Committer's Guide
Table of Contents
	1. Administrative Details
	2. OpenPGP Keys for FreeBSD	2.1. Creating a Key

	3. Kerberos and LDAP web Password for FreeBSD Cluster
	4. Commit Bit Types	4.1. Policy for Committer Activity in Other Trees

	5. Subversion Primer	5.1. Introduction
	5.2. Getting Started	5.2.1. Direct Checkout
	5.2.2. Checkout from a Mirror
	5.2.3. RELENG_* Branches and General
	 Layout
	5.2.4. FreeBSD Documentation Project Branches and
	 Layout
	5.2.5. FreeBSD Ports Tree Branches and Layout

	5.3. Daily Use	5.3.1. Help
	5.3.2. Checkout
	5.3.3. Anonymous Checkout
	5.3.4. Updating the Tree
	5.3.5. Status
	5.3.6. Editing and Committing
	5.3.7. Adding and Removing Files
	5.3.8. Copying and Moving Files
	5.3.9. Log and Annotate
	5.3.10. Diffs
	5.3.11. Reverting
	5.3.12. Conflicts

	5.4. Advanced Use	5.4.1. Sparse Checkouts
	5.4.2. Direct Operation
	5.4.3. Merging with SVN	5.4.3.1. About Merge Tracking
	5.4.3.2. Selecting the Source and Target Branch
	 When Merging
	5.4.3.3. Selecting the Source and Target for
	 stable/10 and Newer
	5.4.3.4. Selecting the Source and Target for
	 stable/9 and Older
	5.4.3.5. Preparing the Merge Target
	5.4.3.6. Identifying Revisions
	5.4.3.7. Merging	5.4.3.7.1. The Principles
	5.4.3.7.2. Practical Example
	5.4.3.7.3. Merging into the Kernel
	 (sys/)

	5.4.3.8. Precautions Before Committing
	5.4.3.9. Committing

	5.4.4. Vendor Imports with SVN	5.4.4.1. Preparing the Tree	5.4.4.1.1. Flattening
	5.4.4.1.2. Cleaning Up
	5.4.4.1.3. Bootstrapping Merge History

	5.4.4.2. Importing New Sources	5.4.4.2.1. Preparing the Vendor Sources
	5.4.4.2.2. Importing into the Vendor Tree
	5.4.4.2.3. Tagging

	5.4.4.3. Merging to Head
	5.4.4.4. Committing the Vendor Import
	5.4.4.5. From Scratch	5.4.4.5.1. Importing into the Vendor Tree
	5.4.4.5.2. Merging to head

	5.4.5. Reverting a Commit
	5.4.6. Fixing Mistakes
	5.4.7. Setting up a svnsync
	 Mirror
	5.4.8. Committing High-ASCII Data
	5.4.9. Maintaining a Project Branch

	5.5. Some Tips

	6. Setup, Conventions, and Traditions	6.1. For New Committers
	6.2. For Everyone
	6.3. Mentors

	7. Commit Log Messages
	8. Preferred License for New Files
	9. Keeping Track of Licenses Granted to the FreeBSD
 Project
	10. Developer Relations
	11. If in Doubt...
	12. Bugzilla
	13. Phabricator
	14. Who's Who
	15. SSH Quick-Start Guide
	16. Coverity® Availability for FreeBSD Committers
	17. The FreeBSD Committers' Big List of Rules	17.1. Details
	17.2. Policy on Multiple Architectures
	17.3. Other Suggestions
	17.4. Deprecating Features
	17.5. Privacy and Confidentiality

	18. Support for Multiple Architectures	18.1. Statement of General Intent
	18.2. Tier 1: Fully Supported Architectures
	18.3. Tier 2: Developmental Architectures
	18.4. Tier 3: Experimental Architectures
	18.5. Tier 4: Unsupported Architectures
	18.6. Policy on Changing the Tier of an Architecture

	19. Ports Specific FAQ
	20. Issues Specific to Developers Who Are Not
 Committers
	21. Information About Google Analytics	21.1. Google Analytics General Policy
	21.2. Data Available Through Google Analytics

	22. Miscellaneous Questions
	23. Benefits and Perks for FreeBSD Comitters	23.1. Recognition
	23.2. FreeBSD Mall
	23.3. IRC
	23.4. Gandi.net

List of Examples
	1. Commit Log for a Commit Based on a PR
	2. Commit Log for a Commit Needing Review
	3. Commit Log for a Commit Needing Approval
	4. Commit Log for a Commit Bringing in Code from
	OpenBSD
	5. Commit Log for a Change to FreeBSD-CURRENT with a Planned
	Commit to FreeBSD-STABLE to Follow at a Later Date.
	6. Example Combined Commit Log

Committer's Guide
The FreeBSD Documentation Project

Revision: 51585Copyright © 1999-2017 The FreeBSD Documentation Project
Legal NoticeLast modified on 2018-04-23 07:48:49 by seanc.Abstract
This document provides information for the FreeBSD
	committer community. All new committers should read this
	document before they start, and existing committers are
	strongly encouraged to review it from time to time.
Almost all FreeBSD developers have commit rights to one or
	more repositories. However, a few developers do not, and some
	of the information here applies to them as well. (For
	instance, some people only have rights to work with the
	Problem Report database). Please see
	Section 20, “Issues Specific to Developers Who Are Not
 Committers” for more information.
This document may also be of interest to members of the
	FreeBSD community who want to learn more about how the project
	works.

 [

	 Split HTML
	
 /
 Single HTML
]
 1. Administrative Details
	Login Methods	ssh(1), protocol 2 only
	Main Shell Host	freefall.FreeBSD.org
	src/ Subversion
		Root	svn+ssh://repo.FreeBSD.org/base
	 (see also Section 5.2.3, “RELENG_* Branches and General
	 Layout”).
	doc/ Subversion
		Root	svn+ssh://repo.FreeBSD.org/doc
	 (see also Section 5.2.4, “FreeBSD Documentation Project Branches and
	 Layout”).
	ports/ Subversion
		Root	svn+ssh://repo.FreeBSD.org/ports
	 (see also Section 5.2.5, “FreeBSD Ports Tree Branches and Layout”).
	Internal Mailing Lists	developers (technically called all-developers),
	 doc-developers, doc-committers, ports-developers,
	 ports-committers, src-developers, src-committers. (Each
	 project repository has its own -developers and
	 -committers mailing lists. Archives for these lists can
	 be found in the files
	 /local/mail/repository-name-developers-archive
	 and
	 /local/mail/repository-name-committers-archive
	 on the FreeBSD.org
	 cluster.)
	Core Team monthly
		reports	/home/core/public/monthly-reports
	 on the FreeBSD.org
	 cluster.
	Ports Management Team monthly
		reports	/home/portmgr/public/monthly-reports
	 on the FreeBSD.org
	 cluster.
	Noteworthy src/ SVN
		Branches	
	 stable/8 (8.X-STABLE),
	 stable/9 (9.X-STABLE),
	 stable/10 (10.X-STABLE),
	 head (-CURRENT)

ssh(1) is required to connect to the project hosts.
 For more information, see Section 15, “SSH Quick-Start Guide”.
Useful links:
	FreeBSD
	 Project Internal Pages

	FreeBSD
	 Project Hosts

	FreeBSD
	 Project Administrative Groups

2. OpenPGP Keys for FreeBSD
Cryptographic keys conforming to the
 OpenPGP (Pretty Good
 Privacy) standard are used by the FreeBSD project to
 authenticate committers. Messages carrying important
 information like public SSH keys can be
 signed with the OpenPGP key to prove that
 they are really from the committer. See
 PGP &
	GPG: Email for the Practical Paranoid by Michael Lucas
 and http://en.wikipedia.org/wiki/Pretty_Good_Privacy
 for more information.
2.1. Creating a Key
Existing keys can be used, but should be checked with
	doc/head/share/pgpkeys/checkkey.sh
	first.
For those who do not yet have an
	OpenPGP key, or need a new key to meet FreeBSD
	security requirements, here we show how to generate
	one.
	Install
	 security/gnupg. Enter
	 these lines in ~/.gnupg/gpg.conf to
	 set minimum acceptable defaults:
fixed-list-mode
keyid-format 0xlong
personal-digest-preferences SHA512 SHA384 SHA256 SHA224
default-preference-list SHA512 SHA384 SHA256 SHA224 AES256 AES192 AES CAST5 BZIP2 ZLIB ZIP Uncompressed
use-agent
verify-options show-uid-validity
list-options show-uid-validity
sig-notation issuer-fpr@notations.openpgp.fifthhorseman.net=%g
cert-digest-algo SHA512

	Generate a key:
% gpg --full-gen-key
gpg (GnuPG) 2.1.8; Copyright (C) 2015 Free Software Foundation, Inc.
This is free software: you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

Warning: using insecure memory!
Please select what kind of key you want:
 (1) RSA and RSA (default)
 (2) DSA and Elgamal
 (3) DSA (sign only)
 (4) RSA (sign only)
Your selection? 1
RSA keys may be between 1024 and 4096 bits long.
What keysize do you want? (2048) 2048 [image: 1]
Requested keysize is 2048 bits
Please specify how long the key should be valid.
 0 = key does not expire
 <n> = key expires in n days
 <n>w = key expires in n weeks
 <n>m = key expires in n months
 <n>y = key expires in n years
Key is valid for? (0) 3y [image: 2]
Key expires at Wed Nov 4 17:20:20 2015 MST
Is this correct? (y/N) y

GnuPG needs to construct a user ID to identify your key.

Real name: Chucky Daemon [image: 3]
Email address: notreal@example.com
Comment:
You selected this USER-ID:
 "Chucky Daemon <notreal@example.com>"

Change (N)ame, (C)omment, (E)mail or (O)kay/(Q)uit? o
You need a Passphrase to protect your secret key.
	[image: 1]
	2048-bit keys with a three-year expiration provide
		adequate protection at present (2013-12). http://danielpocock.com/rsa-key-sizes-2048-or-4096-bits
		describes the situation in more detail.

	[image: 2]
	A three year key lifespan is short enough to
		obsolete keys weakened by advancing computer power,
		but long enough to reduce key management
		problems.

	[image: 3]
	Use your real name here, preferably matching that
		shown on government-issued ID to
		make it easier for others to verify your identity.
		Text that may help others identify you can be entered
		in the Comment section.

After the email address is entered, a passphrase is
	 requested. Methods of creating a secure passphrase are
	 contentious. Rather than suggest a single way, here are
	 some links to sites that describe various methods: http://world.std.com/~reinhold/diceware.html,
	 http://www.iusmentis.com/security/passphrasefaq/,
	 http://xkcd.com/936/,
	 http://en.wikipedia.org/wiki/Passphrase.

Protect the private key and passphrase. If either the
	private key or passphrase may have been compromised or
	disclosed, immediately notify
	<accounts@FreeBSD.org> and revoke the key.
Committing the new key is shown in
	Procedure 1, “Steps for New Committers”.
3. Kerberos and LDAP web Password for FreeBSD Cluster
The FreeBSD cluster requires a Kerberos password to access
 certain services. The Kerberos password also serves as the
 LDAP web password, since LDAP is proxying to Kerberos in the
 cluster. Some of the services
 which require this include:
	Bugzilla

	Jenkins

To create a new Kerberos account in the FreeBSD cluster, or to
 reset a Kerberos password for an existing account using a random
 password generator:
% ssh kpasswd.freebsd.org
Note:
This must be done from a machine outside of the FreeBSD.org
	cluster.

A Kerberos password can also be set manually
 by logging into freefall.FreeBSD.org and
 running:
% kpasswd
Note:
Unless the Kerberos-authenticated services
	of the FreeBSD.org cluster have been used previously,
	Client unknown will be shown. This
	error means that the
	ssh kpasswd.freebsd.org method shown above
	must be used first to initialize the Kerberos account.

4. Commit Bit Types
The FreeBSD repository has a number of components which, when
 combined, support the basic operating system source,
 documentation, third party application ports infrastructure, and
 various maintained utilities. When FreeBSD commit bits are
 allocated, the areas of the tree where the bit may be used are
 specified. Generally, the areas associated with a bit reflect
 who authorized the allocation of the commit bit. Additional
 areas of authority may be added at a later date: when this
 occurs, the committer should follow normal commit bit allocation
 procedures for that area of the tree, seeking approval from the
 appropriate entity and possibly getting a mentor for that area
 for some period of time.
	Committer Type	Responsible	Tree Components
	src	core@	src/, doc/ subject to appropriate review
	doc	doceng@	doc/, ports/, src/ documentation
	ports	portmgr@	ports/

Commit bits allocated prior to the development of the notion
 of areas of authority may be appropriate for use in many parts
 of the tree. However, common sense dictates that a committer
 who has not previously worked in an area of the tree seek review
 prior to committing, seek approval from the appropriate
 responsible party, and/or work with a mentor. Since the rules
 regarding code maintenance differ by area of the tree, this is
 as much for the benefit of the committer working in an area of
 less familiarity as it is for others working on the tree.
Committers are encouraged to seek review for their work as
 part of the normal development process, regardless of the area
 of the tree where the work is occurring.
4.1. Policy for Committer Activity in Other Trees
	All committers may modify
	 base/head/share/misc/committers-*.dot,
	 base/head/usr.bin/calendar/calendars/calendar.freebsd,
	 and
	 ports/head/astro/xearth/files.

	doc committers may commit
	 documentation changes to src
	 files, such as man pages, READMEs, fortune databases,
	 calendar files, and comment fixes without approval from a
	 src committer, subject to the normal care and tending of
	 commits.

	Any committer may make changes to any other tree
	 with an "Approved by" from a non-mentored committer with
	 the appropriate bit.

	Committers can acquire an additional bit by the usual
	 process of finding a mentor who will propose them to core,
	 doceng, or portmgr, as appropriate. When approved, they
	 will be added to 'access' and the normal mentoring period
	 will ensue, which will involve a continuing of
	 “Approved by” for some period.

	"Approved by" is only acceptable from non-mentored src
	 committers -- mentored committers can provide a "Reviewed
	 by" but not an "Approved by".

5. Subversion Primer
New committers are assumed to already be familiar with the basic
 operation of Subversion. If not, start by reading the
 Subversion
	Book.
5.1. Introduction
The FreeBSD source repository switched from
	CVS to Subversion on May 31st, 2008. The
	first real SVN commit is
	r179447.
The FreeBSD doc/www repository switched
	from CVS to Subversion on May 19th, 2012.
	The first real SVN commit is
	r38821.
The FreeBSD ports repository switched
	from CVS to Subversion on July 14th, 2012.
	The first real SVN commit is
	r300894.
Subversion can be installed from the FreeBSD Ports
	Collection by issuing these commands:
pkg install subversion
5.2. Getting Started
There are a few ways to obtain a working copy of the tree
	from Subversion. This section will explain them.
5.2.1. Direct Checkout
The first is to check out directly from the main
	 repository. For the src tree,
	 use:
% svn checkout svn+ssh://repo.freebsd.org/base/head /usr/src
For the doc tree, use:
% svn checkout svn+ssh://repo.freebsd.org/doc/head /usr/doc
For the ports tree, use:
% svn checkout svn+ssh://repo.freebsd.org/ports/head /usr/ports
Note:
Though the remaining examples in this document are
	 written with the workflow of working with the
	 src tree in mind, the underlying
	 concepts are the same for working with the
	 doc and the ports
	 tree.
	 Ports related Subversion operations are listed in
	 Section 19, “Ports Specific FAQ”.

The above command will check out a
	 CURRENT source tree as
	 /usr/src/,
	 which can be any target directory on the local filesystem.
	 Omitting the final argument of that command causes the
	 working copy, in this case, to be named “head”,
	 but that can be renamed safely.
svn+ssh means the
	 SVN protocol tunnelled over
	 SSH. The name of the server is
	 repo.freebsd.org, base
	 is the path to the repository, and head
	 is the subdirectory within the repository.
If your FreeBSD login name is different from the login
	 name used on the local machine, either include it in
	 the URL (for example
	 svn+ssh://jarjar@repo.freebsd.org/base/head),
	 or add an entry to ~/.ssh/config
	 in the form:
Host repo.freebsd.org
	User jarjar
This is the simplest method, but it is hard to tell just
	 yet how much load it will place on the repository.
Note:
The svn diff does not require
	 access to the server as SVN stores a
	 reference copy of every file in the working copy. This,
	 however, means that Subversion working copies are very
	 large in size.

5.2.2. Checkout from a Mirror
Check out a working copy from a mirror by
	 substituting the mirror's URL for
	 svn+ssh://repo.freebsd.org/base. This
	 can be an official mirror or a mirror maintained by using
	 svnsync.
There is a serious disadvantage to this method: every
	 time something is to be committed, a
	 svn relocate to the master repository has
	 to be done, remembering to svn relocate
	 back to the mirror after the commit. Also, since
	 svn relocate only works between
	 repositories that have the same UUID, some hacking of the
	 local repository's UUID has to occur before it is possible
	 to start using it.
The hassle of a local
	 svnsync mirror probably is not worth it
	 unless the network connectivity situation or other factors
	 demand it. If it is needed, see the end of this chapter for
	 information on how to set one up.
5.2.3. RELENG_* Branches and General
	 Layout
In svn+ssh://repo.freebsd.org/base,
	 base refers to the source tree.
	 Similarly, ports refers to the ports
	 tree, and so on. These are separate repositories with their
	 own change number sequences, access controls and commit
	 mail.
For the base repository, HEAD refers to the -CURRENT
	 tree. For example, head/bin/ls is what
	 would go into /usr/src/bin/ls in a
	 release. Some key locations are:
	/head/ which corresponds to
	 HEAD, also known as
	 -CURRENT.

	/stable/n
	 which corresponds to
	 RELENG_n.

	/releng/n.n
	 which corresponds to
	 RELENG_n_n.

	/release/n.n.n
	 which corresponds to
	 RELENG_n_n_n_RELEASE.

	/vendor* is the vendor branch
	 import work area. This directory itself does not
	 contain branches, however its subdirectories do. This
	 contrasts with the stable,
	 releng and
	 release directories.

	/projects and
	 /user feature a branch work area,
	 like in Perforce. As above, the
	 /user directory does not contain
	 branches itself.

5.2.4. FreeBSD Documentation Project Branches and
	 Layout
In svn+ssh://repo.freebsd.org/doc,
	 doc refers to the repository root of
	 the source tree.
In general, most FreeBSD Documentation Project work will be
	 done within the head/ branch of the
	 documentation source tree.
FreeBSD documentation is written and/or translated to
	 various languages, each in a separate
	 directory in the head/
	 branch.
Each translation set contains several subdirectories for
	 the various parts of the FreeBSD Documentation Project. A few
	 noteworthy directories are:
	/articles/ contains the source
	 code for articles written by various FreeBSD
	 contributors.

	/books/ contains the source
	 code for the different books, such as the
	 FreeBSD Handbook.

	/htdocs/ contains the source
	 code for the FreeBSD website.

5.2.5. FreeBSD Ports Tree Branches and Layout
In svn+ssh://repo.freebsd.org/ports,
	 ports refers to the repository root of
	 the ports tree.
In general, most FreeBSD port work will be done within the
	 head/ branch of the ports tree which is
	 the actual ports tree used to install software. Some other
	 key locations are:
	/branches/RELENG_n_n_n
	 which corresponds to
	 RELENG_n_n_n
	 is used to merge back security updates in preparation
	 for a release.

	/tags/RELEASE_n_n_n
	 which corresponds to
	 RELEASE_n_n_n
	 represents a release tag of the ports tree.

	/tags/RELEASE_n_EOL
	 represents the end of life tag of a specific FreeBSD
	 branch.

5.3. Daily Use
This section will explain how to perform common day-to-day
	operations with Subversion.
5.3.1. Help
SVN has built in help documentation.
	 It can be accessed by typing:
% svn help
Additional information can be found in the
	 Subversion
	 Book.
5.3.2. Checkout
As seen earlier, to check out the FreeBSD head
	 branch:
% svn checkout svn+ssh://repo.freebsd.org/base/head /usr/src
At some point, more than just HEAD
	 will probably be useful, for instance when merging changes
	 to stable/7. Therefore, it may be useful to have a partial
	 checkout of the complete tree (a full checkout would be very
	 painful).
To do this, first check out the root of the
	 repository:
% svn checkout --depth=immediates svn+ssh://repo.freebsd.org/base
This will give base with all the
	 files it contains (at the time of writing, just
	 ROADMAP.txt) and empty subdirectories
	 for head, stable,
	 vendor and so on.
Expanding the working copy is possible. Just change the
	 depth of the various subdirectories:
% svn up --set-depth=infinity base/head
% svn up --set-depth=immediates base/release base/releng base/stable
The above command will pull down a full copy of
	 head, plus empty copies of every
	 release tag, every
	 releng branch, and every
	 stable branch.
If at a later date merging to
	 7-STABLE is required, expand the working
	 copy:
% svn up --set-depth=infinity base/stable/7
Subtrees do not have to be expanded completely. For
	 instance, expanding only stable/7/sys and
	 then later expand the rest of
	 stable/7:
% svn up --set-depth=infinity base/stable/7/sys
% svn up --set-depth=infinity base/stable/7
Updating the tree with svn update
	 will only update what was previously asked for (in this
	 case, head and
	 stable/7; it will not pull down the whole
	 tree.
Note:
Decreasing the depth of a working copy is not
	 possible.

5.3.3. Anonymous Checkout
It is possible to anonymously check out the FreeBSD
	 repository with Subversion. This will give access to a
	 read-only tree that can be updated, but not committed back
	 to the main repository. To do this, use:
% svn co https://svn.FreeBSD.org/base/head /usr/src
More details on using Subversion this way can be found
	 in Using
	 Subversion.
5.3.4. Updating the Tree
To update a working copy to either the latest revision,
	 or a specific revision:
% svn update
% svn update -r12345
5.3.5. Status
To view the local changes that have been made to the
	 working copy:
% svn status
To show local changes and files that are out-of-date
	 do:
% svn status --show-updates
5.3.6. Editing and Committing
Unlike Perforce, SVN does not need to
	 be told in advance about file editing.
To commit all changes in
	 the current directory and all subdirectories:
% svn commit
To commit all changes in, for example,
	 lib/libfetch/
	 and
	 usr/bin/fetch/
	 in a single operation:
% svn commit lib/libfetch usr/bin/fetch
There is also a commit wrapper for the ports tree to
	 handle the properties and sanity checking the
	 changes:
% /usr/ports/Tools/scripts/psvn commit
5.3.7. Adding and Removing Files
Note:
Before adding files, get a copy of auto-props.txt
	 (there is also a
	 ports tree specific version) and add it to
	 ~/.subversion/config according to the
	 instructions in the file. If you added something before
	 reading this, use svn rm --keep-local
	 for just added files, fix your config file and re-add them
	 again. The initial config file is created when you first
	 run a svn command, even something as simple as
	 svn help.

Files are added to a
	 SVN repository with svn
	 add. To add a file named
	 foo, edit it, then:
% svn add foo
Note:
Most new source files should include a
	 $FreeBSD$ string near the
	 start of the file. On commit, svn will
	 expand the $FreeBSD$ string,
	 adding the file path, revision number, date and time of
	 commit, and the username of the committer. Files which
	 cannot be modified may be committed without the
	 $FreeBSD$ string.

Files can be removed with svn
	 remove:
% svn remove foo
Subversion does not require deleting the file before
	 using svn rm, and indeed complains if
	 that happens.
It is possible to add directories with
	 svn add:
% mkdir bar
% svn add bar
Although svn mkdir makes this easier
	 by combining the creation of the directory and the adding of
	 it:
% svn mkdir bar
Like files, directories are removed with
	 svn rm. There is no separate command
	 specifically for removing directories.
% svn rm bar
5.3.8. Copying and Moving Files
This command creates a copy of
	 foo.c named bar.c,
	 with the new file also under version control and with the full
	 history of foo.c:
% svn copy foo.c bar.c
This is usually preferred to copying the file with
	 cp and adding it to the repository with
	 svn add because this way the new file does not
	 inherit the original one's history.
To move and rename a file:
% svn move foo.c bar.c
5.3.9. Log and Annotate
svn log shows revisions and commit
	 messages, most recent first, for files or directories. When
	 used on a directory, all revisions that affected the
	 directory and files within that directory are shown.
svn annotate, or equally svn
	 praise or svn blame, shows
	 the most recent revision number and who committed that
	 revision for each line of a file.
5.3.10. Diffs
svn diff displays changes to the
	 working copy. Diffs generated by SVN are
	 unified and include new files by default in the diff
	 output.
svn diff can show the changes between
	 two revisions of the same file:
% svn diff -r179453:179454 ROADMAP.txt
It can also show all changes for a specific changeset.
	 This command shows what changes were made to the
	 current directory and all subdirectories in changeset
	 179454:
% svn diff -c179454 .
5.3.11. Reverting
Local changes (including additions and deletions) can be
	 reverted using svn revert. It does not
	 update out-of-date files, but just replaces them with
	 pristine copies of the original version.
5.3.12. Conflicts
If an svn update resulted in a merge
	 conflict, Subversion will remember which files have
	 conflicts and refuse to commit any changes to those files
	 until explicitly told that the conflicts have been resolved.
	 The simple, not yet deprecated procedure is:
% svn resolved foo
However, the preferred procedure is:
% svn resolve --accept=working foo
The two examples are equivalent. Possible values for
	 --accept are:
	working: use the version in your
	 working directory (which one presumes has been edited to
	 resolve the conflicts).

	base: use a pristine copy of the
	 version you had before svn update,
	 discarding your own changes, the conflicting changes,
	 and possibly other intervening changes as well.

	mine-full: use what you had
	 before svn update, including your own
	 changes, but discarding the conflicting changes, and
	 possibly other intervening changes as well.

	theirs-full: use the version that
	 was retrieved when you did
	 svn update, discarding your own
	 changes.

5.4. Advanced Use
5.4.1. Sparse Checkouts
SVN allows
	 sparse, or partial checkouts of a
	 directory by adding --depth to a
	 svn checkout.
Valid arguments to --depth
	 are:
	empty: the directory itself
	 without any of its contents.

	files: the directory and any
	 files it contains.

	immediates: the directory and any
	 files and directories it contains, but none of the
	 subdirectories' contents.

	infinity: anything.

The --depth option applies to many
	 other commands, including svn commit,
	 svn revert, and svn
	 diff.
Since --depth is sticky, there is a
	 --set-depth option for svn
	 update that will change the selected depth.
	 Thus, given the working copy produced by the previous
	 example:
% cd ~/freebsd
% svn update --set-depth=immediates .
The above command will populate the working copy in
	 ~/freebsd with
	 ROADMAP.txt and empty subdirectories,
	 and nothing will happen when svn update
	 is executed on the subdirectories. However, this
	 command will set the depth for
	 head (in this case) to infinity,
	 and fully populate it:
% svn update --set-depth=infinity head
5.4.2. Direct Operation
Certain operations can be performed directly on the
	 repository without touching the working copy. Specifically,
	 this applies to any operation that does not require editing
	 a file, including:
	log,
	 diff

	mkdir

	remove, copy,
	 rename

	propset,
	 propedit,
	 propdel

	merge

Branching is very fast. This command would be
	 used to branch RELENG_8:
% svn copy svn+ssh://repo.freebsd.org/base/head svn+ssh://repo.freebsd.org/base/stable/8
This is equivalent to these commands
	 which take minutes and hours as opposed to seconds,
	 depending on your network connection:
% svn checkout --depth=immediates svn+ssh://repo.freebsd.org/base
% cd base
% svn update --set-depth=infinity head
% svn copy head stable/8
% svn commit stable/8
5.4.3. Merging with SVN
This section deals with merging code from one branch to
	 another (typically, from head to a stable branch).
Note:
In all examples below, $FSVN
	 refers to the location of the FreeBSD Subversion repository,
	 svn+ssh://repo.freebsd.org/base/.

5.4.3.1. About Merge Tracking
From the user's perspective, merge tracking
	 information (or mergeinfo) is stored in a property called
	 svn:mergeinfo, which is a
	 comma-separated list of revisions and ranges of revisions
	 that have been merged. When set on a file, it applies
	 only to that file. When set on a directory, it applies to
	 that directory and its descendants (files and directories)
	 except for those that have their own
	 svn:mergeinfo.
It is not inherited. For
	 instance, stable/6/contrib/openpam/
	 does not implicitly inherit mergeinfo from
	 stable/6/, or
	 stable/6/contrib/.
	 Doing so would make partial checkouts very hard to manage.
	 Instead, mergeinfo is explicitly propagated down the tree.
	 For merging something into
	 branch/foo/bar/,
	 these rules apply:
	If
		branch/foo/bar/
		does not already have a mergeinfo record, but a direct
		ancestor (for instance,
		branch/foo/)
		does, then that record will be propagated down to
		branch/foo/bar/
		before information about the current merge is
		recorded.

	Information about the current merge will
		not be propagated back up that
		ancestor.

	If a direct descendant of
		branch/foo/bar/ (for instance,
		branch/foo/bar/baz/) already has
		a mergeinfo record, information about the current
		merge will be propagated down to it.

If you consider the case where a revision changes
	 several separate parts of the tree (for example,
	 branch/foo/bar/ and
	 branch/foo/quux/), but you only want
	 to merge some of it (for example,
	 branch/foo/bar/), you will see that
	 these rules make sense. If mergeinfo was propagated up,
	 it would seem like that revision had also been merged to
	 branch/foo/quux/, when in fact it had
	 not been.
5.4.3.2. Selecting the Source and Target Branch
	 When Merging
Merging to stable/ branches should
	 originate from head/. For
	 example:
% svn merge -c r123456 ^/head/ stable/11
% svn commit stable/11
Note:
Note the sections below which outline changes to
	 the target location of the stable/
	 branch starting with
	 stable/10.

Merges to releng/ branches should
	 always originate from the corresponding
	 stable/ branch. For example:
% svn merge -c r123456 ^/stable/11 releng/11.0
% svn commit releng/11.0
Note:
Committers are only permitted to commit to the
	 releng/ branches during a release
	 cycle after receiving approval from the Release
	 Engineering Team, after which only the Security Officer
	 may commit to a releng/ branch for
	 a Security Advisory or Errata Notice.

5.4.3.3. Selecting the Source and Target for
	 stable/10 and Newer
Starting with the stable/10
	 branch, all merges are
	 merged to and committed from the root of the
	 branch. All merges look like:
% svn merge -c r123456 ^/head/ checkout
% svn commit checkout
Note that checkout
	 must be a complete checkout of the branch to which the merge
	 occurs.
Merges to releng/ branches must
	 always originate from the corresponding
	 stable/ branch. For example:
% svn merge -c r123456 ^/stable/10 releng/10.0
5.4.3.4. Selecting the Source and Target for
	 stable/9 and Older
For stable/9 and earlier,
	 a different strategy was used, distributing mergeinfo
	 around the tree so that merges could be performed without
	 a complete checkout. This procedure proved extremely
	 error-prone, with the convenience of partial checkouts for
	 merges significantly outweighed by the complexity of
	 picking mergeinfo targets. The procedure below describes this
	 now-obsoleted process, which should be used
	 only for merges prior to
	 stable/10.
Because of mergeinfo propagation, it is important to
	 choose the source and target for the merge carefully to
	 minimise property changes on unrelated directories.
The rules for selecting the merge target (the
	 directory where the changes are being merged to) can be
	 summarized:
	Never merge directly to a file.

	Never, ever merge directly to a file.

	Never, ever, ever merge
		directly to a file.

	Changes to kernel code are merged to
		sys/. For instance, a change to
		the ichwd(4) driver is merged to
		sys/, not
		sys/dev/ichwd/. Likewise, a
		change to the TCP/IP stack is merged to
		sys/, not
		sys/netinet/.

	Changes to code under etc/
		is merged at etc/, not
		below it.

	Changes to vendor code (code in
		contrib/,
		crypto/ and so on) are
		merged to the directory where vendor imports happen.
		For instance, a change to
		crypto/openssl/util/ is
		merged to crypto/openssl/. This
		is rarely an issue, however, since changes to vendor
		code are usually merged wholesale.

	Changes to userland programs should as a general
		rule be merged to the directory that contains the
		Makefile for that program. For instance, a change to
		usr.bin/xlint/arch/i386/
		is merged to
		usr.bin/xlint/.

	Changes to userland libraries should as a general
		rule be merged to the directory that contains the
		Makefile for that library. For instance, a change to
		lib/libc/gen/ should be merged to
		lib/libc/.

	There may be cases where it makes sense to deviate
		from the rules for userland programs and libraries.
		For instance, everything under
		lib/libpam/ is merged to
		lib/libpam/, even though the
		library itself and all of the modules each have their
		own Makefile.

	Changes to manual pages are merged to
		share/man/manN/,
		for the appropriate value of
		N.

	Other changes to share/
		are merged to the appropriate subdirectory and
		not to share/ directly.

	Changes to a top-level file in the source tree
		such as UPDATING or
		Makefile.inc1 are merged
		directly to that file rather than to the root of the
		whole tree. Yes, this is an exception to the first
		three rules.

	When in doubt, ask.

If a merge changes several places at once
	 (for instance, changing a kernel interface and every
	 userland program that uses it), merge each target
	 separately, then commit them together. For instance, if
	 merging a revision that changed a kernel
	 API and updated all the userland bits
	 that used that API, merge the
	 kernel change to sys, and the userland bits to the
	 appropriate userland directories, then commit all of these
	 in one go.
The source will almost invariably be the same as the
	 target. For instance, always merge
	 stable/7/lib/libc/ from
	 head/lib/libc/. The only exception
	 would be when merging changes to code that has moved in
	 the source branch but not in the parent branch. For
	 instance, a change to pkill(1) would be merged from
	 bin/pkill/ in head to
	 usr.bin/pkill/ in stable/7.
5.4.3.5. Preparing the Merge Target
Because of the mergeinfo propagation issues described
	 earlier, it is very important to never merge changes
	 into a sparse working copy. Always use a full
	 checkout of the branch being merged into. For instance,
	 when merging from HEAD to 7, use a full checkout
	 of stable/7:
% cd stable/7
% svn up --set-depth=infinity
The target directory must also be up-to-date and must
	 not contain any uncommitted changes or stray files.
5.4.3.6. Identifying Revisions
Identifying revisions to be merged is a must. If the
	 target already has complete mergeinfo, ask
	 SVN for a list:
% cd stable/6/contrib/openpam
% svn mergeinfo --show-revs=eligible $FSVN/head/contrib/openpam
If the target does not have complete mergeinfo, check
	 the log for the merge source.
5.4.3.7. Merging
Now, let us start merging!
5.4.3.7.1. The Principles
For example, To merge:
	revision $R

	in directory $target in stable branch
		 $B

	from directory $source in head

	$FSVN is
		 svn+ssh://repo.freebsd.org/base

Assuming that revisions $P and $Q have
	 already been merged, and that the current directory is
	 an up-to-date working copy of stable/$B, the
	 existing mergeinfo looks like this:
% svn propget svn:mergeinfo -R $target
$target - /head/$source:$P,$Q
Merging is done like so:
% svn merge -c$R $FSVN/head/$source $target
Checking the results of this is possible with
	 svn diff.
The svn:mergeinfo now looks like:
% svn propget svn:mergeinfo -R $target
$target - head/$source:$P,$Q,$R
If the results are not exactly as shown, assistance
	 may be required before committing as mistakes may have
	 been made, or there may be something wrong with the
	 existing mergeinfo, or there may be a bug in
	 Subversion.
5.4.3.7.2. Practical Example
As a practical example, consider this
	 scenario. The changes to netmap.4
	 in r238987 are to be merged from CURRENT to 9-STABLE.
	 The file resides in
	 head/share/man/man4. According
	 to Section 5.4.3, “Merging with SVN”, this is
	 also where to do the merge. Note that in this example
	 all paths are relative to the top of the svn repository.
	 For more information on the directory layout, see Section 5.2.3, “RELENG_* Branches and General
	 Layout”.
The first step is to inspect the existing
	 mergeinfo.
% svn propget svn:mergeinfo -R stable/9/share/man/man4
Take a quick note of how it looks before moving on
	 to the next step; doing the actual merge:
% svn merge -c r238987 svn+ssh://repo.freebsd.org/base/head/share/man/man4 stable/9/share/man/man4
--- Merging r238987 into 'stable/9/share/man/man4':
U stable/9/share/man/man4/netmap.4
--- Recording mergeinfo for merge of r238987 into
'stable/9/share/man/man4':
 U stable/9/share/man/man4
Check that the revision number of the merged
	 revision has been added. Once this is verified, the
	 only thing left is the actual commit.
% svn commit stable/9/share/man/man4
5.4.3.7.3. Merging into the Kernel
	 (sys/)
As stated above, merging into the kernel is
	 different from merging in the rest of the tree. In many
	 ways merging to the kernel is simpler because there is
	 always the same merge target
	 (sys/).
Once svn merge has been executed,
	 svn diff has to be run on the
	 directory to check the changes. This may show some
	 unrelated property changes, but these can be ignored.
	 Next, build and test the kernel, and, once the tests are
	 complete, commit the code as normal, making sure that
	 the commit message starts with “Merge
		r226222 from head”,
	 or similar.
5.4.3.8. Precautions Before Committing
As always, build world (or appropriate parts of
	 it).
Check the changes with svn diff and
	 svn stat. Make sure all the files that
	 should have been added or deleted were in fact added or
	 deleted.
Take a closer look at any property change (marked by a
	 M in the second column of svn
	 stat). Normally, no svn:mergeinfo properties
	 should be anywhere except the target directory (or
	 directories).
If something looks fishy, ask for help.
5.4.3.9. Committing
Make sure to commit a top level directory to have the
	 mergeinfo included as well. Do not specify individual
	 files on the command line. For more information about
	 committing files in general, see the relevant section of
	 this primer.
5.4.4. Vendor Imports with SVN
Important:
Please read this entire section before starting a
	 vendor import.

Note:
Patches to vendor code fall into two
	 categories:
	Vendor patches: these are patches that have been
		issued by the vendor, or that have been extracted from
		the vendor's version control system, which address
		issues which cannot wait until the
		next vendor release.

	FreeBSD patches: these are patches that modify the
		vendor code to address FreeBSD-specific issues.

The nature of a patch dictates where it should be
	 committed:
	Vendor patches must be committed to the vendor
		branch, and merged from there to head. If the patch
		addresses an issue in a new release that is currently
		being imported, it must not be
		committed along with the new release: the release must
		be imported and tagged first, then the patch can be
		applied and committed. There is no need to re-tag the
		vendor sources after committing the patch.

	FreeBSD patches are committed directly to
		head.

5.4.4.1. Preparing the Tree
If importing for the first time after the switch to
	 Subversion, flattening and cleaning up the vendor tree is
	 necessary, as well as bootstrapping the merge history in
	 the main tree.
5.4.4.1.1. Flattening
During the conversion from CVS to
	 Subversion, vendor branches were imported with the same
	 layout as the main tree. This means that the
	 pf vendor sources ended up in
	 vendor/pf/dist/contrib/pf. The
	 vendor source is best directly in
	 vendor/pf/dist.
To flatten the pf tree:
% cd vendor/pf/dist/contrib/pf
% svn mv $(svn list) ../..
% cd ../..
% svn rm contrib
% svn propdel -R svn:mergeinfo .
% svn commit
The propdel bit is necessary
	 because starting with 1.5, Subversion will automatically
	 add svn:mergeinfo to any directory
	 that is copied or moved. In this case, as nothing is
	 being merged from the deleted tree, they just get in the
	 way.
Tags may be flattened as well (3, 4, 3.5 etc.); the
	 procedure is exactly the same, only changing
	 dist to 3.5 or
	 similar, and putting the svn commit
	 off until the end of the process.
5.4.4.1.2. Cleaning Up
The dist tree can be cleaned up
	 as necessary. Disabling keyword expansion is
	 recommended, as it makes no sense on unmodified vendor
	 code and in some cases it can even be harmful.
	 OpenSSH, for example,
	 includes two files that originated with FreeBSD and still
	 contain the original version tags. To do this:
% svn propdel svn:keywords -R .
% svn commit
5.4.4.1.3. Bootstrapping Merge History
If importing for the first time after the switch to
	 Subversion, bootstrap svn:mergeinfo
	 on the target directory in the main tree to the revision
	 that corresponds to the last related change to the
	 vendor tree, prior to importing new sources:
% cd head/contrib/pf
% svn merge --record-only svn+ssh://repo.freebsd.org/base/vendor/pf/dist@180876 .
% svn commit
5.4.4.2. Importing New Sources
With two commits—one for the import itself and
	 one for the tag—this step can optionally be repeated
	 for every upstream release between the last import and the
	 current import.
5.4.4.2.1. Preparing the Vendor Sources
Unlike in CVS where only the
	 needed parts were imported into the vendor tree to avoid
	 bloating the main tree, Subversion is able to store a
	 full distribution in the vendor tree. So, import
	 everything, but merge only what is required.
A svn add is required to add any
	 files that were added since the last vendor import, and
	 svn rm is required to remove any that
	 were removed since. Preparing sorted lists of the
	 contents of the vendor tree and of the sources that are
	 about to be imported is recommended, to facilitate the
	 process.
% cd vendor/pf/dist
% svn list -R | grep -v '/$' | sort >../old
% cd ../pf-4.3
% find . -type f | cut -c 3- | sort >../new
With these two files,
	 comm -23 ../old ../new will list
	 removed files (files only in old),
	 while comm -13 ../old ../new will
	 list added files only in
	 new.
5.4.4.2.2. Importing into the Vendor Tree
Now, the sources must be copied into
	 dist and
	 the svn add and
	 svn rm commands are used as
	 needed:
% cd vendor/pf/pf-4.3
% tar cf - . | tar xf - -C ../dist
% cd ../dist
% comm -23 ../old ../new | xargs svn rm
% comm -13 ../old ../new | xargs svn --parents add
If any directories were removed, they will have to
	 be svn rmed manually. Nothing will
	 break if they are not, but they will remain in the
	 tree.
Check properties on any new files. All text files
	 should have svn:eol-style set to
	 native. All binary files should have
	 svn:mime-type set to
	 application/octet-stream unless there
	 is a more appropriate media type. Executable files
	 should have svn:executable set to
	 *. No other properties should exist
	 on any file in the tree.
Committing is now possible. However, it is good
	 practice to make sure that everything is okay by using the
	 svn stat and
	 svn diff commands.
5.4.4.2.3. Tagging
Once committed, vendor releases are tagged for
	 future reference. The best and quickest way to do this
	 is directly in the repository:
% svn cp svn+ssh://repo.freebsd.org/base/vendor/pf/dist svn+ssh://repo.freebsd.org/base/vendor/pf/4.3
Once that is complete, svn up the
	 working copy of
	 vendor/pf
	 to get the new tag, although this is rarely
	 needed.
If creating the tag in the working copy of the tree,
	 svn:mergeinfo results must be
	 removed:
% cd	vendor/pf
% svn cp dist 4.3
% svn propdel svn:mergeinfo -R 4.3
5.4.4.3. Merging to Head
% cd head/contrib/pf
% svn up
% svn merge --accept=postpone svn+ssh://repo.freebsd.org/base/vendor/pf/dist .
The --accept=postpone tells
	 Subversion not to complain about merge
	 conflicts as they will be handled manually.
Tip:
The cvs2svn changeover occurred
	 on June 3, 2008. When performing vendor merges for
	 packages which were already present and converted by the
	 cvs2svn process, the command used to
	 merge
	 /vendor/package_name/dist
	 to
	 /head/package_location
	 (for example,
	 head/contrib/sendmail) must use
	 -c REV to
	 indicate the revision to merge from the
	 /vendor tree. For example:
% svn checkout svn+ssh://repo.freebsd.org/base/head/contrib/sendmail
% cd sendmail
% svn merge -c r261190 ^/vendor/sendmail/dist .
^ is an alias for the
	 repository path.

Note:
If using the Zsh shell,
	 the ^ must be escaped with
	 \. This means
	 ^/head should be
	 \^/head.

It is necessary to resolve any merge conflicts.
Make sure that any files that were added or removed in
	 the vendor tree have been properly added or removed in the
	 main tree. To check diffs against the vendor
	 branch:
% svn diff --no-diff-deleted --old=svn+ssh://repo.freebsd.org/base/vendor/pf/dist --new=.
The --no-diff-deleted tells
	 Subversion not to complain about files that are in the
	 vendor tree but not in the main tree. Things that
	 would have previously been removed before the vendor
	 import, like the vendor's makefiles
	 and configure scripts.
Using CVS, once a file was off the
	 vendor branch, it was not able to be put back. With
	 Subversion, there is no concept of on or off the vendor
	 branch. If a file that previously had local
	 modifications, to make it not show up in diffs in the
	 vendor tree, all that has to be done is remove any
	 left-over cruft like FreeBSD version tags, which is much
	 easier.
If any changes are required for the world to build
	 with the new sources, make them now, and keep testing
	 until everything builds and runs perfectly.
5.4.4.4. Committing the Vendor Import
Committing is now possible! Everything must be
	 committed in one go. If done properly, the tree will move
	 from a consistent state with old code, to a consistent
	 state with new code.
5.4.4.5. From Scratch
5.4.4.5.1. Importing into the Vendor Tree
This section is an example of importing and tagging
	 byacc into
	 head.
First, prepare the directory in
	 vendor:
% svn co --depth immediates $FSVN/vendor
% cd vendor
% svn mkdir byacc
% svn mkdir byacc/dist
Now, import the sources into the
	 dist directory.
	 Once the files are in place, svn add
	 the new ones, then svn commit and tag
	 the imported version. To save time and bandwidth,
	 direct remote committing and tagging is possible:
% svn cp -m "Tag byacc 20120115" $FSVN/vendor/byacc/dist $FSVN/vendor/byacc/20120115
5.4.4.5.2. Merging to head
Due to this being a new file, copy it for the
	 merge:
% svn cp -m "Import byacc to contrib" $FSVN/vendor/byacc/dist $FSVN/head/contrib/byacc
Working normally on newly imported sources is still
	 possible.
5.4.5. Reverting a Commit
Reverting a commit to a previous version is fairly
	 easy:
% svn merge -r179454:179453 ROADMAP.txt
% svn commit
Change number syntax, with negative meaning a reverse
	 change, can also be used:
% svn merge -c -179454 ROADMAP.txt
% svn commit
This can also be done directly in the repository:
% svn merge -r179454:179453 svn+ssh://repo.freebsd.org/base/ROADMAP.txt
Note:
It is important to ensure that the mergeinfo
	 is correct when reverting a file to permit
	 svn mergeinfo --eligible to work as
	 expected.

Reverting the deletion of a file is slightly different.
	 Copying the version of the file that predates the deletion
	 is required. For example, to restore a file that was
	 deleted in revision N, restore version N-1:
% svn copy svn+ssh://repo.freebsd.org/base/ROADMAP.txt@179454
% svn commit
or, equally:
% svn copy svn+ssh://repo.freebsd.org/base/ROADMAP.txt@179454 svn+ssh://repo.freebsd.org/base
Do not simply recreate the file
	 manually and svn add it—this will
	 cause history to be lost.
5.4.6. Fixing Mistakes
While we can do surgery in an emergency, do not plan on
	 having mistakes fixed behind the scenes. Plan on mistakes
	 remaining in the logs forever. Be sure to check the output
	 of svn status and svn
	 diff before committing.
Mistakes will happen but,
	 they can generally be fixed without
	 disruption.
Take a case of adding a file in the wrong location. The
	 right thing to do is to svn move the file
	 to the correct location and commit. This causes just a
	 couple of lines of metadata in the repository journal, and
	 the logs are all linked up correctly.
The wrong thing to do is to delete the file and then
	 svn add an independent copy in the
	 correct location. Instead of a couple of lines of text, the
	 repository journal grows an entire new copy of the file.
	 This is a waste.
5.4.7. Setting up a svnsync
	 Mirror
Avoid setting up a svnsync
	 mirror unless there is a very good reason for it. Such
	 reasons might be to support
	 multiple local read-only client machines, or if the network
	 bandwidth is limited. Starting a fresh mirror from empty
	 would take a very long time. Expect a minimum of 10 hours
	 for high speed connectivity. If international links are
	 involved, expect this to take four to ten times longer.
A far better option is to grab a seed file. It is large
	 (~1GB) but will consume less network traffic and take less
	 time to fetch than a svnsync will. There are several ways
	 to do this:
% rsync -va --partial --progress freefall:/home/peter/svnmirror-base-r179637.tbz2 .
% rsync -va --partial --progress rsync://repoman.freebsd.org:50873/svnseed/svnmirror-base-r215629.tar.xz .
% fetch ftp://ftp.freebsd.org/pub/FreeBSD/development/subversion/svnmirror-base-r221445.tar.xz
Extract the file to somewhere like
	 home/svnmirror/base/.
	 Then, update it, so that it fetches changes since the last
	 revision in the archive:
% svnsync sync file:///home/svnmirror/base
Now, set that up to run from cron(8), do
	 checkouts locally, set up a svnserve server for local
	 machines to talk to, etc.
The seed mirror is set to fetch from
	 svn://svn.freebsd.org/base. The
	 configuration for the mirror is stored in
	 revprop 0 on the local mirror. To see
	 the configuration, try:
% svn proplist -v --revprop -r 0 file:///home/svnmirror/base
Use propset to change things.
5.4.8. Committing High-ASCII Data
Files that have high-ASCII bits are
	 considered binary files in SVN, so the
	 pre-commit checks fail and indicate that the
	 mime-type property should be set to
	 application/octet-stream. However, the
	 use of this is discouraged, so please do not set it. The
	 best way is always avoiding high-ASCII
	 data, so that it can be read everywhere with any text editor
	 but if it is not avoidable, instead of changing the
	 mime-type, set the fbsd:notbinary
	 property with propset:
% svn propset fbsd:notbinary yes foo.data
5.4.9. Maintaining a Project Branch
A project branch is one that is synced to head (or
	 another branch) is used to develop a project then commit it
	 back to head. In SVN,
	 “dolphin” branching is used for this. A
	 “dolphin” branch is one that diverges for a
	 while and is finally committed back to the original branch.
	 During development code migration in one direction (from
	 head to the branch only). No code is committed back to head
	 until the end. After the branch is committed back at the end,
	 it is dead (although a new branch with the same name can be
	 created after the dead one is deleted).
As per https://people.FreeBSD.org/~peter/svn_notes.txt,
	 work that is intended to be merged back into HEAD should be
	 in base/projects/. If the
	 work is beneficial to the FreeBSD community in some way
	 but not intended to be merged directly back into HEAD then
	 the proper location is
	 base/user/username/.
	 This
	 page contains further details.
To create a project branch:
% svn copy svn+ssh://repo.freebsd.org/base/head svn+ssh://repo.freebsd.org/base/projects/spif
To merge changes from HEAD back into the project
	 branch:
% cd copy_of_spif
% svn merge svn+ssh://repo.freebsd.org/base/head
% svn commit
It is important to resolve any merge conflicts before
	 committing.
5.5. Some Tips
In commit logs etc., “rev 179872” is
	spelled “r179872” as per convention.
Speeding up svn is possible by adding these entries to
	~/.ssh/config:
Host *
ControlPath ~/.ssh/sockets/master-%l-%r@%h:%p
ControlMaster auto
ControlPersist yes
and then typing
mkdir ~/.ssh/sockets
Checking out a working copy with a stock Subversion client
	without FreeBSD-specific patches
	(OPTIONS_SET=FREEBSD_TEMPLATE) will mean
	that $FreeBSD$ tags will not
	be expanded. Once the correct version has been installed,
	trick Subversion into expanding them like so:
% svn propdel -R svn:keywords .
% svn revert -R .
This will wipe out uncommitted patches.
It is possible to automatically fill the "Sponsored by"
	and "MFC after" commit log fields by setting
	"freebsd-sponsored-by" and "freebsd-mfc-after" fields in the
	"[miscellany]" section of the
	~/.subversion/config configuration file.
	For example:
freebsd-sponsored-by = The FreeBSD Foundation
freebsd-mfc-after = 2 weeks
6. Setup, Conventions, and Traditions
There are a number of things to do as a new developer.
 The first set of steps is specific to committers only. These
 steps must be done by a mentor for those who are not
 committers.
6.1. For New Committers
Those who have been given commit rights to the FreeBSD
	repositories must follow these steps.
	Get mentor approval before committing each of these
	 changes!

	The .ent and
	 .xml files mentioned below exist in
	 the FreeBSD Documentation Project SVN repository at
	 svn+ssh://repo.FreeBSD.org/doc/.

	New files that do not have the
	 FreeBSD=%H
	 svn:keywords property will be rejected
	 when attempting to commit them to the repository. Be sure
	 to read
	 Section 5.3.7, “Adding and Removing Files”
	 regarding adding and removing files. Verify that
	 ~/.subversion/config contains the
	 necessary “auto-props” entries from
	 auto-props.txt mentioned
	 there.

	All src commits go to
	 FreeBSD-CURRENT first before being merged to FreeBSD-STABLE.
	 The FreeBSD-STABLE branch must maintain
	 ABI and API
	 compatibility with earlier versions of that branch. Do
	 not merge changes that break this compatibility.

Procedure 1. Steps for New Committers
	Add an Author Entity
doc/head/share/xml/authors.ent
	 — Add an author entity. Later steps depend on this
	 entity, and missing this step will cause the
	 doc/ build to fail. This is a
	 relatively easy task, but remains a good first test of
	 version control skills.

	Update the List of Developers and
	 Contributors
doc/head/en_US.ISO8859-1/articles/contributors/contrib.committers.xml
	 —
	 Add an entry to the “Developers” section
	 of the Contributors
	 List. Entries are sorted by last name.
doc/head/en_US.ISO8859-1/articles/contributors/contrib.additional.xml
	 — Remove the entry from the
	 “Additional Contributors” section. Entries
	 are sorted by first name.

	Add a News Item
doc/head/share/xml/news.xml
	 — Add an entry. Look for the other entries that
	 announce new committers and follow the format. Use the
	 date from the commit bit approval email from
	 <core@FreeBSD.org>.

	Add a PGP Key
doc/head/share/pgpkeys/pgpkeys.ent
	 and
	 doc/head/share/pgpkeys/pgpkeys-developers.xml
	 - Add your PGP or
	 GnuPG key. Those who do not yet have a
	 key should see Section 2.1, “Creating a Key”.
Dag-Erling Smørgrav <des@FreeBSD.org> has written a shell script
	 (doc/head/share/pgpkeys/addkey.sh) to
	 make this easier. See the README
	 file for more information.
Use
	 doc/head/share/pgpkeys/checkkey.sh to
	 verify that keys meet minimal best-practices
	 standards.
After adding and checking a key, add both updated
	 files to source control and then commit them. Entries in
	 this file are sorted by last name.
Note:
It is very important to have a current
	 PGP/GnuPG key in
	 the repository. The key may be required for positive
	 identification of a committer. For example, the
	 FreeBSD Administrators <admins@FreeBSD.org> might need it for account recovery. A
	 complete keyring of FreeBSD.org users is
	 available for download from https://www.FreeBSD.org/doc/pgpkeyring.txt.

	Update Mentor and Mentee Information
base/head/share/misc/committers-repository.dot
	 — Add an entry to the current committers section,
	 where repository is
	 doc, ports, or
	 src, depending on the commit privileges
	 granted.
Add an entry for each additional mentor/mentee
	 relationship in the bottom section.

	Generate a Kerberos
	 Password
See Section 3, “Kerberos and LDAP web Password for FreeBSD Cluster” to generate or
	 set a Kerberos for use with
	 other FreeBSD services like the bug tracking database.

	Optional: Enable Wiki Account
FreeBSD
	 Wiki Account — A wiki account allows
	 sharing projects and ideas. Those who do not yet have an
	 account can follow instructions on the AboutWiki
	 Page to obtain one. Contact
	 <clusteradm@FreeBSD.org> if you need help
	 with your Wiki account.

	Optional: Update Wiki Information
Wiki Information - After gaining access to the wiki,
	 some people add entries to the How We
	 Got Here,
	 Irc
	 Nicks, and Dogs
	 of FreeBSD pages.

	Optional: Update Ports with Personal
	 Information
ports/astro/xearth/files/freebsd.committers.markers
	 and
	 src/usr.bin/calendar/calendars/calendar.freebsd
	 - Some people add entries for themselves to these files to
	 show where they are located or the date of their
	 birthday.

	Optional: Prevent Duplicate Mailings
Subscribers to svn-src-all,
	 svn-ports-all or svn-doc-all might wish
	 to unsubscribe to avoid receiving duplicate copies of
	 commit messages and followups.

6.2. For Everyone
	Introduce yourself to the other developers, otherwise
	 no one will have any idea who you are or what you are
	 working on. The introduction need not be a comprehensive
	 biography, just write a paragraph or two about who you
	 are, what you plan to be working on as a developer in
	 FreeBSD, and who will be your mentor. Email this to the
	 FreeBSD developers mailing list and you will be on your way!

	Log into freefall.FreeBSD.org
	 and create a
	 /var/forward/user
	 (where user is your username)
	 file containing the e-mail address where you want mail
	 addressed to
	 yourusername@FreeBSD.org to be
	 forwarded. This includes all of the commit messages as
	 well as any other mail addressed to the FreeBSD committer's mailing list and
	 the FreeBSD developers mailing list. Really large mailboxes which have
	 taken up permanent residence on
	 freefall may get truncated
	 without warning if space needs to be freed, so forward it
	 or save it elsewhere.
Due to the severe load dealing with SPAM places on the
	 central mail servers that do the mailing list processing,
	 the front-end server does do some basic checks and will
	 drop some messages based on these checks. At the moment
	 proper DNS information for the connecting host is the only
	 check in place but that may change. Some people blame
	 these checks for bouncing valid email. To have these
	 checks turned off for your email, create a file
	 named ~/.spam_lover
	 on freefall.FreeBSD.org.

Note:
Those who are developers but not committers will
	 not be subscribed to the committers or developers mailing
	 lists. The subscriptions are derived from the access
	 rights.

6.3. Mentors
All new developers have a mentor assigned to them for
	the first few months. A mentor is responsible for teaching
	the mentee the rules and conventions of the project and
	guiding their first steps in the developer community. The
	mentor is also personally responsible for the mentee's actions
	during this initial period.
For committers: do not commit anything without first
	getting mentor approval. Document that approval with an
	Approved by: line in the commit
	message.
When the mentor decides that a mentee has learned the
	ropes and is ready to commit on their own, the mentor
	announces it with a commit to
	conf/mentors. This file is in the
	svnadmin branch of each
	repository:
	src	base/svnadmin/conf/mentors
	doc	doc/svnadmin/conf/mentors
	ports	ports/svnadmin/conf/mentors

7. Commit Log Messages
This section contains some suggestions and traditions for
 how commit logs are formatted.
As well as including an informative message with each
 commit, some additional information may be needed.
This information consists of one or more lines
 containing the key word or phrase, a colon, tabs for formatting,
 and then the additional information.
The key words or phrases are:
	PR:	The problem report (if any) which is affected
	 (typically, by being closed) by this commit.
	 Multiple PRs may be specified on one line, separated by
	 commas or spaces.
	Submitted by:	
	 The name and e-mail address of the person
		that submitted the fix; for developers, just the
		username on the FreeBSD cluster.

	 If the submitter is the maintainer of the port
		being committed, include "(maintainer)"
		after the email address.

	 Avoid obfuscating the email address of the
		submitter as this adds additional work when searching
		logs.

	
	Reviewed by:	The name and e-mail address of the person or
	 people that reviewed the change; for developers,
	 just the username on the FreeBSD cluster. If a
	 patch was submitted to a mailing list for review,
	 and the review was favorable, then just include
	 the list name.
	Approved by:	The name and e-mail address of the person or
	 people that approved the change; for developers, just
	 the username on the FreeBSD cluster. It is customary to
	 get prior approval for a commit if it is to an area of
	 the tree to which you do not usually commit. In
	 addition, during the run up to a new release all commits
	 must be approved by the release
	 engineering team.

	 While under mentorship, get mentor approval before
	 the commit. Enter the mentor's username in this field,
	 and note that they are a mentor:

	 Approved by: username-of-mentor (mentor)

	 If a team approved these commits then include the
	 team name followed by the username of the approver in
	 parentheses. For example:

	 Approved by: re (username)

	Obtained from:	The name of the project (if any) from which
	 the code was obtained. Do not use this line for the
	 name of an individual person.
	MFC after:	If you wish to receive an e-mail reminder to
	 MFC at a later date, specify the
	 number of days, weeks, or months after which an
	 MFC is planned.
	MFC to:	If the commit should be merged to a subset of
	 stable branches, specify the branch names.
	MFC with:	If the commit should be merged together with
	 a previous one in a single
	 MFC commit (for example, where
	 this commit corrects a bug in the previous change),
	 specify the corresponding revision number.
	Relnotes:	If the change is a candidate for inclusion in
	 the release notes for the next release from the branch,
	 set to yes.
	Security:	If the change is related to a security
	 vulnerability or security exposure, include one or more
	 references or a description of the issue. If possible,
	 include a VuXML URL or a CVE ID.
	Differential Revision:	The full URL of the Phabricator review. This line
	 must be the last line. For example:
	 https://reviews.freebsd.org/D1708.

Example 1. Commit Log for a Commit Based on a PR
The commit is based on a patch from a PR submitted by John
	Smith. The commit message “PR” and
	“Submitted by” fields are filled..
...

	 PR: 12345
	 Submitted by:	 John Smith <John.Smith@example.com>

Example 2. Commit Log for a Commit Needing Review
The virtual memory system is being changed. After
	posting patches to the appropriate mailing list (in this
	case, freebsd-arch) and the changes have
	been approved.
...

	 Reviewed by: -arch

Example 3. Commit Log for a Commit Needing Approval
Commit a port, after working with
	the listed MAINTAINER, who said to go ahead and
	commit.
...

	 Approved by:	 abc (maintainer)
Where abc is the account name
	of the person who approved.

Example 4. Commit Log for a Commit Bringing in Code from
	OpenBSD
Committing some code based on work done in the
	OpenBSD project.
...

	 Obtained from: OpenBSD

Example 5. Commit Log for a Change to FreeBSD-CURRENT with a Planned
	Commit to FreeBSD-STABLE to Follow at a Later Date.
Committing some code which will be merged from
	FreeBSD-CURRENT into the FreeBSD-STABLE branch after two
	weeks.
...

MFC after: 2 weeks
Where 2 is the number of days,
	weeks, or months after which an MFC is
	planned. The weeks option may be
	day, days,
	week, weeks,
	month, months.

It is often necessary to combine these.
Consider the situation where a user has submitted a PR
 containing code from the NetBSD project. Looking at the PR, the
 developer sees it is not an area of the tree they normally work
 in, so they have the change reviewed by the
 arch mailing list. Since the change is
 complex, the developer opts to MFC after one
 month to allow adequate testing.
The extra information to include in the commit would look
 something like
Example 6. Example Combined Commit Log
PR: 54321
Submitted by: John Smith <John.Smith@example.com>
Reviewed by: -arch
Obtained from: NetBSD
MFC after: 1 month
Relnotes: yes

8. Preferred License for New Files
The FreeBSD Project suggests and uses this
 text as the preferred license scheme:
/*-
 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
 *
 * Copyright (c) [year] [your name]
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * [id for your version control system, if any]
 */
The FreeBSD project strongly discourages the so-called
 "advertising clause" in new code. Due to the large number of
 contributors to the FreeBSD project, complying with this clause for
 many commercial vendors has become difficult. If you have code
 in the tree with the advertising clause, please consider
 removing it. In fact, please consider using the above license
 for your code.
The FreeBSD project discourages completely new licenses and
 variations on the standard licenses. New licenses require the
 approval of the Core Team <core@FreeBSD.org> to reside in the
 main repository. The more different licenses that are used in
 the tree, the more problems that this causes to those wishing to
 utilize this code, typically from unintended consequences from a
 poorly worded license.
Project policy dictates that code under some non-BSD
 licenses must be placed only in specific sections of the
 repository, and in some cases, compilation must be conditional
 or even disabled by default. For example, the GENERIC kernel
 must be compiled under only licenses identical to or
 substantially similar to the BSD license. GPL, APSL, CDDL, etc,
 licensed software must not be compiled into GENERIC.
Developers are reminded that in open source, getting "open"
 right is just as important as getting "source" right, as
 improper handling of intellectual property has serious
 consequences. Any questions or concerns should immediately be
 brought to the attention of the core team.
9. Keeping Track of Licenses Granted to the FreeBSD
 Project
Various software or data exist in the repositories where
 the FreeBSD project has been granted a special licence to be able
 to use them. A case in point are the Terminus fonts for use
 with vt(4). Here the author Dimitar Zhekov has allowed us
 to use the "Terminus BSD Console" font under a 2-clause BSD
 license rather than the regular Open Font License he normally
 uses.
It is clearly sensible to keep a record of any such
 license grants. To that end, the Core Team <core@FreeBSD.org> has decided to keep
 an archive of them. Whenever the FreeBSD project is granted a
 special license we require the Core Team <core@FreeBSD.org> to be notified. Any
 developers involved in arranging such a license grant, please
 send details to the Core Team <core@FreeBSD.org> including:
	Contact details for people or organizations granting the
	 special license.

	What files, directories etc. in the repositories are
	 covered by the license grant including the revision numbers
	 where any specially licensed material was committed.

	The date the license comes into effect from. Unless
	 otherwise agreed, this will be the date the license was
	 issued by the authors of the software in question.

	The license text.

	A note of any restrictions, limitations or exceptions
	 that apply specifically to FreeBSD's usage of the licensed
	 material.

	Any other relevant information.

Once the Core Team <core@FreeBSD.org> is satisfied that all the necessary
 details have been gathered and are correct, the secretary will
 send a PGP-signed acknowledgement of receipt including the
 license details. This receipt will be persistently archived and
 serve as our permanent record of the license grant.
The license archive should contain only details of license
 grants; this is not the place for any discussions around
 licensing or other subjects. Access to data within the license
 archive will be available on request to the Core Team <core@FreeBSD.org>.
10. Developer Relations
When working directly on your own code or on code
 which is already well established as your responsibility, then
 there is probably little need to check with other committers
 before jumping in with a commit. Working on a bug in an area of
 the system which is clearly orphaned (and there are a few such
 areas, to our shame), the same applies. Trying
 to modify something which is clearly being actively
 maintained by someone else (and it is only by watching the
 repository-committers
 mailing list that a developer can really get a feel for just what is and
 is not) then consider sending the change to them instead, just
 as a developer would have before becoming a committer. For ports,
 contact the listed MAINTAINER in the
 Makefile. For other parts of the
 repository, if it is not clear who the active maintainer
 is, it may help to scan the revision history to see who has
 committed changes in the past. An example script that lists
 each person who has committed to
 a given file along with the number of commits each person has
 made can be found at on freefall at
 ~eadler/bin/whodid. If queries go
 unanswered or the committer otherwise indicates a lack of
 interest in the area affected, go ahead and commit it.
Note:
Avoid sending private emails to maintainers. Other people
	might be interested in the conversation, not just the final
	output.

If there is any doubt about a commit for any reason at all, have
 it reviewed by -hackers before committing.
 Better to have it flamed then and there rather than when it is
 part of the repository. If a commit does
 results in controversy erupting, it may be advisable to
 consider backing the change out again until the matter is
 settled. Remember, with a version control system we can
 always change it back.
Do not impugn the intentions of others.
 If they see a different solution to a problem, or even
 a different problem, it is probably not because they are stupid, because
 they have questionable parentage, or because they are trying to
 destroy hard work, personal image, or FreeBSD, but basically
 because they have a different outlook on the world. Different
 is good.
Disagree honestly. Argue your position from its merits,
 be honest about any shortcomings it may have, and be open to
 seeing their solution, or even their vision of the problem,
 with an open mind.
Accept correction. We are all fallible. When you have made
 a mistake, apologize and get on with life. Do not beat up
 yourself, and certainly do not beat up others for your mistake.
 Do not waste time on embarrassment or recrimination, just fix
 the problem and move on.
Ask for help. Seek out (and give) peer reviews. One of
 the ways open source software is supposed to excel is in the
 number of eyeballs applied to it; this does not apply if nobody
 will review code.
11. If in Doubt...
When unsure about something, whether it be a
 technical issue or a project convention be sure to ask. If you
 stay silent you will never make progress.
If it relates to a technical issue ask on the public
 mailing lists. Avoid the temptation to email the individual
 person that knows the answer. This way everyone will be able to
 learn from the question and the answer.
For project specific or administrative questions
 ask, in order:
	Your mentor or former mentor.

	An experienced committer on IRC, email, etc.

	Any team with a "hat", as they can give you a
	 definitive answer.

	If still not sure, ask on FreeBSD developers mailing list.

Once your question is answered, if no one pointed you to
 documentation that spelled out the answer to your question,
 document it, as others will have the same question.
12. Bugzilla
The FreeBSD Project utilizes
 Bugzilla for tracking bugs and change
 requests. Be sure that if you commit a fix or suggestion found
 in the PR database to close it. It is also considered nice if
 you take time to close any PRs associated with your commits, if
 appropriate.
Committers with
 non-FreeBSD.org
 Bugzilla accounts can have the old account merged with the
 FreeBSD.org account by
 following these steps:
	Log in using your old account.

	Open new bug. Choose
	 Services as the Product, and
	 Bug Tracker as the Component.
	 In bug description list acounts you wish to be merged.

	Log in using
	 FreeBSD.org account and
	 post comment to newly opened bug to confirm ownership. See
	 Section 3, “Kerberos and LDAP web Password for FreeBSD Cluster” for more details on how to
	 generate or set a password for your
	 FreeBSD.org account.

	If there are more than two accounts to merge, post
	 comments from each of them.

You can find out more about
 Bugzilla at:
	FreeBSD
	 Problem Report Handling Guidelines

	https://www.FreeBSD.org/support.html

13. Phabricator
The FreeBSD Project utilizes Phabricator
 for code review requests. See the CodeReview
 wiki page for details.
Committers with
 non-FreeBSD.org
 Phabricator accounts can have the old account renamed to the
 FreeBSD.org account by
 following these steps:
	Change your Phabricator
	 account email to your FreeBSD.org email.

	Open new bug on our bug tracker using your FreeBSD.org account, see
	 Section 12, “Bugzilla” for more information. Choose
	 Services as the Product, and
	 Code Review as the Component. In bug
	 description request that your
	 Phabricator account be renamed,
	 and provide a link to your
	 Phabricator user. For example,
	 https://reviews.freebsd.org/p/bob_example.com/

Important:
Phabricator accounts cannot be
	merged, please do not open a new account.

14. Who's Who
Besides the repository meisters, there are other FreeBSD
 project members and teams whom you will probably get to know in
 your role as a committer. Briefly, and by no means
 all-inclusively, these are:
	Documentation Engineering Team <doceng@FreeBSD.org>
	doceng is the group responsible for the documentation
	 build infrastructure, approving new documentation
	 committers, and ensuring that the FreeBSD website and
	 documentation on the FTP site is up to date with respect
	 to the subversion tree. It is
	 not a conflict resolution body.
	 The vast majority of documentation related discussion
	 takes place on the FreeBSD documentation project mailing list. More details regarding the
	 doceng team can be found in its charter.
	 Committers interested in contributing to the documentation
	 should familiarize themselves with the Documentation
	 Project Primer.

	Bruce Evans <bde@FreeBSD.org>
	Bruce is the Style Police-Meister. When you do a
	 commit that could have been done better, Bruce will be
	 there to tell you. Be thankful that someone is. Bruce is
	 also very knowledgeable on the various standards
	 applicable to FreeBSD.

	Glen Barber <gjb@FreeBSD.org>, Konstantin Belousov <kib@FreeBSD.org>, Bryan Drewery <bdrewery@FreeBSD.org>, Marc Fonvieille <blackend@FreeBSD.org>, Rodney Grimes <rgrimes@FreeBSD.org>, Xin Li <delphij@FreeBSD.org>, Hiroki Sato <hrs@FreeBSD.org>, Gleb Smirnoff <glebius@FreeBSD.org>, Marius Strobl <marius@FreeBSD.org>, Robert Watson <rwatson@FreeBSD.org>
	These are the members of the Release Engineering Team <re@FreeBSD.org>. This team is
	 responsible for setting release deadlines and controlling
	 the release process. During code freezes, the release
	 engineers have final authority on all changes to the
	 system for whichever branch is pending release status. If
	 there is something you want merged from FreeBSD-CURRENT to
	 FreeBSD-STABLE (whatever values those may have at any given
	 time), these are the people to talk to about it.
Hiroki is also the keeper of the release documentation
	 (src/release/doc/*). If you commit a
	 change that you think is worthy of mention in the release
	 notes, please make sure he knows about it. Better still,
	 send him a patch with your suggested commentary.

	Gordon Tetlow <gordon@FreeBSD.org>
	Gordon Tetlow is the
	 FreeBSD Security
	 Officer and oversees the
	 Security Officer Team <security-officer@FreeBSD.org>.

	Garrett Wollman <wollman@FreeBSD.org>
	If you need advice on obscure network internals or
	 are not sure of some potential change to the networking
	 subsystem you have in mind, Garrett is someone to talk
	 to. Garrett is also very knowledgeable on the various
	 standards applicable to FreeBSD.

	FreeBSD committer's mailing list
	svn-src-all, svn-ports-all and
	 svn-doc-all are the mailing lists that the
	 version control system uses to send commit messages to.
	 Never send email directly
	 to these lists. Only send replies to this list
	 when they are short and are directly related to a
	 commit.

	FreeBSD developers mailing list
	All committers are subscribed to -developers. This
	 list was created to be a forum for the committers
	 “community” issues. Examples are Core
	 voting, announcements, etc.
The FreeBSD developers mailing list is for the exclusive use of FreeBSD
	 committers. To develop FreeBSD, committers must
	 have the ability to openly discuss matters that will be
	 resolved before they are publicly announced. Frank
	 discussions of work in progress are not suitable for open
	 publication and may harm FreeBSD.
All FreeBSD committers are expected not to
	 not publish or forward messages from the
	 FreeBSD developers mailing list outside the list membership without
	 permission of all of the authors. Violators will be
	 removed from the
	 FreeBSD developers mailing list, resulting in a suspension of commit
	 privileges. Repeated or flagrant violations may result in
	 permanent revocation of commit privileges.
This list is not intended as a
	 place for code reviews or for any technical discussion.
	 In fact using it as such hurts the FreeBSD Project as it
	 gives a sense of a closed list where general decisions
	 affecting all of the FreeBSD using community are made without
	 being “open”. Last, but not least
	 never, never ever, email the FreeBSD developers mailing list and
	 CC:/BCC: another FreeBSD list. Never, ever email
	 another FreeBSD email list and CC:/BCC: the FreeBSD developers mailing list.
	 Doing so can greatly diminish the benefits of this
	 list.

15. SSH Quick-Start Guide
	If you do not wish to type your password in every time
	 you use ssh(1), and you use keys to
	 authenticate, ssh-agent(1) is there for your
	 convenience. If you want to use ssh-agent(1), make
	 sure that you run it before running other applications. X
	 users, for example, usually do this from their
	 .xsession or
	 .xinitrc. See ssh-agent(1) for
	 details.

	Generate a key pair using ssh-keygen(1). The key
	 pair will wind up in your
	 $HOME/.ssh/
	 directory.
Important:
Only ECDSA,
	 Ed25519 or RSA keys
	 are supported.

	Send your public key
	 ($HOME/.ssh/id_ecdsa.pub,
	 $HOME/.ssh/id_ed25519.pub, or
	 $HOME/.ssh/id_rsa.pub)
	 to the person setting you up as a committer so it can be put
	 into
	 yourlogin
	 in
	 /etc/ssh-keys/ on
	 freefall.

Now ssh-add(1) can be used for
 authentication once per session. It prompts for
 the private key's pass phrase, and then stores it in the
 authentication agent (ssh-agent(1)). Use ssh-add
	-d to remove keys stored in the agent.
Test with a simple remote command: ssh
	freefall.FreeBSD.org ls /usr.
For more information, see
 security/openssh,
 ssh(1), ssh-add(1), ssh-agent(1),
 ssh-keygen(1), and scp(1).
For information on adding, changing, or removing ssh(1)
 keys, see this
	article.
16. Coverity® Availability for FreeBSD Committers
All FreeBSD developers can obtain access to
 Coverity analysis results of all FreeBSD
 Project software. All who are interested in obtaining access to
 the analysis results of the automated
 Coverity runs, can sign up at Coverity
	Scan.
The FreeBSD wiki includes a mini-guide for developers who are
 interested in working with the Coverity® analysis reports: https://wiki.freebsd.org/CoverityPrevent.
 Please note that this mini-guide is only readable by FreeBSD
 developers, so if you cannot access this page, you will have to
 ask someone to add you to the appropriate Wiki access
 list.
Finally, all FreeBSD developers who are going to use
 Coverity® are always encouraged to ask for more details and
 usage information, by posting any questions to the mailing list
 of the FreeBSD developers.
17. The FreeBSD Committers' Big List of Rules
Everyone involved with the FreeBSD project is expected to
 abide by the Code of Conduct available from
 https://www.FreeBSD.org/internal/code-of-conduct.html.
 As committers, you form the public face of the project, and how
 you behave has a vital impact on the public perception of it.
 This guide expands on the parts of the
 Code of Conduct specific to
 committers.
	Respect other committers.

	Respect other contributors.

	Discuss any significant change
	 before committing.

	Respect existing maintainers (if listed in the
	 MAINTAINER field in
	 Makefile or in
	 MAINTAINER in the top-level
	 directory).

	Any disputed change must be backed out pending
	 resolution of the dispute if requested by a maintainer.
	 Security related changes may override a maintainer's wishes
	 at the Security Officer's discretion.

	Changes go to FreeBSD-CURRENT before FreeBSD-STABLE unless
	 specifically permitted by the release engineer or unless
	 they are not applicable to FreeBSD-CURRENT. Any non-trivial or
	 non-urgent change which is applicable should also be allowed
	 to sit in FreeBSD-CURRENT for at least 3 days before merging so
	 that it can be given sufficient testing. The release
	 engineer has the same authority over the FreeBSD-STABLE branch
	 as outlined for the maintainer in rule #5.

	Do not fight in public with other committers; it looks
	 bad.

	Respect all code freezes and read the
	 committers and
	 developers mailing lists in a timely
	 manner so you know when a code freeze is in effect.

	When in doubt on any procedure, ask first!

	Test your changes before committing them.

	Do not commit to anything under the
	 src/contrib,
	 src/crypto, or
	 src/sys/contrib trees without
	 explicit approval from the respective
	 maintainers.

As noted, breaking some of these rules can be grounds for
 suspension or, upon repeated offense, permanent removal of
 commit privileges. Individual members of core have the power to
 temporarily suspend commit privileges until core as a whole has
 the chance to review the issue. In case of an
 “emergency” (a committer doing damage to the
 repository), a temporary suspension may also be done by the
 repository meisters. Only a 2/3 majority of core has the
 authority to suspend commit privileges for longer than a week or
 to remove them permanently. This rule does not exist to set
 core up as a bunch of cruel dictators who can dispose of
 committers as casually as empty soda cans, but to give the
 project a kind of safety fuse. If someone is out of control, it
 is important to be able to deal with this immediately rather
 than be paralyzed by debate. In all cases, a committer whose
 privileges are suspended or revoked is entitled to a
 “hearing” by core, the total duration of the
 suspension being determined at that time. A committer whose
 privileges are suspended may also request a review of the
 decision after 30 days and every 30 days thereafter (unless the
 total suspension period is less than 30 days). A committer
 whose privileges have been revoked entirely may request a review
 after a period of 6 months has elapsed. This review policy is
 strictly informal and, in all cases, core
 reserves the right to either act on or disregard requests for
 review if they feel their original decision to be the right
 one.
In all other aspects of project operation, core is a subset
 of committers and is bound by the
 same rules. Just because someone is in
 core this does not mean that they have special dispensation to
 step outside any of the lines painted here; core's
 “special powers” only kick in when it acts as a
 group, not on an individual basis. As individuals, the core
 team members are all committers first and core second.
17.1. Details
	Respect other committers.
This means that you need to treat other committers as
	 the peer-group developers that they are. Despite our
	 occasional attempts to prove the contrary, one does not
	 get to be a committer by being stupid and nothing rankles
	 more than being treated that way by one of your peers.
	 Whether we always feel respect for one another or not (and
	 everyone has off days), we still have to
	 treat other committers with respect
	 at all times, on public forums and in private
	 email.
Being able to work together long term is this
	 project's greatest asset, one far more important than any
	 set of changes to the code, and turning arguments about
	 code into issues that affect our long-term ability to work
	 harmoniously together is just not worth the trade-off by
	 any conceivable stretch of the imagination.
To comply with this rule, do not send email when you
	 are angry or otherwise behave in a manner which is likely
	 to strike others as needlessly confrontational. First
	 calm down, then think about how to communicate in the most
	 effective fashion for convincing the other persons that
	 your side of the argument is correct, do not just blow off
	 some steam so you can feel better in the short term at the
	 cost of a long-term flame war. Not only is this very bad
	 “energy economics”, but repeated displays of
	 public aggression which impair our ability to work well
	 together will be dealt with severely by the project
	 leadership and may result in suspension or termination of
	 your commit privileges. The project leadership will take
	 into account both public and private communications
	 brought before it. It will not seek the disclosure of
	 private communications, but it will take it into account
	 if it is volunteered by the committers involved in the
	 complaint.
All of this is never an option which the project's
	 leadership enjoys in the slightest, but unity comes first.
	 No amount of code or good advice is worth trading that
	 away.

	Respect other contributors.
You were not always a committer. At one time you were
	 a contributor. Remember that at all times. Remember what
	 it was like trying to get help and attention. Do not
	 forget that your work as a contributor was very important
	 to you. Remember what it was like. Do not discourage,
	 belittle, or demean contributors. Treat them with
	 respect. They are our committers in waiting. They are
	 every bit as important to the project as committers.
	 Their contributions are as valid and as important as your
	 own. After all, you made many contributions before you
	 became a committer. Always remember that.
Consider the points raised under
	 1 and apply them also to
	 contributors.

	Discuss any significant change
	 before committing.
The repository is not where changes are
	 initially submitted for correctness or argued over, that
	 happens first in the mailing lists or by use of the
	 Phabricator service. The commit will only happen once
	 something resembling consensus has been reached. This
	 does not mean that permission is required before
	 correcting every obvious syntax error or manual page
	 misspelling, just that it is good to develop a feel
	 for when a proposed change is not quite such a no-brainer
	 and requires some feedback first. People really do not
	 mind sweeping changes if the result is something clearly
	 better than what they had before, they just do not like
	 being surprised by those changes.
	 The very best way of making sure that things are on the right
	 track is to have code reviewed by one or more other
	 committers.
When in doubt, ask for review!

	Respect existing maintainers if listed.
Many parts of FreeBSD are not “owned” in
	 the sense that any specific individual will jump up and
	 yell if you commit a change to “their” area,
	 but it still pays to check first. One convention we use
	 is to put a maintainer line in the
	 Makefile for any package or subtree
	 which is being actively maintained by one or more people;
	 see https://www.FreeBSD.org/doc/en_US.ISO8859-1/books/developers-handbook/policies.html
	 for documentation on this. Where sections of code have
	 several maintainers, commits to affected areas by one
	 maintainer need to be reviewed by at least one other
	 maintainer. In cases where the
	 “maintainer-ship” of something is not clear,
	 look at the repository logs for the files
	 in question and see if someone has been working recently
	 or predominantly in that area.
Other areas of FreeBSD fall under the control of someone
	 who manages an overall category of FreeBSD evolution, such as
	 internationalization or networking. See https://www.FreeBSD.org/administration.html
	 for more information on this.

	Any disputed change must be backed out pending
	 resolution of the dispute if requested by a maintainer.
	 Security related changes may override a maintainer's
	 wishes at the Security Officer's discretion.
This may be hard to swallow in times of conflict (when
	 each side is convinced that they are in the right, of
	 course) but a version control system makes it unnecessary
	 to have an ongoing dispute raging when it is far easier to
	 simply reverse the disputed change, get everyone calmed
	 down again and then try to figure out what is the best way
	 to proceed. If the change turns out to be the best thing
	 after all, it can be easily brought back. If it turns out
	 not to be, then the users did not have to live with the
	 bogus change in the tree while everyone was busily
	 debating its merits. People very
	 rarely call for back-outs in the repository since
	 discussion generally exposes bad or controversial changes
	 before the commit even happens, but on such rare occasions
	 the back-out should be done without argument so that we
	 can get immediately on to the topic of figuring out
	 whether it was bogus or not.

	Changes go to FreeBSD-CURRENT before FreeBSD-STABLE unless
	 specifically permitted by the release engineer or unless
	 they are not applicable to FreeBSD-CURRENT. Any non-trivial
	 or non-urgent change which is applicable should also be
	 allowed to sit in FreeBSD-CURRENT for at least 3 days before
	 merging so that it can be given sufficient testing. The
	 release engineer has the same authority over the
	 FreeBSD-STABLE branch as outlined in rule #5.
This is another “do not argue about it”
	 issue since it is the release engineer who is ultimately
	 responsible (and gets beaten up) if a change turns out to
	 be bad. Please respect this and give the release engineer
	 your full cooperation when it comes to the FreeBSD-STABLE
	 branch. The management of FreeBSD-STABLE may frequently seem
	 to be overly conservative to the casual observer, but also
	 bear in mind the fact that conservatism is supposed to be
	 the hallmark of FreeBSD-STABLE and different rules apply
	 there than in FreeBSD-CURRENT. There is also really no point
	 in having FreeBSD-CURRENT be a testing ground if changes are
	 merged over to FreeBSD-STABLE immediately. Changes need a
	 chance to be tested by the FreeBSD-CURRENT developers, so
	 allow some time to elapse before merging unless the
	 FreeBSD-STABLE fix is critical, time sensitive or so obvious
	 as to make further testing unnecessary (spelling fixes to
	 manual pages, obvious bug/typo fixes, etc.) In other
	 words, apply common sense.
Changes to the security branches (for example,
	 releng/9.3) must be approved by a
	 member of the Security Officer Team <security-officer@FreeBSD.org>, or in some cases, by a
	 member of the Release Engineering Team <re@FreeBSD.org>.

	Do not fight in public with other committers; it looks
	 bad.
This project has a public image to uphold and that
	 image is very important to all of us, especially if we are
	 to continue to attract new members. There will be
	 occasions when, despite everyone's very best attempts at
	 self-control, tempers are lost and angry words are
	 exchanged. The best thing that can be done in such cases
	 is to minimize the effects of this until everyone has
	 cooled back down. Do not air
	 angry words in public and do not forward private
	 correspondence or other private communications to public
	 mailing lists, mail aliases, instant messaging channels or
	 social media sites. What people say one-to-one is often
	 much less sugar-coated than what they would say in public,
	 and such communications therefore have no place there -
	 they only serve to inflame an already bad situation. If
	 the person sending a flame-o-gram at least had the
	 grace to send it privately, then have the grace to keep it
	 private yourself. If you feel you are being unfairly
	 treated by another developer, and it is causing you
	 anguish, bring the matter up with core rather than taking
	 it public. Core will do its best to play peace makers and
	 get things back to sanity. In cases where the dispute
	 involves a change to the codebase and the participants do
	 not appear to be reaching an amicable agreement, core may
	 appoint a mutually-agreeable third party to resolve the
	 dispute. All parties involved must then agree to be bound
	 by the decision reached by this third party.

	Respect all code freezes and read the
	 committers and
	 developers mailing list on a timely
	 basis so you know when a code freeze is in effect.
Committing unapproved changes during a code freeze is
	 a really big mistake and committers are expected to keep
	 up-to-date on what is going on before jumping in after a
	 long absence and committing 10 megabytes worth of
	 accumulated stuff. People who abuse this on a regular
	 basis will have their commit privileges suspended until
	 they get back from the FreeBSD Happy Reeducation Camp we
	 run in Greenland.

	When in doubt on any procedure, ask first!
Many mistakes are made because someone is in a hurry
	 and just assumes they know the right way of doing
	 something. If you have not done it before, chances are
	 good that you do not actually know the way we do things
	 and really need to ask first or you are going to
	 completely embarrass yourself in public. There is no
	 shame in asking
	 “how in the heck do I do this?” We already
	 know you are an intelligent person; otherwise, you would
	 not be a committer.

	Test your changes before committing them.
This may sound obvious, but if it really were so
	 obvious then we probably would not see so many cases of
	 people clearly not doing this. If your changes are to the
	 kernel, make sure you can still compile both GENERIC and
	 LINT. If your changes are anywhere else, make sure you
	 can still make world. If your changes are to a branch,
	 make sure your testing occurs with a machine which is
	 running that code. If you have a change which also may
	 break another architecture, be sure and test on all
	 supported architectures. Please refer to the
	 FreeBSD
	 Internal Page for a list of available resources.
	 As other architectures are added to the FreeBSD supported
	 platforms list, the appropriate shared testing resources
	 will be made available.

	Do not commit to anything under the
	 src/contrib,
	 src/crypto, and
	 src/sys/contrib trees without
	 explicit approval from the respective
	 maintainers.
The trees mentioned above are for contributed software
	 usually imported onto a vendor branch. Committing
	 something there, even if it does not take the file off the
	 vendor branch, may cause unnecessary headaches for those
	 responsible for maintaining that particular piece of
	 software. Thus, unless you have
	 explicit approval from the maintainer
	 (or you are the maintainer), do not
	 commit there!
Please note that this does not mean you should not try
	 to improve the software in question; you are still more
	 than welcome to do so. Ideally, submit your
	 patches to the vendor. If your changes are
	 FreeBSD-specific, talk to the maintainer; they may be
	 willing to apply them locally. But whatever you do, do
	 not commit there by yourself!
Contact the Core Team <core@FreeBSD.org> if you wish to take up
	 maintainership of an unmaintained part of the tree.

17.2. Policy on Multiple Architectures
FreeBSD has added several new architecture ports during
	recent release cycles and is truly no longer an i386™ centric
	operating system. In an effort to make it easier to keep
	FreeBSD portable across the platforms we support, core has
	developed this mandate:
Our 32-bit reference platform is i386, and our
	 64-bit reference platform is amd64. Major design
	 work (including major API and ABI changes) must prove
	 itself on at least one 32-bit and at least one 64-bit
	 platform, preferably the primary reference platforms,
	 before it may be committed to the source tree.

The i386 and amd64 platforms were chosen
	due to being more readily available to developers and as
	representatives of more diverse processor and system designs -
	big versus little endian, register file versus register stack,
	different DMA and cache implementations, hardware page tables
	versus software TLB management etc.
We will continue to re-evaluate this policy as cost and
	availability of the 64-bit platforms change.
Developers should also be aware of our Tier Policy for
	the long term support of hardware architectures. The rules
	here are intended to provide guidance during the development
	process, and are distinct from the requirements for features
	and architectures listed in that section. The Tier rules for
	feature support on architectures at release-time are more
	strict than the rules for changes during the development
	process.
17.3. Other Suggestions
When committing documentation changes, use a spell checker
	before committing. For all XML docs, verify that the
	formatting directives are correct by running
	make lint and
	textproc/igor.
For manual pages, run sysutils/manck
	and textproc/igor
	over the manual page to verify all of the cross
	references and file references are correct and that the man
	page has all of the appropriate MLINKs
	installed.
Do not mix style fixes with new functionality. A style
	fix is any change which does not modify the functionality of
	the code. Mixing the changes obfuscates the functionality
	change when asking for differences between revisions, which
	can hide any new bugs. Do not include whitespace changes with
	content changes in commits to doc/ .
	The extra clutter in the diffs
	makes the translators' job much more difficult. Instead, make
	any style or whitespace changes in separate commits that are
	clearly labeled as such in the commit message.
17.4. Deprecating Features
When it is necessary to remove functionality from software
	in the base system, follow these guidelines
	whenever possible:
	Mention is made in the manual page and possibly the
	 release notes that the option, utility, or interface is
	 deprecated. Use of the deprecated feature generates a
	 warning.

	The option, utility, or interface is preserved until
	 the next major (point zero) release.

	The option, utility, or interface is removed and no
	 longer documented. It is now obsolete. It is also
	 generally a good idea to note its removal in the release
	 notes.

17.5. Privacy and Confidentiality
	Most FreeBSD business is done in public.
FreeBSD is an open project. Which
	 means that not only can anyone use the source code, but
	 that most of the development process is open to public
	 scrutiny.

	Certain sensitive matters must remain private or
	 held under embargo.
There unfortunately cannot be complete transparency.
	 As a FreeBSD developer you will have a certain degree of
	 privileged access to information. Consequently you are
	 expected to respect certain requirements for
	 confidentiality. Sometimes the need for confidentiality
	 comes from external collaborators or has a specific time
	 limit. Mostly though, it is a matter of not releasing
	 private communications.

	The Security Officer has sole control over the
	 release of security advisories.
Where there are security problems that affect many
	 different operating systems, FreeBSD frequently depends on
	 early access to be able to prepare advisories for
	 coordinated release. Unless FreeBSD developers can be
	 trusted to maintain security, such early access will not
	 be made available. The Security Officer is responsible
	 for controlling pre-release access to information about
	 vulnerabilities, and for timing the release of all
	 advisories. He may request help under condition of
	 confidentiality from any developer with relevant knowledge
	 to prepare security fixes.

	Communications with Core are kept confidential for as
	 long as necessary.
Communications to core will initially be treated as
	 confidential. Eventually however, most of Core's business
	 will be summarized into the monthly or quarterly core
	 reports. Care will be taken to avoid publicising any
	 sensitive details. Records of some particularly sensitive
	 subjects may not be reported on at all and will be
	 retained only in Core's private archives.

	Non-disclosure Agreements may be required for access
	 to certain commercially sensitive data.
Access to certain commercially sensitive data may
	 only be available under a Non-Disclosure Agreement. The
	 FreeBSD Foundation legal staff must be consulted before
	 any binding agreements are entered into.

	Private communications must not be made
	 public without permission.
Beyond the specific requirements above there is a
	 general expectation not to publish private communications
	 between developers without the consent of all parties
	 involved. Ask permission before forwarding a message onto
	 a public mailing list, or posting it to a forum or website
	 that can be accessed by other than the original
	 correspondents.

	Communications on project-only or restricted access
	 channels must be kept private.
Similarly to personal communications, certain
	 internal communications channels, including FreeBSD Committer
	 only mailing lists and restricted access IRC channels
	 are considered private communications. Permission is
	 required to publish material from these
	 sources.

	Core may approve publication.
Where it is impractical to obtain permission due to
	 the number of correspondents or where permission to
	 publish is unreasonably withheld, Core may approve release
	 of such private matters that merit more general
	 publication.

18. Support for Multiple Architectures
FreeBSD is a highly portable operating system intended to
 function on many different types of hardware architectures.
 Maintaining clean separation of Machine Dependent (MD) and
 Machine Independent (MI) code, as well as minimizing MD code, is
 an important part of our strategy to remain agile with regards
 to current hardware trends. Each new hardware architecture
 supported by FreeBSD adds substantially to the cost of code
 maintenance, toolchain support, and release engineering. It
 also dramatically increases the cost of effective testing of
 kernel changes. As such, there is strong motivation to
 differentiate between classes of support for various
 architectures while remaining strong in a few key architectures
 that are seen as the FreeBSD “target audience”.
18.1. Statement of General Intent
The FreeBSD Project targets "production quality commercial
	off-the-shelf (COTS) workstation, server, and high-end
	embedded systems". By retaining a focus on a narrow set of
	architectures of interest in these environments, the FreeBSD
	Project is able to maintain high levels of quality, stability,
	and performance, as well as minimize the load on various
	support teams on the project, such as the ports team,
	documentation team, security officer, and release engineering
	teams. Diversity in hardware support broadens the options for
	FreeBSD consumers by offering new features and usage
	opportunities (such as support for 64-bit CPUs, use in
	embedded environments, etc.), but these benefits must always
	be carefully considered in terms of the real-world maintenance
	cost associated with additional platform support.
The FreeBSD Project differentiates platform targets into
	four tiers. Each tier includes a specification of the
	requirements for an architecture to be in that tier,
	as well as specifying the obligations of developers with
	regards to the platform. In addition, a policy is defined
	regarding the circumstances required to change the tier
	of an architecture.
18.2. Tier 1: Fully Supported Architectures
Tier 1 platforms are fully supported by the security
	officer, release engineering, and toolchain maintenance staff.
	New features added to the operating system must be fully
	functional across all Tier 1 architectures for every release
	(features which are inherently architecture-specific, such as
	support for hardware device drivers, may be exempt from this
	requirement). In general, all Tier 1 platforms must have
	build and test automation support either in the FreeBSD.org cluster,
	or easily available for all developers. Embedded platforms
	may substitute an emulator available in the FreeBSD.org cluster
	for actual hardware.
Tier 1 architectures are expected to be Production Quality
	with respects to all aspects of the FreeBSD operating system,
	including installation and development environments.
Tier 1 architectures are expected to be completely
	integrated into the source tree and have all features
	necessary to produce an entire system relevant for that target
	architecture. Tier 1 architectures generally have at least 6
	active developers.
Tier 1 architectures are expected to be fully supported by
	the ports system. All the ports should build on a Tier 1
	platform, or have the appropriate filters to prevent the
	inappropriate ones from building there. The packaging system
	must support all Tier 1 architectures. To ensure an
	architecture's Tier 1 status, proponents of that architecture
	must show that all relevant packages can be built on that
	platform.
Tier 1 embedded architectures must be able to cross-build
	packages on at least one other Tier 1 architecture. The
	packages must be the most relevant for the platform, but may
	be a non-empty subset of those that build natively.
Tier 1 architectures must be fully documented. All basic
	operations need to be covered by the handbook or other
	documents. All relevant integration documentation must also
	be integrated into the tree, or readily available.
Current Tier 1 platforms are i386 and
	amd64.
18.3. Tier 2: Developmental Architectures
Tier 2 platforms are not supported by the security officer
	and release engineering teams. Platform maintainers are
	responsible for toolchain support in the tree. The toolchain
	maintainers are expected to work with the platform maintainers
	to refine these changes. Major new toolchain components are
	allowed to break support for Tier 2 architectures if the
	FreeBSD-local changes have not been incorporated upstream.
	The toolchain maintainers are expected to provide prompt
	review of any proposed changes and cannot block, through their
	inaction, changes going into the tree. New features added to
	FreeBSD should be feasible to implement on these platforms,
	but an implementation is not required before the feature may
	be added to the FreeBSD source tree. New features that may be
	difficult to implement on Tier 2 architectures should provide
	a means of disabling them on those architectures. The
	implementation of a Tier 2 architecture may be committed to
	the main FreeBSD tree as long as it does not interfere with
	production work on Tier 1 platforms, or substantially with
	other Tier 2 platforms. Before a Tier 2 platform can be added
	to the FreeBSD base source tree, the platform must be able to
	boot multi-user on actual hardware. Generally, there must be
	at least three active developers working on the
	platform.
Tier 2 architectures are usually systems targeted at Tier
	1 support, but that are still under development.
	Architectures reaching end of life may also be moved from Tier
	1 status to Tier 2 status as the availability of resources to
	continue to maintain the system in a Production Quality state
	diminishes. Well supported niche architectures may also be
	Tier 2.
Tier 2 architectures have basic support for them
	integrated into the ports infrastructure. They may have cross
	compilation support added, at the discretion of portmgr. Some
	ports must built natively into packages if the package system
	supports that architecture. If not integrated into the base
	system, some external patches for the architecture for ports
	must be available.
Tier 2 architectures can be integrated into the FreeBSD
	handbook. The basics for how to get a system running must be
	documented, although not necessarily for every single board or
	system a Tier 2 architecture supports. The supported hardware
	list must exist and be relatively recent. It should be
	integrated into the FreeBSD documentation.
Current Tier 2 platforms are arm, arm64,
	ia64 (through FreeBSD 10), mips,
	pc98 (through FreeBSD 11),
	powerpc, and sparc64.
18.4. Tier 3: Experimental Architectures
Tier 3 platforms are not supported by the security officer
	and release engineering teams. At the discretion of the
	toolchain maintainers, they may be supported in the toolchain.
	Tier 3 platforms are architectures in the early stages of
	development, for non-mainstream hardware platforms, or which
	are considered legacy systems unlikely to see broad future
	use. Initial support for Tier 3 platforms is worked on
	in external SCM repositories.
	The transition to FreeBSD's subversion takes place after
	the platform boots multi-user on hardware; sharing via
	subversion is needed for wider exposure; and multiple
	developers are actively working on the platform.
	Platforms that transition to Tier 3 status may be
	removed from the tree if they are no longer actively supported
	by the FreeBSD developer community at the discretion of the
	release engineer.
Tier 3 platforms may have ports support, either integrated
	or external, but do not require it.
Tier 3 platforms must have the basics documented for how
	to build a kernel and how to boot it on at least one target
	hardware or emulation environment. This documentation need
	not be integrated into the FreeBSD tree.
Current Tier 3 platforms are riscv.
18.5. Tier 4: Unsupported Architectures
Tier 4 systems are not supported in any form by the
	project.
All systems not otherwise classified into a support tier
	are Tier 4 systems. The ia64 platform is transitioning
	to Tier 4 status in FreeBSD 11. The pc98 platform is
	transitioning to Tier 4 status in FreeBSD 12.
18.6. Policy on Changing the Tier of an Architecture
Systems may only be moved from one tier to another by
	approval of the FreeBSD Core Team, which shall make that
	decision in collaboration with the Security Officer, Release
	Engineering, and toolchain maintenance teams.
19. Ports Specific FAQ
	19.1. Adding a New Port

	19.1.1.
	How do I add a new port?

		First, please read the section about repository
	 copies.
The easiest way to add a new port is the
	 addport script located in the
	 ports/Tools/scripts directory. It
	 adds a port from the directory specified, determining
	 the category automatically from the port
	 Makefile. It also adds an entry to
	 the port's category Makefile. It
	 was written by Michael Haro <mharo@FreeBSD.org>, Will Andrews <will@FreeBSD.org>, and
	 Renato Botelho <garga@FreeBSD.org>. When sending questions about this
	 script to the FreeBSD ports mailing list, please also CC Chris Rees <crees@FreeBSD.org>,
	 the current maintainer.

	19.1.2.
	Any other things I need to know when I add a new
	 port?

		Check the port, preferably to make sure it compiles
	 and packages correctly. This is the recommended
	 sequence:
make install
make package
make deinstall
pkg add package you built above
make deinstall
make reinstall
make package
The Porters
		Handbook contains more detailed
	 instructions.
Use portlint(1) to check the syntax of the
	 port. You do not necessarily have to eliminate all
	 warnings but make sure you have fixed the simple
	 ones.
If the port came from a submitter who has not
	 contributed to the Project before, add that person's
	 name to the Additional
		Contributors section of the FreeBSD
	 Contributors List.
Close the PR if the port came in as a PR. To close
	 a PR, change the state to Issue
		Resolved and the resolution as
	 Fixed.

	19.2. Removing an Existing Port

	19.2.1.
	How do I remove an existing port?

		First, please read the section about repository
	 copies. Before you remove the port, you have to verify
	 there are no other ports depending on it.
	Make sure there is no dependency on the port
		 in the ports collection:
	The port's PKGNAME appears in exactly
		 one line in a recent INDEX file.

	No other ports contains any reference
		 to the port's directory or PKGNAME in their
		 Makefiles
Tip:
When using Git,
			consider using git grep, it
			is much faster than grep
			 -r.

	Then, remove the port:
	Remove the port's files and directory with
		 svn remove.

	Remove the SUBDIR listing
		 of the port in the parent directory
		 Makefile.

	Add an entry to
		 ports/MOVED.

	Search for entries in
		 ports/security/vuxml/vuln.xml
		 and adjust them accordingly. In particular,
		 check for previous packages with the new name
		 which version could include the new port.

	Remove the port from
		 ports/LEGAL if it is
		 there.

Alternatively, you can use the
	 rmport script, from
	 ports/Tools/scripts. This script
	 was written by Vasil Dimov <vd@FreeBSD.org>. When sending questions
	 about this script to the FreeBSD ports mailing list, please also CC
	 Chris Rees <crees@FreeBSD.org>, the current maintainer.

	19.3. Re-adding a Deleted Port

	19.3.1.
	How do I re-add a deleted port?

		This is essentially the reverse of deleting a
	 port.
Important:
Do not use svn add to add the
		port. Follow these steps. If they are unclear, or
		are not working, ask for help, do not just
		svn add the port.

	Figure out when the port was removed. Use this
		 list,
		 or look for the port on freshports,
		 and then copy the last living revision of the
		 port:
% cd /usr/ports/category
% svn cp 'svn+ssh://repo.freebsd.org/ports/head/category/portname/@XXXXXX' portname
Pick the revision that is just before the
		 removal. For example, if the revision where it was
		 removed is 269874, use
		 269873.
It is also possible to specify a date. In that
		 case, pick a date that is before the removal but
		 after the last commit to the port.
% cd /usr/ports/category
% svn cp 'svn+ssh://repo.freebsd.org/ports/head/category/portname/@{YYYY-MM-DD}' portname

	Make the changes necessary to get the port
		 working again. If it was deleted because the
		 distfiles are no longer available, either
		 volunteer to host the distfiles, or find someone
		 else to do so.

	If some files have been added, or were removed
		 during the resurrection process, use svn
		 add or svn remove to
		 make sure all the files in the port will be
		 committed.

	Restore the SUBDIR listing of
		 the port in the parent directory
		 Makefile, keeping the entries
		 sorted.

	Delete the port entry from
		 ports/MOVED.

	If the port had an entry in
		 ports/LEGAL, restore it.

	svn commit these changes,
		 preferably in one step.

Tip:
The addport script mentioned in
		Q & A 19.1, “Adding a New Port” now detects when the
		port to add has previously existed, and attempts to
		handle all except the ports/LEGAL
		step automatically.

	19.4. Repository Copies

	19.4.1.
	When do we need a repository copy?

		When you want to add a port that is related to any
	 port that is already in the tree in a separate
	 directory, you have to do a repository copy. Here
	 related means it is a different
	 version or a slightly modified version. Examples are
	 print/ghostscript* (different
	 versions) and x11-wm/windowmaker*
	 (English-only and internationalized version).
Another example is when a port is moved from one
	 subdirectory to another, or when the name of a directory
	 must be changed because the authors renamed their
	 software even though it is a descendant of a port
	 already in a tree.

	19.4.2.
	What do I need to do?

		With Subversion, a repo copy can be done by any
	 committer:
	Doing a repo copy:
	Verify that the target directory does
		 not exist.

	Use svn up to make
		 certain the original files, directories, and
		 checkout information is current.

	Use svn move or
		 svn copy to do the repo
		 copy.

	Upgrade the copied port to the new version.
		 Remember to add or change the
		 PKGNAMEPREFIX or
		 PKGNAMESUFFIX so there are no
		 duplicate ports with the same name. In some
		 rare cases it may be necessary to change the
		 PORTNAME instead of adding
		 PKGNAMEPREFIX or
		 PKGNAMESUFFIX, but this
		 is only done when it is really needed
		 — for example, using an existing port as the base
		 for a very similar program with a different
		 name, or upgrading a port to a new upstream
		 version which actually changes the distribution
		 name, like the transition from
		 textproc/libxml to
		 textproc/libxml2. In most
		 cases, adding or changing
		 PKGNAMEPREFIX or
		 PKGNAMESUFFIX
		 suffices.

	Add the new subdirectory to the
		 SUBDIR listing in the parent
		 directory Makefile. You
		 can run make checksubdirs in
		 the parent directory to check this.

	If the port changed categories, modify the
		 CATEGORIES line of the port's
		 Makefile accordingly

	Add an entry to
		 ports/MOVED, if you remove
		 the original port.

	Commit all changes on one commit.

	When removing a port:
	Perform a thorough check of the ports
		 collection for any dependencies on the old port
		 location/name, and update them. Running
		 grep on
		 INDEX is not enough because
		 some ports have dependencies enabled by
		 compile-time options. A full
		 grep -r of the ports
		 collection is recommended.

	Remove the old port and the
		 old SUBDIR entry.

	Add an entry to
		 ports/MOVED.

	After repo moves (“rename”
		 operations where a port is copied and the old
		 location is removed):
	Follow the same steps that are outlined in
		 the previous two entries, to activate the new
		 location of the port and remove the old
		 one.

	19.5. Ports Freeze

	19.5.1.
	What is a “ports freeze”?

		A “ports freeze” was a restricted state
	 the ports tree was put in before a release. It was used
	 to ensure a higher quality for the packages shipped with
	 a release. It usually lasted a couple of weeks. During
	 that time, build problems were fixed, and the release
	 packages were built. This practice is no longer used,
	 as the packages for the releases are built from the
	 current stable, quarterly branch.
For more information on how to merge commits to the
	 quarterly branch, see Q: 19.6.1.

	19.6. Quarterly Branches

	19.6.1.
	What is the procedure to request authorization for
	 merging a commit to the quarterly branch?

		When doing the commit, add the branch name to the
	 MFH: line, for example:
MFH:	2014Q1
It will automatically notify the Ports Security Team <ports-secteam@FreeBSD.org> and
	 the Ports Management Team <portmgr@FreeBSD.org>. They will then decide if the commit can be
	 merged and answer with the procedure.
If the commit has already been made, send an email
	 to the Ports Security Team <ports-secteam@FreeBSD.org> and the Ports Management Team <portmgr@FreeBSD.org> with the revision
	 number and a small description of why the commit needs
	 to be merged.

	19.6.2.
	Are there any changes that can be committed without
	 approval?

		The following blanket approvals are in effect:
Important:
These fixes must be
		tested on the quarterly branch.

	Fixes that do not result in a change in contents
		 of the resulting package. For example:
	pkg-descr:
		 WWW: URL updates (existing
		 404, moved or incorrect)

	Build, runtime or packaging fixes, if the
		 quarterly branch version is currently broken.

	Missing dependencies (detected, linked against
		 but not registered via
		 *_DEPENDS).

	Fixing shebangs,
		 stripping installed libraries and binaries, and
		 plist fixes.

	Backport of security and reliability fixes which
		 only result in PORTREVISION bumps
		 and no changes to enabled features. for example,
		 adding a patch fixing a buffer overflow.

	Adding/fixing CONFLICTS.

	Web Browsers, browser plugins, and their required
		 dependencies.

Important:
No unauthorized commits can ever be made without
		approval of either Ports Security Team <ports-secteam@FreeBSD.org> or
		Ports Management Team <portmgr@FreeBSD.org>.

	19.6.3.
	What is the procedure for merging commits to the
	 quarterly branch?

		A script is provided to automate merging a specific
	 commit: ports/Tools/scripts/mfh.
	 It is used as follows:
% /usr/ports/Tools/scripts/mfh 380362
 U 2015Q1
Checked out revision 380443.
A 2015Q1/security
Updating '2015Q1/security/rubygem-sshkit':
A 2015Q1/security/rubygem-sshkit
A 2015Q1/security/rubygem-sshkit/Makefile
A 2015Q1/security/rubygem-sshkit/distinfo
A 2015Q1/security/rubygem-sshkit/pkg-descr
Updated to revision 380443.
--- Merging r380362 into '2015Q1':
U 2015Q1/security/rubygem-sshkit/Makefile
U 2015Q1/security/rubygem-sshkit/distinfo
--- Recording mergeinfo for merge of r380362 into '2015Q1':
 U 2015Q1
--- Recording mergeinfo for merge of r380362 into '2015Q1/security':
 G 2015Q1/security
--- Eliding mergeinfo from '2015Q1/security':
 U 2015Q1/security
--- Recording mergeinfo for merge of r380362 into '2015Q1/security/rubygem-sshkit':
 G 2015Q1/security/rubygem-sshkit
--- Eliding mergeinfo from '2015Q1/security/rubygem-sshkit':
 U 2015Q1/security/rubygem-sshkit
 M 2015Q1
M 2015Q1/security/rubygem-sshkit/Makefile
M 2015Q1/security/rubygem-sshkit/distinfo
Index: 2015Q1/security/rubygem-sshkit/Makefile
===
--- 2015Q1/security/rubygem-sshkit/Makefile (revision 380443)
+++ 2015Q1/security/rubygem-sshkit/Makefile (working copy)
@@ -2,7 +2,7 @@
 # $FreeBSD: head/en_US.ISO8859-1/articles/committers-guide/article.xml 51585 2018-04-23 07:48:49Z seanc $

 PORTNAME= sshkit
-PORTVERSION= 1.6.1
+PORTVERSION= 1.7.0
 CATEGORIES= security rubygems
 MASTER_SITES= RG

Index: 2015Q1/security/rubygem-sshkit/distinfo
===
--- 2015Q1/security/rubygem-sshkit/distinfo (revision 380443)
+++ 2015Q1/security/rubygem-sshkit/distinfo (working copy)
@@ -1,2 +1,2 @@
-SHA256 (rubygem/sshkit-1.6.1.gem) = 8ca67e46bb4ea50fdb0553cda77552f3e41b17a5aa919877d93875dfa22c03a7
-SIZE (rubygem/sshkit-1.6.1.gem) = 135680
+SHA256 (rubygem/sshkit-1.7.0.gem) = 90effd1813363bae7355f4a45ebc8335a8ca74acc8d0933ba6ee6d40f281a2cf
+SIZE (rubygem/sshkit-1.7.0.gem) = 136192
Index: 2015Q1
===
--- 2015Q1 (revision 380443)
+++ 2015Q1 (working copy)

Property changes on: 2015Q1

Modified: svn:mergeinfo
 Merged /head:r380362
Do you want to commit? (no = start a shell) [y/n]
At that point, the script will either open a shell
	 for you to fix things, or open your text editor with the
	 commit message all prepared and then commit the
	 merge.
The script assumes that you can connect to
	 repo.FreeBSD.org with
	 SSH directly, so if your
	 local login name is different than your FreeBSD cluster
	 account, you need a few lines in your
	 ~/.ssh/config:
Host repo.freebsd.org # Can be *.freebsd.org
 User freebsd-login
Tip:
The script is also able to merge more than one
		revision at a time. If there have been other updates
		to the port since the branch was created that have not
		been merged because they were not security related.
		Add the different revisions in the order
		 they were committed on the
		mfh command line.
		The new commit log message will contain the combined
		log messages from all the original commits. These
		messages must be edited to show
		what is actually being done with the new
		commit.
% /usr/ports/Tools/scripts/mfh r407208 r407713 r407722 r408567 r408943 r410728

Note:
The mfh script can also take an optional first
		argument, the branch where the merge is being done.
		Only the latest quarterly branch is supported, so
		specifying the branch is discouraged. To be safe, the
		script will give a warning if the quarterly branch is
		not the latest:
% /usr/ports/Tools/scripts/mfh 2016Q1 r407208 r407713
/!\ The latest branch is 2016Q2, do you really want to commit to 2016Q1? [y/n]

	19.7. Creating a New Category

	19.7.1.
	What is the procedure for creating a new
	 category?

		Please see
		Proposing a New Category in the Porter's
	 Handbook. Once that procedure has been followed and the
	 PR has been assigned to the Ports Management Team <portmgr@FreeBSD.org>, it is their
	 decision whether or not to approve it. If they do, it
	 is their responsibility to:
	Perform any needed moves. (This only applies
		 to physical categories.)

	Update the VALID_CATEGORIES
		 definition in
		 ports/Mk/bsd.port.mk.

	Assign the PR back to you.

	19.7.2.
	What do I need to do to implement a new physical
	 category?

			Upgrade each moved port's
		 Makefile. Do not connect the
		 new category to the build yet.
To do this, you will need to:
	Change the port's
		 CATEGORIES (this was the
		 point of the exercise, remember?) The new
		 category is listed
		 first. This will help to
		 ensure that the PKGORIGIN is
		 correct.

	Run a make describe.
		 Since the top-level
		 make index that you will be
		 running in a few steps is an iteration of
		 make describe over the entire
		 ports hierarchy, catching any errors here will
		 save you having to re-run that step later
		 on.

	If you want to be really thorough, now
		 might be a good time to run
		 portlint(1).

	Check that the PKGORIGINs are
		 correct. The ports system uses each port's
		 CATEGORIES entry to create its
		 PKGORIGIN, which is used to
		 connect installed packages to the port directory
		 they were built from. If this entry is wrong,
		 common port tools like pkg_version(1) and
		 portupgrade(1) fail.
To do this, use the
		 chkorigin.sh tool:
		 env
		 PORTSDIR=/path/to/ports
		 sh -e
		 /path/to/ports/Tools/scripts/chkorigin.sh.
		 This will check every port in
		 the ports tree, even those not connected to the
		 build, so you can run it directly after the move
		 operation. Hint: do not forget to look at the
		 PKGORIGINs of any slave ports of
		 the ports you just moved!

	On your own local system, test the proposed
		 changes: first, comment out the
		 SUBDIR entries in the old ports'
		 categories' Makefiles; then
		 enable building the new category in
		 ports/Makefile. Run
		 make checksubdirs in the affected
		 category directories to check the
		 SUBDIR entries. Next, in the
		 ports/
		 directory, run make index. This
		 can take over 40 minutes on even modern systems;
		 however, it is a necessary step to prevent problems
		 for other people.

	Once this is done, you can commit the updated
		 ports/Makefile to connect the
		 new category to the build and also commit the
		 Makefile changes for the old
		 category or categories.

	Add appropriate entries to
		 ports/MOVED.

	Update the documentation by modifying:
	the list
			of categories in the Porter's
		 Handbook

	doc/en_US.ISO8859-1/htdocs/ports.
		 Note that these are now displayed by sub-groups,
		 as specified in
		 doc/en_US.ISO8859-1/htdocs/ports/categories.descriptions.

(Note: these are in the docs, not the ports,
		 repository). If you are not a docs committer, you
		 will need to submit a PR for this.

	Only once all the above have been done, and no
		 one is any longer reporting problems with the new
		 ports, should the old ports be deleted from their
		 previous locations in the repository.

It is not necessary to manually update the
	 ports web
		pages to reflect the new category. This is
	 done automatically via the change to
	 en_US.ISO8859-1/htdocs/ports/categories
	 and the automated rebuild of
	 INDEX.

	19.7.3.
	What do I need to do to implement a new virtual
	 category?

		This is much simpler than a physical category. Only
	 a few modifications are needed:
	the list
		 of categories in the Porter's
		 Handbook

	en_US.ISO8859-1/htdocs/ports/categories

	19.8. Miscellaneous Questions

	19.8.1.
	How do I know if my port is building correctly or
	 not?

		The packages are built multiple times each week. If
	 a port fails, the maintainer will receive an email from
	 pkg-fallout@FreeBSD.org.
Reports for all the package builds (official,
	 experimental, and non-regression) are aggregated at
	 pkg-status.FreeBSD.org.

	19.8.2.
	I added a new port. Do I need to add it to the
	 INDEX?

		No. The file can either be generated by running
	 make index, or a pre-generated
	 version can be downloaded with
	 make fetchindex.

	19.8.3.
	Are there any other files I am not allowed to
	 touch?

		Any file directly under ports/,
	 or any file under a subdirectory that starts with an
	 uppercase letter (Mk/,
	 Tools/, etc.). In particular, the
	 Ports Management Team <portmgr@FreeBSD.org> is very protective of
	 ports/Mk/bsd.port*.mk so do not
	 commit changes to those files unless you want to face
	 their wrath.

	19.8.4.
	What is the proper procedure for updating the
	 checksum for a port distfile when the file changes
	 without a version change?

		When the checksum for a distribution file is updated
	 due to the author updating the file without changing the
	 port revision, the commit message includes a
	 summary of the relevant diffs between the original and
	 new distfile to ensure that the distfile has not been
	 corrupted or maliciously altered. If the current
	 version of the port has been in the ports tree for a
	 while, a copy of the old distfile will usually be
	 available on the ftp servers; otherwise the author or
	 maintainer should be contacted to find out why the
	 distfile has changed.

	19.8.5.
	How can an experimental test build of the ports tree
	 (exp-run) be requested?

		An exp-run must be completed before patches with a
	 significant ports impact are committed. The patch can
	 be against the ports tree or the base system.
Full package builds will be done with the patches
	 provided by the submitter, and the submitter is required
	 to fix detected problems (fallout)
	 before commit.
	Go to the Bugzilla
		 new PR page.

	Select the product your patch is about.

	Fill in the bug report as normal. Remember to
		 attach the patch.

	If at the top it says “Show Advanced
		 Fields” click on it. It will now say
		 “Hide Advanced Fields”. Many new
		 fields will be available. If it already says
		 “Hide Advanced Fields”, no need to do
		 anything.

	In the “Flags” section, set the
		 “exp-run” one to ?.
		 As for all other fields, hovering the mouse over any
		 field shows more details.

	Submit. Wait for the build to run.

	Ports Management Team <portmgr@FreeBSD.org> will replies with a possible
		 fallout.

	Depending on the fallout:

		 	If there is no fallout, the procedure stops
		 here, and the change can be committed, pending
		 any other approval required.

		 		If there is fallout, it
			 must be fixed, either
			 by fixing the ports directly in the ports
			 tree, or adding to the submitted
			 patch.

	When this is done, go back to step 6
			 saying the fallout was fixed and wait for
			 the exp-run to be run again. Repeat as long
			 as there are broken ports.

		

20. Issues Specific to Developers Who Are Not
 Committers
A few people who have access to the FreeBSD machines do not
 have commit bits. Almost all of this document will apply to
 these developers as well (except things specific to commits and
 the mailing list memberships that go with them). In particular,
 we recommend that you read:
	Administrative
	 Details

	Conventions
Note:
Get your mentor to add you to the
	 “Additional Contributors”
	 (doc/en_US.ISO8859-1/articles/contributors/contrib.additional.xml),
	 if you are not already listed there.

	Developer
	 Relations

	SSH Quick-Start
	 Guide

	The FreeBSD Committers' Big List
	 of Rules

21. Information About Google Analytics
As of December 12, 2012, Google Analytics was enabled on the
 FreeBSD Project website to collect anonymized usage statistics
 regarding usage of the site. The information collected is
 valuable to the FreeBSD Documentation Project, to
 identify various problems on the FreeBSD website.
21.1. Google Analytics General Policy
The FreeBSD Project takes visitor privacy very
	seriously. As such, the FreeBSD Project website honors the
	“Do Not Track” header before
	fetching the tracking code from Google. For more information,
	please see the
	FreeBSD
	 Privacy Policy.
Google Analytics access is not arbitrarily
	allowed — access must be requested, voted on by the
	Documentation Engineering Team <doceng@FreeBSD.org>, and explicitly granted.
Requests for Google Analytics data must include a specific purpose.
	For example, a valid reason for requesting access would be
	“to see the most frequently used web browsers when
	 viewing FreeBSD web pages to ensure page rendering speeds are
	 acceptable.”
Conversely, “to see what web browsers are most
	 frequently used” (without stating
	why) would be rejected.
All requests must include the timeframe for which the data
	would be required. For example, it must be explicitly stated
	if the requested data would be needed for a timeframe covering
	a span of 3 weeks, or if the request would be one-time
	only.
Any request for Google Analytics data without a clear, reasonable
	reason beneficial to the FreeBSD Project will be
	rejected.
21.2. Data Available Through Google Analytics
A few examples of the types of Google Analytics data available
	include:
	Commonly used web browsers

	Page load times

	Site access by language

22. Miscellaneous Questions
	22.1.
	Why are trivial or cosmetic changes to files on a
	 vendor branch a bad idea?

			From now on, every new vendor release of that file
		will need to have patches merged in by hand.

	From now on, every new vendor release of that file
		will need to have patches
		verified by hand.

	22.2.
	How do I add a new file to a branch?

		To add a file onto a branch, simply checkout or update
	 to the branch you want to add to and then add the file
	 using the add operation as you normally would. This works
	 fine for the doc and
	 ports trees. The
	 src tree uses SVN and requires more
	 care because of the mergeinfo
	 properties. See the
	 Subversion Primer
	 for details on how to perform an MFC.

	22.3.
	How do I access people.FreeBSD.org to
	 put up personal or project information?

		people.FreeBSD.org is
	 the same as freefall.FreeBSD.org.
	 Just create a public_html directory.
	 Anything you place in that directory will automatically be
	 visible under https://people.FreeBSD.org/.

	22.4.
	Where are the mailing list archives stored?

		The mailing lists are archived under
	 /local/mail on freefall.FreeBSD.org.

	22.5.
	I would like to mentor a new committer. What process
	 do I need to follow?

		See the New
	 Account Creation Procedure document on the
	 internal pages.

23. Benefits and Perks for FreeBSD Comitters
23.1. Recognition
Recognition as a competent software engineer is the
	longest lasting value. In addition, getting a chance to work
	with some of the best people that every engineer would dream
	of meeting is a great perk!
23.2. FreeBSD Mall
FreeBSD committers can get a free 4-CD or DVD set at
	conferences from
	FreeBSD Mall,
	 Inc..
23.3. IRC
In addition, developers may request a cloaked hostmask
	for their account on the Freenode IRC network in the form
	of
	freebsd/developer/freefall
	 name or
	freebsd/developer/NickServ
	 name. To request a cloak, send an email to
	<irc@FreeBSD.org> with your requested hostmask and NickServ
	account name.
23.4. Gandi.net
Gandi provides website hosting, cloud computing, domain
	registration, and X.509 certificate services.
Gandi offers an E-rate discount to all FreeBSD developers.
	Send mail to <non-profit@gandi.net> using your
	@freebsd.org mail address, and indicate
	your Gandi handle.
OEBPS/trademarks.xhtml
FreeBSD is a registered trademark of
 the FreeBSD Foundation.

Coverity is a registered trademark;
Coverity Extend, Coverity Prevent and Coverity Prevent SQS are trademarks of
Coverity, Inc.

IBM, AIX, OS/2,
 PowerPC, PS/2, S/390, and ThinkPad are
 trademarks of International Business Machines Corporation in the
 United States, other countries, or both.

Intel, Celeron, Centrino, Core, EtherExpress, i386,
 i486, Itanium, Pentium, and Xeon are trademarks or registered
 trademarks of Intel Corporation or its subsidiaries in the United
 States and other countries.

SPARC, SPARC64, and
 UltraSPARC are trademarks of SPARC International, Inc in the United
 States and other countries. SPARC International, Inc owns all of the
 SPARC trademarks and under licensing agreements allows the proper use
 of these trademarks by its members.

Many of the designations used by
 manufacturers and sellers to distinguish their products are claimed
 as trademarks. Where those designations appear in this document,
 and the FreeBSD Project was aware of the trademark claim, the
 designations have been followed by the “™” or the
 “®” symbol.

