes ## set enable to yes to enable query pipelining

batch-size: 10 ## number of entry to keep in buffer

418 Chapter 17. Output

Suricata User Guide, Release 8.0.0

Alerts

Alerts are event records for rule matches. They can be amended with metadata, such as the application layer record
(HTTP, DNS, etc) an alert was generated for, and elements of the rule.

The alert is amended with application layer metadata for signatures using application layer keywords. It is also the case
for protocols over UDP as each single packet is expected to contain a PDU.

For other signatures, the option guess-applayer-tx can be used to force the detect engine to tie a transaction to an
alert. This transaction is not guaranteed to be the relevant one, depending on your use case and how you define relevant
here. WARNING: If there are multiple live transactions, none will get picked up. This is to reduce the chances of
logging unrelated data, and may lead to alerts being logged without metadata, in some cases. The alert event will have
tx_guessed: true to recognize such alerts.

Metadata:

- alert:
#payload: yes # enable dumping payload in Base64
#payload-buffer-size: 4kb # max size of payload buffer to output in eve-log
#payload-printable: yes # enable dumping payload in printable (lossy) format

#payload-length: yes # enable dumping payload length, including the gaps
#packet: yes # enable dumping of packet (without stream segments)
#http-body: yes # Requires metadata; enable dumping of http body in Base64

#http-body-printable: yes # Requires metadata; enable dumping of http body in.
—printable format

metadata:

Include the decoded application layer (ie. http, dns)
#app-layer: true

Log the current state of the flow record.
#flow: true

#rule:
Log the metadata field from the rule in a structured
format.
#metadata: true

Log the raw rule text.
#raw: false

Include the rule reference information
#reference: false

17.1. EVE 419

Suricata User Guide, Release 8.0.0

Anomaly

Anomalies are event records created when packets with unexpected or anomalous values are handled. These events
include conditions such as incorrect protocol values, incorrect protocol length values, and other conditions which render
the packet suspect. Other conditions may occur during the normal progression of a stream; these are termed stream
events are include control sequences with incorrect values or that occur out of expected sequence.

Anomalies are reported by and configured by type:
* Decode
e Stream
* Application layer

Metadata:

- anomaly:

Anomaly log records describe unexpected conditions such as truncated packets,
packets with invalid IP/UDP/TCP length values, and other events that render
the packet invalid for further processing or describe unexpected behavior on
an established stream. Networks which experience high occurrences of
anomalies may experience packet processing degradation.

Anomalies are reported for the following:

1. Decode: Values and conditions that are detected while decoding individual
packets. This includes invalid or unexpected values for low-level protocol
lengths as well.

. Stream: This includes stream related events (TCP 3-way handshake issues,
unexpected sequence number, etc).

3. Application layer: These denote application layer specific conditions that

are unexpected, invalid or are unexpected given the application monitoring

state.

By default, anomaly logging is disabled. When anomaly logging is enabled,
application-layer anomaly reporting is enabled.

Choose one or both types of anomaly logging and whether to enable
logging of the packet header for packet anomalies.
types:
#decode: no
#stream: no
#applayer: yes
#packethdr: no

R R T OO W R R T OO OH W ORH KRR W W W
N

HTTP

HTTP transaction logging.
Config:

- http:
extended: yes # enable this for extended logging information
custom allows additional http fields to be included in eve-log
the example below adds three additional fields when uncommented

(continues on next page)

420 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

#custom: [Accept-Encoding, Accept-Language, Authorization]
set this value to one among {both, request, response} to dump all
http headers for every http request and/or response
dump-all-headers: [both, request, response]

List of custom fields:

Yaml Option

HTTP Header

accept

accept

accept_charset

accept-charset

accept_encoding

accept-encoding

accept_language

accept-language

accept_datetime

accept-datetime

authorization authorization
cache_control cache-control
cookie cookie

from from
max_forwards max-forwards
origin origin
pragma pragma
proxy_authorization | proxy-authorization
range range

te te

via via

x_requested_with

x-requested-with

dnt

dnt

x_forwarded_proto

x-forwarded-proto

Xx_authenticated_user

x-authenticated-user

x_flash_version

x-flash-version

accept_range

accept-range

age age
allow allow
connection connection

content_encoding

content-encoding

content_language

content-language

content_length

content-length

content_location

content-location

content_md5

content-md5

content_range

content-range

content_type

content-type

date date

etag etags

expires expires
last_modified last-modified
link link

location location

proxy_authenticate

proxy-authenticate

referer

referer

refresh

refresh

retry_after

retry-after

continues on next page

17.1. EVE

421

Suricata User Guide, Release 8.0.0

Table 1 - continued from previous page

Yaml Option HTTP Header
server server

set_cookie set-cookie

trailer trailer
transfer_encoding transfer-encoding
upgrade upgrade

vary vary

warning warning
www_authenticate www-authenticate
true_client_ip true-client-ip
org_src_ip org-src-ip
x_bluecoat_via x-bluecoat-via

In the custom option values from both columns can be used. The HTTP Header column is case insensitive.

DNS

Note: As of Suricata 7.0 the vl EVE DNS format has been removed.

Version 2 EVE DNS will be removed in Suricata 9.

DNS records are logged as one entry for the request, and one entry for the response.

YAML:

- dns:
#version: 3

Enable/disable this logger. Default: enabled.
#enabled: yes

Control logging of requests and responses:

- requests: enable logging of DNS queries

- responses: enable logging of DNS answers

By default both requests and responses are logged.
#requests: no

#responses: no

Format of answer logging:

- detailed: array item per answer

- grouped: answers aggregated by type
Default: all

#formats: [detailed, grouped]

Types to log, based on the query type.
Default: all.
#types: [a, aaaa, cname, mx, ns, ptr, txt]

422

Chapter 17. Output

Suricata User Guide, Release 8.0.0

TLS

TLS records are logged one record per session.

YAML:

- tls:

extended: yes # enable this for extended logging information

custom allows to control which tls fields that are included

in eve-log

#custom: [subject, issuer, serial, fingerprint, sni, version, not_before, not_after,.
—certificate, chain, ja3, ja3s, ja4]

The default is to log certificate subject and issuer. If extended is enabled, then the log gets more verbose.

By using custom it is possible to select which TLS fields to log. Note that this will disable ““extended"" logging.

ARP

ARP records are logged as one entry for the request, and one entry for the response.

YAML:

- arp:
enabled: no

The logger is disabled by default since ARP can generate a large number of events.

MQTT

EVE-JSON output for MQTT consists of one object per MQTT transaction, with some common and various type-
specific fields. Two aspects can be configured:

YAML:

- mqtt:
passwords: yes
string-log-limit: 1kb

enable output of passwords

limit size of logged strings in bytes.

Can be specified in kb, mb, gb. Just a number
is parsed as bytes. Default is 1KB.

Use a value of 0 to disable limiting.

Note that the size is also bounded by

the maximum parsed message size (see
app-layer configuration)

HOoR OH W W W W W

The default is to output passwords in cleartext and not to limit the size of message payloads. Depending on the kind of
context the parser is used in (public output, frequent binary transmissions, ...) this can be configured for regular mqtt
events.

17.1. EVE 423

Suricata User Guide, Release 8.0.0

Drops

Drops are event types logged when the engine drops a packet.

Config:
- drop:
alerts: yes # log alerts that caused drops
flows: all # start or all: 'start' logs only a single drop

per flow direction. All logs each dropped pkt.
Enable logging the final action taken on a packet by the engine
(will show more information in case of a drop caused by 'reject')
verdict: yes

Stats

Zero-valued Counters

While the human-friendly stats.log output will only log out non-zeroed counters, by default EVE Stats logs output all
enabled counters, which may lead to fairly verbose logs.

To reduce log file size, one may set null-values to false. Do note that this may impact on the visibility of information
for which a stats counter as zero is relevant.

Config:

- stats:
Don't log stats counters that are zero. Default: true
#null-values: false # False will NOT log stats counters: 0

Date modifiers in filename

It is possible to use date modifiers in the eve-log filename.

outputs:
- eve-log:
filename: eve-%s.json

The example above adds epoch time to the filename. All the date modifiers from the C library should be supported.
See the man page for strftime for all supported modifiers.

Threaded file output
By default, all output is written to the named filename in the outputs section. The threaded option enables each output
thread to write to individual files. In this case, the £ilename will include a unique identifier.

With threaded enabled, the output will be split among many files -- and the aggregate of each file's contents must be
treated together.

outputs:
- eve-log:
filename: eve.json
threaded: on

424 Chapter 17. Output

Suricata User Guide, Release 8.0.0

This example will cause each Suricata thread to write to its own "eve.json" file. Filenames are constructed by adding
a unique identifier to the filename. For example, eve.7. json.

Rotate log file

Eve-log can be configured to rotate based on time.

outputs:
- eve-log:
filename: eve-%Y-%m-%d-%H:%M.json
rotate-interval: minute

The example above creates a new log file each minute, where the filename contains a timestamp. Other supported
rotate-interval values are hour and day.

In addition to this, it is also possible to specify the rotate-interval as a relative value. One example is to rotate the
log file each X seconds.

outputs:
- eve-log:
filename: eve-%Y-%m-%d-%H:%M:%S.json
rotate-interval: 30s

The example above rotates eve-log each 30 seconds. This could be replaced with 30m to rotate every 30 minutes, 30h
to rotate every 30 hours, 30d to rotate every 30 days, or 30w to rotate every 30 weeks.

Multiple Logger Instances

It is possible to have multiple 'EVE' instances, for example the following is valid:

outputs:
- eve-log:
enabled: yes
type: file
filename: eve-ips.json
types:
- alert
- drop

- eve-log:
enabled: yes
type: file
filename: eve-nsm.json
types:
- http
- dns
- tls

So here the alerts and drops go into 'eve-ips.json', while http, dns and tls go into 'eve-nsm.json'.

With the exception of drop, you can specify multiples of the same logger type, however, drop can only be used once.

Note: The use of independent json loggers such as alert-json-log, dns-json-log, etc. has been deprecated and will be
removed by June 2020. Please use multiple eve-log instances as documented above instead. Please see the deprecation

17.1. EVE 425

https://suricata.io/our-story/deprecation-policy/
https://suricata.io/our-story/deprecation-policy/

Suricata User Guide, Release 8.0.0

policy for more information.

File permissions

Log file permissions can be set individually for each logger. filemode can be used to control the permissions of a log
file, e.g.:

outputs:
- eve-log:
enabled: yes
filename: eve.json
filemode: 600

The example above sets the file permissions on eve. json to 600, which means that it is only readable and writable by
the owner of the file.

JSON flags

Several flags can be specified to control the JSON output in EVE:

outputs:
- eve-log:
json:
Sort object keys in the same order as they were inserted
preserve-order: yes

Make the output more compact
compact: yes

Escape all unicode characters outside the ASCII range
ensure-ascii: yes

Escape the '/' characters in string with '\/'
escape-slash: yes

All these flags are enabled by default, and can be modified per EVE instance.

Community Flow ID

Often Suricata is used in combination with other tools like Bro/Zeek. Enabling the community-id option in the eve-log
section adds a new community_id field to each output.

Example:

{
"timestamp": "2003-12-16T13:21:44.891921+0000",
"flow_id": 1332028388187153,

"pcap_cnt": 1,
"event_type": "alert",

"community_id": "1:LQU9qZ1K+B5F3KDmev6m5PMibrg="",

(continues on next page)

426 Chapter 17. Output

https://suricata.io/our-story/deprecation-policy/
https://suricata.io/our-story/deprecation-policy/

Suricata User Guide, Release 8.0.0

(continued from previous page)

"alert": {
"action": "allowed",
"gid": 1,
"signature_id": 1,
1,
}
{
"timestamp": "2003-12-16T13:21:45.037333+0000",
"flow_id": 1332028388187153,
"event_type": "flow",
"flow": {
"pkts_toserver": 5,
"pkts_toclient": 4,
"bytes_toserver": 338,
"bytes_toclient": 272,
"start": "2003-12-16T13:21:44.891921+0000",
"end": "2003-12-16T13:21:45.346457+0000",
"age": 1,
"state": "closed",
"reason": "shutdown",
"alerted": true
1,
"community_id": "1:LQU9qZ1K+B5F3KDmev6m5PMibrg="",
}
Options

The output can be enabled per instance of the EVE logger.

The community-id option is boolean. If set to true it is enabled. The community-id-seed option specifies a
unsigned 16 bit value that is used a seed to the hash that is calculated for the community-id output. This must be set
to the same value on all tools that output this record.

YAML:

- eve-log:
Community Flow ID
Adds a 'community_id' field to EVE records. These are meant to give
a records a predictable flow id that can be used to match records to
output of other tools such as Bro.

Takes a 'seed' that needs to be same across sensors and tools
to make the id less predictable.

HOoR R R R W

enable/disable the community id feature.

community-id: false

Seed value for the ID output. Valid values are 0-65535.
community-id-seed: 0

17.1. EVE 427

Suricata User Guide, Release 8.0.0

Multi Tenancy

Suricata can be configured to support multiple tenants with different detection engine configurations. When these
tenants are configured and the detection engine is running then all EVE logging will also report the tenant_id field
for traffic matching a specific tenant.

17.1.2 Eve JSON Format

Example:

{
"timestamp": "2017-04-07T22:24:37.251547+0100",
"flow_id": 586497171462735,

"pcap_cnt": 53381,
"event_type": "alert",
"src_ip": "192.168.2.14",
"src_port": 50096,
"dest_ip": "209.53.113.5",
"dest_port": 80,
"proto": "TCP",
"metadata": {
"flowbits": [
"http.dottedquadhost"
]
1,
"tx_id": 4,
"alert": {
"action": "allowed",
"gid": 1,
"signature_id": 2018358,
"rev'": 10,
"signature": "ET HUNTING GENERIC SUSPICIOUS POST to Dotted Quad with Fake Browser 1",
"category": "Potentially Bad Traffic",
"severity": 2
1,
"app_proto": "http"

Common Section

All the JSON log types share a common structure:

{"timestamp":"2009-11-24T21:27:09.534255","flow_id" :ID_NUMBER, "event_type":"TYPE",
—tuple... ,"TYPE":{ ... type specific content ... }}

428 Chapter 17. Output

Suricata User Guide, Release 8.0.0

Field: flow_id

Correlates the network protocol, flow logs EVE data and any evidence that Suricata has logged to an alert event and
that alert's metadata, as well as to fileinfo/file transaction and anomaly logs, if available. The same correlation and
logs are produced regardless if there is an alert, for any session/flow.

The ability to correlate EVE logs belonging to a specific session/flow was introduced in 2014 (see commit
f1185d051c21).

Further below, you can see several examples of events logged by Suricata: an alert for an HTTP rule, fileinfo, http,

anomaly, and flow events, all easily correlated using the flow_id EVE field:

$ jq 'select(.flow_id==1676750115612680)"' eve.json

Event type: alert:

{
"timestamp": "2023-09-18T06:13:41.532140+0000",
"flow_id": 1676750115612680,
"pcap_cnt": 130,
"event_type": "alert",
"src_ip": "142.11.240.191",
"src_port": 35361,
"dest_ip": "192.168.100.237",
"dest_port": 49175,

llprotoll: IlTCPIl’
"pkt_src": "wire/pcap",
"ether": {

"src_mac": "52:54:00:36:3e:ff",
"dest_mac": "12:a9:86:6c:77:de"

1,

"tx_id": 1,

"alert": {
"action": "allowed",
"gid": 1,
"signature_id": 2045001,
"rev'": 1,

"signature": "ET ATTACK_RESPONSE Win32/LeftHook Stealer Browser Extension Config.
—Inbound",
"category": "A Network Trojan was detected",
"severity": 1,
"metadata": {
"affected_product": [
"Windows_XP_Vista_7_8_10_Server_32_64_Bit"
1,
"attack_target": [
"Client_Endpoint"

1,
"created_at": [
"2023_04_17"

1,
"deployment": [
"Perimeter"

1,

(continues on next page)

17.1. EVE

https://github.com/OISF/suricata/commit/f1185d051c210ca0daacdddbe865a51af24f4ea3
https://github.com/OISF/suricata/commit/f1185d051c210ca0daacdddbe865a51af24f4ea3

Suricata User Guide, Release 8.0.0

(continued from previous page)

"former_category": [
"ATTACK_RESPONSE"
1,
"signature_severity": [
"Major"
1,
"updated_at": [
"2023_04_18"
]
}
1,
"http": {
"hostname": "142.11.240.191",
"http_port": 35361,
"url": "/",
"http_content_type": "text/xml",
"http_method": "POST",
"protocol": "HTTP/1.1",
"status": 200,
"length": 5362
1,
"files": [
{
"filename": "/",
"gaps": false,
"state": "CLOSED",
"stored": false,
"size": 5362,
"tx_id": 1
}
]!
"app_proto": "http",
"direction": "to_client",
"flow": {
"pkts_toserver": 13,
"pkts_toclient": 12,
"bytes_toserver": 1616,
"bytes_toclient": 8044,
"start": "2023-09-18T06:13:33.324862+0000",
"src_ip": "192.168.100.237",
"dest_ip": "142.11.240.191",
"src_port": 49175,
"dest_port": 35361

Event type: fileinfo

{
"timestamp": "2023-09-18T06:13:33.903924+0000",
"flow_id": 1676750115612680,
"pcap_cnt": 70,

(continues on next page)

430 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

"event_type": "fileinfo",
"src_ip": "192.168.100.237",
"src_port": 49175,
"dest_ip": "142.11.240.191",
"dest_port": 35361,
"proto": "TCP",
"pkt_src": "wire/pcap",
"ether": {
"src_mac": "12:a9:86:6c:77:de",
"dest_mac": "52:54:00:36:3e:ff"
1,
"http": {
"hostname": "142.11.240.191",
"http_port": 35361,
"url": "/",
"http_content_type": "text/xml",
"http_method": "POST",
"protocol": "HTTP/1.1",
"status": 200,
"length": 212
1,
"app_proto": "http",
"fileinfo": {
"filename": "/",
"gaps": false,
"state": "CLOSED",
"stored": false,
"size": 137,
"tx_id": O

Event type: HTTP:

{
"timestamp": "2023-09-18T06:13:33.903924+0000",
"flow_id": 1676750115612680,
"pcap_cnt": 70,
"event_type": "http",
"src_ip": "192.168.100.237",
"src_port": 49175,
"dest_ip": "142.11.240.191",
"dest_port": 35361,
"proto": "TCP",
"pkt_src": "wire/pcap",
"ether": {
"src_mac": "12:a9:86:6c:77:de",
"dest_mac": "52:54:00:36:3e:ff"
1,
"tx_id": O,
"http": {
"hostname": "142.11.240.191",

(continues on next page)

17.1. EVE 431

Suricata User Guide, Release 8.0.0

(continued from previous page)

"http_port": 35361,

"url": "/",

"http_content_type": "text/xml",
"http_method": "POST",
"protocol": "HTTP/1.1",
"status": 200,

"length": 212,
"request_headers": [
{
"name": "Content-Type",
"value": "text/xml; charset=utf-8"
1,
{
"name": "SOAPAction",
"value": "\"http://tempuri.org/Endpoint/CheckConnect\""
1,
{
"name": "Host",
"value": "142.11.240.191:35361"
}l
{
"name": "Content-Length",
"value": "137"
1,
{
"name": "Expect",
"value": "100-continue"
1,
{
"name": "Accept-Encoding",
"value": "gzip, deflate"
1,
{
"name": "Connection",
"value": "Keep-Alive"
}
1,
"response_headers": [
{
"name": "Content-Length",
"value": "212"
1,
{
"name": "Content-Type",
"value": "text/xml; charset=utf-8"
1,
{
"name": "Server",
"value": "Microsoft-HTTPAPI/2.0"
1,
{

"name": "Date",

(continues on next page)

432 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

"value": "Mon, 18 Sep 2023 06:13:33 GMT"

Event type: anomaly:

{
"timestamp": "2023-09-18T06:13:58.882971+0000",
"flow_id": 1676750115612680,
"pcap_cnt": 2878,
"event_type": "anomaly",
"src_ip": "192.168.100.237",
"src_port": 49175,
"dest_ip": "142.11.240.191",
"dest_port": 35361,

|lpr0toll: IlTCPIl’
"pkt_src": "wire/pcap",
"ether": {

"src_mac": "12:a9:86:6c:77:de",
"dest_mac": "52:54:00:36:3e:ff"
1,
"tx_id": 3,
"anomaly": {
"app_proto": "http",
"type": "applayer",
"event": "UNABLE_TO_MATCH_RESPONSE_TO_REQUEST",
"layer": "proto_parser"

Event type: flow:

{

"timestamp": "2023-09-18T06:13:21.216460+0000",

"flow_id": 1676750115612680,

"event_type": "flow",

"src_ip": "192.168.100.237",

"src_port": 49175,

"dest_ip": "142.11.240.191",

"dest_port": 35361,

"proto": "TCP",

"app_proto": "http",

"flow": {
"pkts_toserver": 3869,
"pkts_toclient": 1523,
"bytes_toserver": 3536402,
"bytes_toclient": 94102,
"start": "2023-09-18T06:13:33.324862+0000",
"end": "2023-09-18T06:14:13.752399+0000",
"age": 40,

(continues on next page)

17.1. EVE

433

Suricata User Guide, Release 8.0.0

(continued from previous page)

"state": "closed",
"reason": "shutdown",
"alerted": true,
"exception_policy": [

{
"target": "stream_midstream",
"policy": "ignore"
}
]
1,
"ether": {
"dest_macs": [
"52:54:00:36:3e: ff"
1,
"src_macs": [
"12:29:86:6c:77:de"
]
1,
"tep": {
"tcp_flags": "le",
"tcp_flags_ts": "le",
"tcp_flags_tc": "la",
"syn": true,
"rst": true,
"psh": true,
"ack": true,
"state": "closed",
"ts_max_regions": 1,
"tc_max_regions": 1
}

Note: It is possible to have even more detailed alert records, by enabling for instance logging http-body, or alert
metadata (alert output).

Examples come from pcap found at https://app.any.run/tasks/ce7ca983-9e4b-4251-a7c3-fefa3da02ebe/.

Event types

The common part has a field "event_type" to indicate the log type.

"event_type":"TYPE"

When an application layer protocol event is detected, the common section will have an app_proto field.

"app_proto": "http"

434 Chapter 17. Output

https://app.any.run/tasks/ce7ca983-9e4b-4251-a7c3-fefa3da02ebe/

Suricata User Guide, Release 8.0.0

PCAP fields

If Suricata is processing a pcap file, additional fields are added:

"pcap_cnt": 123

pcap_cnt contains the packet number in the pcap. This can be used to look up a packet in Wireshark for example.

"pcap_filename":"/path/to/file.pcap"

pcap_£filename contains the file name and location of the pcap that generated the event.

Note: the pcap fields are only available on "real" packets, and are omitted from internal "pseudo" packets such as flow
timeout packets.

Event type: Alert
This field contains data about a signature that matched, such as signature_id (sid in the rule) and the signature
(msg in the rule).

It can also contain information about Source and Target of the attack in the alert.source and alert.target field
if target keyword is used in the signature.

This event will also have the pcap_cnt field, when running in pcap mode, to indicate which packet triggered the
signature.

"alert": {
"action": "allowed",
"gid": 1,
"signature_id": 2024056,
"rev'": 4,
"signature": "ET MALWARE Win32/CryptFile2 / Revenge Ransomware Checkin M3",
"category": "Malware Command and Control Activity Detected",

"severity": 1,
"metadata": {
"affected_product": [
"Windows_XP_Vista_7_8_10_Server_32_64_Bit"
1,
"attack_target": [
"Client_Endpoint"
1,
"created_at": [
"2017_03_15"
1,
"deployment": [
"Perimeter"
1,
"former_category": [
"MALWARE"
1,
"malware_family": [
"CryptFile2"

(continues on next page)

17.1. EVE 435

Suricata User Guide, Release 8.0.0

(continued from previous page)

1,

"performance_impact": [
"Moderate"

1,

"signature_severity": [
"Major"

1,

"updated_at": [
"2020_08_04"

]

}
b

Action field

Possible values: "allowed" and "blocked".

Example:

"action":"allowed"

Action is set to "allowed" unless a rule used the "drop" action and Suricata is in IPS mode, or when the rule used the
"reject” action. It is important to note that this does not necessarily indicate the final verdict for a given packet or flow,
since one packet may match on several rules.

Verdict

An object containning info on the final action that will be applied to a given packet, based on all the signatures triggered
by it and other possible events (e.g., a flow drop). For that reason, it is possible for an alert with an action allowed to
have a verdict drop, in IPS mode, for instance, if that packet was dropped due to a different alert.

e Action: alert, pass, drop (this latter only occurs in IPS mode)
* Reject-target: to_server, to_client, both (only occurs for 'reject’ rules)
* Reject: an array of strings with possible reject types: tcp-reset, icmp-prohib (only occurs for 'reject’ rules)

Example:

"verdict": {

"action": "drop",
"reject-target": "to_client",
"reject": "[icmp-prohib]"

}

436 Chapter 17. Output

Suricata User Guide, Release 8.0.0

Pcap Field

If pcap log capture is active in multi mode, a capture_file key will be added to the event with value being the full path
of the pcap file where the corresponding packets have been extracted.

Event type: Anomaly
Events with type "anomaly" report unexpected conditions such as truncated packets, packets with invalid values, events
that render the packet invalid for further processing or unexpected behaviors.

Networks which experience high occurrences of anomalies may experience packet processing degradation when
anomaly logging is enabled.

Fields

» "type": Either "decode", "stream" or "applayer". In rare cases, type will be "unknown". When this occurs, an
additional field named "code" will be present. Events with type "applayer" are detected by the application layer
parsers.

* "event" The name of the anomalous event. Events of type "decode" are prefixed with "decoder"; events of type
"stream" are prefixed with "stream".

e "code" If "type" is "unknown", than "code" contains the unrecognized event code. Otherwise, this field is not
present.

The following field is included when "type" has the value "applayer":

* "layer" Indicates the handling layer that detected the event. This will be "proto_parser" (protocol parser),
"proto_detect" (protocol detection) or "parser."

When packethdr is enabled, the first 32 bytes of the packet are included as a byte64-encoded blob in the main part of
record. This applies to events of "type" "packet" or "stream" only.

Examples

"anomaly": {
"type": "decode",
"event": "decoder.icmpv4.unknown_type"

}

"anomaly": {
"type": "decode",
"event": "decoder.udp.pkt_too_small"

}

"anomaly": {
"type": "decode",

"event": "decoder.ipv4.wrong_ip_version"
}
"anomaly": {

"type": "stream",

"event": "stream.pkt_invalid_timestamp"

(continues on next page)

17.1. EVE 437

Suricata User Guide, Release 8.0.0

(continued from previous page)

}
{
"timestamp": "1969-12-31T16:04:21.000000-03800",
"pcap_cnt": 9262,
"event_type": "anomaly",
"src_ip": "208.21.2.184",
"src_port": O,
"dest_ip": "10.1.1.99",
"dest_port": 0,
"proto": "UDP",
"packet": "////////AQEBAQEBCABFAAA8xZ5AAP8R1+DQFQK4CgE=",
"packet_info": {
"linktype": 1
}!
"anomaly": {
"type": "decode",
"event": "decoder.udp.pkt_too_small"
}
}
{

"timestamp": "2016-01-11T05:10:54.612110-0800",
"flow_id": 412547343494194,
"pcap_cnt": 1391293,
"event_type": "anomaly",
"src_ip": "192.168.122.149",
"src_port": 49324,
"dest_ip": "69.195.71.174",
"dest_port": 443,
"proto": "TCP",
"app_proto": "tls",
"anomaly": {
"type": "applayer",
"event": "APPLAYER_DETECT_PROTOCOL_ONLY_ONE_DIRECTION",
"layer": "proto_detect"

3

"timestamp": "2016-01-11T05:10:52.828802-0800",
"flow_id": 201217772575257,
"pcap_cnt": 1391281,
"event_type": "anomaly",
"src_ip": "192.168.122.149",
"src_port": 49323,
"dest_ip": "69.195.71.174",
"dest_port": 443,

"proto": "TCP",

"tx_id": O,

"app_proto": "tls",
"anomaly": {

(continues on next page)

438 Chapter 17. Output

Suricata User Guide, Release 8.0.0

(continued from previous page)

"type": "applayer",
"event": "INVALID_RECORD_TYPE",
"layer": "proto_parser"
}
3

Event type: HTTP

Fields

* "hostname": The hostname this HTTP event is attributed to

e "url": URL at the hostname that was accessed

* "http_user_agent": The user-agent of the software that was used
 "http_content_type": The type of data returned (ex: application/x-gzip)
* "cookie"

In addition to these fields, if the extended logging is enabled in the suricata.yaml file the following fields are (can) also
included:

* "length": The content size of the HTTP body

* "status": HTTP status code

¢ "protocol": Protocol / Version of HTTP (ex: HTTP/1.1)
 "http_method": The HTTP method (ex: GET, POST, HEAD)
* "http_refer": The referer for this action

In addition to the extended logging fields one can also choose to enable/add from more than 50 additional custom
logging HTTP fields enabled in the suricata.yaml file. The additional fields can be enabled as following:

- eve-log:

enabled: yes

type: file #file[syslog|unix_dgram|unix_stream

filename: eve.json

the following are valid when type: syslog above

#identity: "suricata"

#facility: locals

#level: Info ## possible levels: Emergency, Alert, Critical,

Error, Warning, Notice, Info, Debug
types:
- alert
- http:

extended: yes # enable this for extended logging information
custom allows additional http fields to be included in eve-log
the example below adds three additional fields when uncommented
#custom: [Accept-Encoding, Accept-Language, Authorization]
custom: [accept, accept-charset, accept-encoding, accept-language,
accept-datetime, authorization, cache-control, cookie, from,
max-forwards, origin, pragma, proxy-authorization, range, te, via,
x-requested-with, dnt, x-forwarded-proto, accept-range, age,

(continues on next page)

17.1. EVE 439

Suricata User Guide, Release 8.0.0

(continued from previous page)

allow, connection, content-encoding, content-language,
content-length, content-location, content-md5, content-range,
content-type, date, etags, expires, last-modified, link, location,
proxy-authenticate, referer, refresh, retry-after, server,
set-cookie, trailer, transfer-encoding, upgrade, vary, warning,
www-authenticate, x-flash-version, x-authenticated-user]

The benefits here of using the extended logging is to see if this action for example was a POST or perhaps if a download
of an executable actually returned any bytes.

It is also possible to dump every header for HTTP requests/responses or both via the keyword dump-all-headers.

Examples

Event with non-extended logging:

"http": {
"hostname": "www.digip.org",
"url" :"\/jansson\/releases\/jansson-2.6.tar.gz",
"http_user_agent": "<User-Agent>",
"http_content_type": "application\/x-gzip"

In case the hostname shows a port number, such as in case there is a header "Host: www.test.org:1337":

"http": {
"http_port": 1337,
"hostname": "www.test.org",
"url" :"\/this\/is\/test.tar.gz",
"http_user_agent": "<User-Agent>",
"http_conten