Network Working Group C. Bormann Internet-Draft Universität Bremen TZI Intended status: Informational 9 August 2023 Expires: 10 February 2024 Notable CBOR Tags draft-bormann-cbor-notable-tags-09 Abstract The Concise Binary Object Representation (CBOR, RFC 8949) is a data format whose design goals include the possibility of extremely small code size, fairly small message size, and extensibility without the need for version negotiation. In CBOR, one point of extensibility is the definition of CBOR tags. RFC 8949's original edition, RFC 7049, defined a basic set of tags as well as a registry that can be used to contribute additional tag definitions [IANA.cbor-tags]. Since RFC 7049 was published, some 80 tag definitions have been added to that registry. The present document provides a roadmap to a large subset of these tag definitions. Where applicable, it points to a IETF standards or standard development document that specifies the tag. Where no such document exists, the intention is to collect specification information from the sources of the registrations. After some more development, the present document is intended to be useful as a reference document for the IANA registrations of the CBOR tags the definitions of which have been collected. Note to Readers This is an individual submission to the CBOR working group of the IETF, https://datatracker.ietf.org/wg/cbor/about/ (https://datatracker.ietf.org/wg/cbor/about/). Discussion currently takes places on the github repository https://github.com/cabo/ notable-tags (https://github.com/cabo/notable-tags). If the CBOR WG believes this is a useful document, discussion is likely to move to the CBOR WG mailing list and a github repository at the CBOR WG github organization, https://github.com/cbor-wg (https://github.com/ cbor-wg). The current version is true work in progress; some of the sections haven't been filled in yet, and in particular, permission has not been obtained from tag definition authors to copy over their text. Bormann Expires 10 February 2024 [Page 1] Internet-Draft Notable CBOR Tags August 2023 Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on 10 February 2024. Copyright Notice Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/ license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 1.1. Terminology . . . . . . . . . . . . . . . . . . . . . . . 4 2. RFC 7049 (original CBOR specification) . . . . . . . . . . . 4 2.1. Tags Related to Those Defined in RFC 7049 . . . . . . . . 5 2.2. Tags from RFC 7049 not listed in RFC 8949 . . . . . . . . 6 3. Security . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.1. COSE . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3.1.1. Tags for Bare Hash Values . . . . . . . . . . . . . . 7 3.2. RFC 8392 (CWT) . . . . . . . . . . . . . . . . . . . . . 9 4. CBOR-based Representation Formats . . . . . . . . . . . . . . 10 4.1. YANG-CBOR . . . . . . . . . . . . . . . . . . . . . . . . 10 5. Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.1. DOTS . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.2. RAINS . . . . . . . . . . . . . . . . . . . . . . . . . . 11 6. Datatypes . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Bormann Expires 10 February 2024 [Page 2] Internet-Draft Notable CBOR Tags August 2023 6.1. Advanced arithmetic . . . . . . . . . . . . . . . . . . . 11 6.2. Variants of undefined . . . . . . . . . . . . . . . . . . 13 6.3. Typed and Homogeneous Arrays . . . . . . . . . . . . . . 13 7. Domain-Specific . . . . . . . . . . . . . . . . . . . . . . . 15 7.1. Human-readable Text . . . . . . . . . . . . . . . . . . . 16 7.2. Extended Time Formats . . . . . . . . . . . . . . . . . . 17 8. Platform-oriented . . . . . . . . . . . . . . . . . . . . . . 18 8.1. Perl . . . . . . . . . . . . . . . . . . . . . . . . . . 18 8.2. JSON . . . . . . . . . . . . . . . . . . . . . . . . . . 19 8.3. Weird text encodings . . . . . . . . . . . . . . . . . . 19 9. Application-specific . . . . . . . . . . . . . . . . . . . . 19 9.1. Enumerated Alternative Data Items . . . . . . . . . . . . 20 9.1.1. Semantics . . . . . . . . . . . . . . . . . . . . . . 22 9.1.2. Rationale . . . . . . . . . . . . . . . . . . . . . . 22 9.1.3. Examples . . . . . . . . . . . . . . . . . . . . . . 23 10. Implementation aids . . . . . . . . . . . . . . . . . . . . . 24 10.1. Invalid Tag . . . . . . . . . . . . . . . . . . . . . . 24 11. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 24 12. Security Considerations . . . . . . . . . . . . . . . . . . . 26 13. References . . . . . . . . . . . . . . . . . . . . . . . . . 26 13.1. Normative References . . . . . . . . . . . . . . . . . . 26 13.2. Informative References . . . . . . . . . . . . . . . . . 27 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 30 Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . 30 Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 31 1. Introduction (TO DO, expand on text from abstract here; move references here and neuter them in the abstract as per Section 4.3 of [RFC7322].) The selection of the tags presented here is somewhat arbitrary; considerations such as how wide the scope and area of application of a tag definition is combine with an assessment how "ready to use" the tag definition is (i.e., is the tag specification in a state where it can be used). This document can only be a snapshot of a subset of the current registrations. The most up to date set of registrations is always available in the registry "CBOR Tags" [IANA.cbor-tags]. Bormann Expires 10 February 2024 [Page 3] Internet-Draft Notable CBOR Tags August 2023 1.1. Terminology The definitions of [STD94] apply. Specifically: The term "byte" is used in its now customary sense as a synonym for "octet"; "byte strings" are CBOR data items carrying a sequence of zero or more (binary) bytes, while "text strings" are CBOR data items carrying a sequence of zero or more Unicode code points, encoded in UTF-8 [STD63]. Where bit arithmetic is explained, this document uses the notation familiar from the programming language C ([C], including C++14's 0bnnn binary literals [Cplusplus20]), except that superscript notation (example for two to the power of 64: 2^64) denotes exponentiation; in the plain text version of this document, superscript notation is rendered in paragraph text by C-incompatible surrogate notation as seen in this example. Ranges expressed using .. are inclusive of the limits given. Type names such as "int", "bigint" or "decfrac" are taken from Appendix D of [RFC8610], the Concise Data Definition Language (CDDL). 2. RFC 7049 (original CBOR specification) [RFC7049] defines a number of tags that are listed here for convenience only. +============+=============+=======================+============+ | Tag number | Tag content | Short Description | Section of | | | | | RFC 7049 | +============+=============+=======================+============+ | 0 | UTF-8 | Standard date/time | 2.4.1 | | | string | string | | +------------+-------------+-----------------------+------------+ | 1 | multiple | Epoch-based date/time | 2.4.1 | +------------+-------------+-----------------------+------------+ | 2 | byte string | Positive bignum | 2.4.2 | +------------+-------------+-----------------------+------------+ | 3 | byte string | Negative bignum | 2.4.2 | +------------+-------------+-----------------------+------------+ | 4 | array | Decimal fraction | 2.4.3 | +------------+-------------+-----------------------+------------+ | 5 | array | Bigfloat | 2.4.3 | +------------+-------------+-----------------------+------------+ | 21 | multiple | Expected conversion | 2.4.4.2 | | | | to base64url encoding | | +------------+-------------+-----------------------+------------+ | 22 | multiple | Expected conversion | 2.4.4.2 | | | | to base64 encoding | | +------------+-------------+-----------------------+------------+ | 23 | multiple | Expected conversion | 2.4.4.2 | | | | to base16 encoding | | Bormann Expires 10 February 2024 [Page 4] Internet-Draft Notable CBOR Tags August 2023 +------------+-------------+-----------------------+------------+ | 24 | byte string | Encoded CBOR data | 2.4.4.1 | | | | item | | +------------+-------------+-----------------------+------------+ | 32 | UTF-8 | URI | 2.4.4.3 | | | string | | | +------------+-------------+-----------------------+------------+ | 33 | UTF-8 | base64url | 2.4.4.3 | | | string | | | +------------+-------------+-----------------------+------------+ | 34 | UTF-8 | base64 | 2.4.4.3 | | | string | | | +------------+-------------+-----------------------+------------+ | 35 | UTF-8 | Regular expression | 2.4.4.3 | | | string | | | +------------+-------------+-----------------------+------------+ | 36 | UTF-8 | MIME message | 2.4.4.3 | | | string | | | +------------+-------------+-----------------------+------------+ | 55799 | multiple | Self-describe CBOR | 2.4.5 | +------------+-------------+-----------------------+------------+ Table 1: Tag numbers defined in RFC 7049 2.1. Tags Related to Those Defined in RFC 7049 Separately registered tags that are directly related to the tags predefined in RFC 7049 include: * Tag 63, registered by this document (Section 11), is a parallel to tag 24, with the single difference that its byte string tag content carries a CBOR Sequence [RFC8742] instead of a single CBOR data item. * Tag 257, registered by Peter Occil with a specification in http://peteroupc.github.io/CBOR/binarymime.html (http://peteroupc.github.io/CBOR/binarymime.html), is a parallel to tag 36, except that the tag content is a byte string, which therefore can also carry binary MIME messages as per [RFC2045]. Bormann Expires 10 February 2024 [Page 5] Internet-Draft Notable CBOR Tags August 2023 * Tag 21065, being registered by this document (Section 11), is a parallel to tag 35, with the difference that its text string tag content carries an I-Regexp regular expression [I-D.draft-ietf-jsonpath-iregexp] instead of a regexp of a more unspecified flavor. Companion tag 21066, being registered by Joe Hildebrand with a specification in https://github.com/hildjj/cbor- specs/blob/main/regexp.md (https://github.com/hildjj/cbor- specs/blob/main/regexp.md), is the equivalent for JavaScript (ECMA262), but besides the regular expression itself also can include the regular expression flags as a separate item. 2.2. Tags from RFC 7049 not listed in RFC 8949 Appendix G.3 of [STD94] states: | Tag 35 is not defined by this document; the registration based on | the definition in RFC 7049 remains in place. The reason for this exclusion is that the definition of Tag 35 in Section 2.4.4.3 of [RFC7049], leaves too much open to ensure interoperability: | Tag 35 is for regular expressions in Perl Compatible Regular | Expressions (PCRE) / JavaScript syntax [ECMA262]. Not only are two partially incompatible specifications given for the semantics, JavaScript regular expressions have also developed significantly within the decade since JavaScript 5.1 (which was referenced as "ECMA262" by [RFC7049]), making it less reliable to assume that a producing application will manage to stay within that 2011 subset. Nonetheless, the registration is in place, so it is available for applications that simply want to mark a text string as being a regular expression roughly of the PCRE/Javascript flavor families. See also Tag 21065 and 21066 above. 3. Security A number of CBOR tags are defined in security specifications that make use of CBOR. Bormann Expires 10 February 2024 [Page 6] Internet-Draft Notable CBOR Tags August 2023 3.1. COSE CBOR Object Signing and Encryption (COSE) is defined in a number of RFCs. [RFC8152] was the initial specification, set up the registries, and populated them with an initial set of assignments. A revision split this specification into the data structure definitions RFC9052, an Internet Standard [STD96], and a separate document defining the representation for the algorithms employed [RFC9053], which is expected to be updated more frequently than the COSE format itself. [RFC9054] added a separate set of algorithms for cryptographic hash functions (Hash functions have been a component of some [RFC9053] combined algorithms but weren't assigned separate codepoints). A revised COSE counter signature structure was defined in RFC9338, another part of [STD96]; this also defines a tag for these. +============+=======================+============================+ | Tag number | Tag content | Short Description | +============+=======================+============================+ | 16 | COSE_Encrypt0 | COSE Single Recipient | | | | Encrypted Data Object | +------------+-----------------------+----------------------------+ | 17 | COSE_Mac0 | COSE Mac w/o Recipients | | | | Object | +------------+-----------------------+----------------------------+ | 18 | COSE_Sign1 | COSE Single Signer Data | | | | Object | +------------+-----------------------+----------------------------+ | 19 | COSE_Countersignature | COSE standalone V2 | | | | countersignature (RFC9338) | +------------+-----------------------+----------------------------+ | 96 | COSE_Encrypt | COSE Encrypted Data Object | +------------+-----------------------+----------------------------+ | 97 | COSE_Mac | COSE MACed Data Object | +------------+-----------------------+----------------------------+ | 98 | COSE_Sign | COSE Signed Data Object | +------------+-----------------------+----------------------------+ Table 2: Tag numbers defined in RFC9052, COSE, and RFC 9338 3.1.1. Tags for Bare Hash Values [RFC9054] does not define CBOR tags for cryptographic Hash values; it rightly notes that Hash values are often used in structures that are application-specific and should be defined with those applications. Bormann Expires 10 February 2024 [Page 7] Internet-Draft Notable CBOR Tags August 2023 However, there are many cases where just a bare hash value is required, and for these cases common tags are useful. In one use case, these tags occur in a data structure that is specified to indicate elision by using one of these tags as an alternative to some other data structure. To enable agility, tags need to indicate the hash function used, preferably using the COSE algorithms registry as populated by [RFC9054]. | (Note that there is another registry, "Named Information Hash | Algorithm Registry" [IANA.named-information], that also defines | numbers for some hash algorithms. We are not using this | registry here, as more recent entries seem to have stopped | assigning numbers. If desired, tags that employ this registry | could be added later.) The codepoint range available for the COSE algorithms registry is large, but the most likely range to be used for standard Hash functions is "Integer values between -256 and 255", which have the registry policy "Standards Action With Expert Review" (Section 16.4 of [RFC8152], Registry "COSE Algorithms" [IANA.cose]). To this end, the present document registers a range of 512 tags from 18300 to 18811 (inclusive), paralleling the algorithm identifier range of -256 .. 255 (inclusive). The tag number for COSE algorithm number N is then defined to be 18556+N, except for N = 0 (see below). The tag value is a CBOR byte string, with the exception N = 0. For example, in [IANA.cose] SHA-256 has the COSE algorithm identifier -16. This is in the range -256 .. 255 (inclusive range). Therefore, tag 18540 (= 18556 + (-16)) is the tag for a byte string containing a SHA-256 hash. As a special case, there is one exception: Tag 18556 (= 18556 + 0) stands for the combination of a an explicit numeric COSE algorithm identifier with a hash value in an array, analogous to the use of COSE_CertHash in [RFC9360]: Standard_COSE_Hash = #6.(value) General_COSE_Hash = #6.([ hashAlg: alg .within (int .ne directhash / tstr), hashValue: value .within bstr ]) hashmiddle = 18556 directhash = (-256 .. -1) / (1 .. 255) Figure 1: Generic CDDL for Tags for Bare Hash Values Bormann Expires 10 February 2024 [Page 8] Internet-Draft Notable CBOR Tags August 2023 An example for the SHA-256 hash of "hello world" in CBOR diagnostic notation: 18540( h'b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9') The same in CBOR pretty printed hex: d9 486c # tag(18540) 58 20 # bytes(32) b94d27b9934d3e08a52e52d7da7dabfac484efe37a5380ee9088f7ace2efcde9 As none has been registered, no real example can be given for a hash algorithm with an identifier not in the standard range, but if -4711 were such an identifier, a hash with an explicit algorithm number could look like: 18556([-4711, h'1234123412341234123412341234123412341234']) Note that not all tags assigned in this section do parallel an algorithm that is a cryptographic hash algorithm. Where this is not the case, there currently is not defined semantics for this tag, but the tags are assigned anyway. The semantics of tags that parallel algorithm assignments other than for cryptographic hash functions could be defined by a future version of this specification. Note also that the cryptographic hashes in the content of the tag are not protected; any further protection (confidentiality, integrity) needs to be provided in the surrounding data structure, storage system, or communication channel. 3.2. RFC 8392 (CWT) [RFC8392] defines the CBOR Web Token (CWT), making use of COSE to define a CBOR variant of the JOSE Web Token (JWT), [RFC7519], a standardized security token that has found use in the area of web applications, but is not technically limited to those. +============+======================+======================+ | Tag number | Tag content | Short Description | +============+======================+======================+ | 61 | CBOR Web Token (CWT) | CBOR Web Token (CWT) | +------------+----------------------+----------------------+ Table 3: Tag number defined for RFC 8392 CBOR Web Token (CWT) Bormann Expires 10 February 2024 [Page 9] Internet-Draft Notable CBOR Tags August 2023 4. CBOR-based Representation Formats Representation formats can be built on top of CBOR. 4.1. YANG-CBOR YANG [RFC7950] is a data modeling language originally designed in the context of the Network Configuration Protocol (NETCONF) [RFC6241], now widely used for modeling management and configuration information. [RFC7950] defines an XML-based representation format, and [RFC7951] defines a JSON-based [RFC8259] representation format for YANG. YANG-CBOR [RFC9254] is a representation format for YANG data in CBOR. +========+======================+=====================+============+ | Tag | Tag content | Short Description | Section of | | number | | | YANG-CBOR | +========+======================+=====================+============+ | 43 | byte string | YANG bits datatype | 6.7 | +--------+----------------------+---------------------+------------+ | 44 | unsigned integer | YANG enumeration | 6.6 | | | | datatype | | +--------+----------------------+---------------------+------------+ | 45 | unsigned integer or | YANG identityref | 6.10 | | | text string | datatype | | +--------+----------------------+---------------------+------------+ | 46 | unsigned integer or | YANG instance- | 6.13 | | | text string or array | identifier datatype | | +--------+----------------------+---------------------+------------+ | 47 | unsigned integer | YANG Schema Item | 3.2 | | | | iDentifier (sid) | | +--------+----------------------+---------------------+------------+ Table 4: Tag number defined for YANG-CBOR 5. Protocols Protocols may want to allocate CBOR tag numbers to identify specific protocol elements. 5.1. DOTS DDoS Open Threat Signaling (DOTS) defines tag number 271 for the DOTS signal channel object in [RFC9132]. Bormann Expires 10 February 2024 [Page 10] Internet-Draft Notable CBOR Tags August 2023 5.2. RAINS As an example for how experimental protocols can make use of CBOR tag definitions, the RAINS (Another Internet Naming Service) Protocol Specification defines tag number 15309736 for a RAINS Message [I-D.trammell-rains-protocol]. (The seemingly random tag number was chosen so that, when represented as an encoded CBOR tag argument, it contains the Unicode character "雨" (U+96E8) in UTF-8, which represents rain in a number of languages.) 6. Datatypes 6.1. Advanced arithmetic A number of tags have been registered for arithmetic representations beyond those built into CBOR and defined by tags in [RFC7049]. These are all documented under http://peteroupc.github.io/CBOR/; the last pathname component for the URL is given in Table 5. +============+=============+=======================+===============+ | Tag number | Tag content | Short Description | Reference | +============+=============+=======================+===============+ | 30 | array | Rational number | rational.html | +------------+-------------+-----------------------+---------------+ | 264 | array | Decimal fraction with | bigfrac.html | | | | arbitrary exponent | | +------------+-------------+-----------------------+---------------+ | 265 | array | Bigfloat with | bigfrac.html | | | | arbitrary exponent | | +------------+-------------+-----------------------+---------------+ | 268 | array | Extended decimal | extended.html | | | | fraction | | +------------+-------------+-----------------------+---------------+ | 269 | array | Extended bigfloat | extended.html | +------------+-------------+-----------------------+---------------+ | 270 | array | Extended rational | extended.html | | | | number | | +------------+-------------+-----------------------+---------------+ Table 5: Tags for advanced arithmetic Bormann Expires 10 February 2024 [Page 11] Internet-Draft Notable CBOR Tags August 2023 CBOR's basic generic data model (Section 2 of [STD94]) has a number system with limited-range integers (major types 0 and 1: -2^64..2^64-1) and floating point numbers that cover binary16, binary32, and binary64 (including non-finites) from [IEEE754]. With the tags defined with [RFC7049], the extended generic data model (Section 2.1 of [STD94]) adds unlimited-range integers (tag numbers 2 and 3, "bigint" in CDDL) as well as floating point values using the bases 2 (tag number 5, "bigfloat") and 10 (tag number 4, "decfrac"). This pre-defined number system has a number of limitations that are addressed in three of the tags discussed here: * Tag number 30 allows the representation of rational numbers as a ratio of two integers: a numerator (usually written as the top part of a fraction), and a denominator (the bottom part), where both integers can be limited-range basic and unlimited-range integers. The mathematical value of a rational number is the numerator divided by the denominator. This tag can express all numbers that the extended generic data model of [RFC7049] can express, except for non-finites [IEEE754]; it also can express rational numbers that cannot be expressed with denominators that are a power of 2 or a power of 10. For example, the rational number 1/3 is encoded: d8 1e ---- Tag 30 82 ---- Array length 2 01 ---- 1 03 ---- 3 Many programming languages have built-in support for rational numbers or support for them is included in their standard libraries; tag number 30 is a way for these platforms to interchange these rational numbers in CBOR. * Tag numbers 4 and 5 are limited in the range of the (base 10 or base 2) exponents by the limited-range integers in the basic generic data model. Tag numbers 264 and 265 are exactly equivalent to 4 and 5, respectively, but also allow unlimited- range integers as exponents. While applications for floating point numbers with exponents outside the CBOR basic integer range are limited, tags 264 and 265 allow unlimited roundtripping with other formats that allow very large or very small exponents, such as those JSON [RFC8259] can provide if the limitations of I-JSON [RFC7493] do not apply. Bormann Expires 10 February 2024 [Page 12] Internet-Draft Notable CBOR Tags August 2023 The tag numbers 268..270 extend these tags further by providing a way to express non-finites within a tag with this number. This does not increase the expressiveness of the data model (the non-finites can already be expressed using major type 7 floating point numbers), but does allow both finite and non-finite values to carry the same tag. In most applications, a choice that includes some of the three tags 30, 264, 265 for finite values and major type 7 floating point values for non-finites (as well as possibly other parts of the CBOR number system) will be the preferred solution. This document suggests using the CDDL typenames defined in Figure 2 for the three most useful tag numbers in this section. rational = #6.30([numerator: integer, denominator: integer .ne 0]) rational_of = #6.30([numerator: N, denominator: D]) ; the value 1/3 can be notated as rational_of<1, 3> extended_decfrac = #6.264([e10: integer, m: integer]) extended_bigfloat = #6.265([e2: integer, m: integer]) Figure 2: CDDL for extended arithmetic tags 6.2. Variants of undefined https://github.com/svaarala/cbor-specs/blob/master/cbor-absent- tag.rst defines tag 31 to be applied to the CBOR value Undefined (0xf7), slightly modifying its semantics to stand for an absent value in a CBOR Array. (TO DO: Obtain permission to copy the definitions here.) 6.3. Typed and Homogeneous Arrays [RFC8746] defines tags for various kinds of arrays. A summary is reproduced in Table 6. +======+=============+=============================================+ | Tag | Data Item | Semantics | +======+=============+=============================================+ | 64 | byte string | uint8 Typed Array | +------+-------------+---------------------------------------------+ | 65 | byte string | uint16, big endian, Typed Array | +------+-------------+---------------------------------------------+ | 66 | byte string | uint32, big endian, Typed Array | +------+-------------+---------------------------------------------+ | 67 | byte string | uint64, big endian, Typed Array | +------+-------------+---------------------------------------------+ | 68 | byte string | uint8 Typed Array, clamped arithmetic | Bormann Expires 10 February 2024 [Page 13] Internet-Draft Notable CBOR Tags August 2023 +------+-------------+---------------------------------------------+ | 69 | byte string | uint16, little endian, Typed Array | +------+-------------+---------------------------------------------+ | 70 | byte string | uint32, little endian, Typed Array | +------+-------------+---------------------------------------------+ | 71 | byte string | uint64, little endian, Typed Array | +------+-------------+---------------------------------------------+ | 72 | byte string | sint8 Typed Array | +------+-------------+---------------------------------------------+ | 73 | byte string | sint16, big endian, Typed Array | +------+-------------+---------------------------------------------+ | 74 | byte string | sint32, big endian, Typed Array | +------+-------------+---------------------------------------------+ | 75 | byte string | sint64, big endian, Typed Array | +------+-------------+---------------------------------------------+ | 76 | byte string | (reserved) | +------+-------------+---------------------------------------------+ | 77 | byte string | sint16, little endian, Typed Array | +------+-------------+---------------------------------------------+ | 78 | byte string | sint32, little endian, Typed Array | +------+-------------+---------------------------------------------+ | 79 | byte string | sint64, little endian, Typed Array | +------+-------------+---------------------------------------------+ | 80 | byte string | IEEE 754 binary16, big endian, Typed Array | +------+-------------+---------------------------------------------+ | 81 | byte string | IEEE 754 binary32, big endian, Typed Array | +------+-------------+---------------------------------------------+ | 82 | byte string | IEEE 754 binary64, big endian, Typed Array | +------+-------------+---------------------------------------------+ | 83 | byte string | IEEE 754 binary128, big endian, Typed Array | +------+-------------+---------------------------------------------+ | 84 | byte string | IEEE 754 binary16, little endian, Typed | | | | Array | +------+-------------+---------------------------------------------+ | 85 | byte string | IEEE 754 binary32, little endian, Typed | | | | Array | +------+-------------+---------------------------------------------+ | 86 | byte string | IEEE 754 binary64, little endian, Typed | | | | Array | +------+-------------+---------------------------------------------+ | 87 | byte string | IEEE 754 binary128, little endian, Typed | | | | Array | +------+-------------+---------------------------------------------+ | 40 | array of | Multi-dimensional Array, row-major order | | | two arrays* | | +------+-------------+---------------------------------------------+ | 1040 | array of | Multi-dimensional Array, column-major order | | | two arrays* | | Bormann Expires 10 February 2024 [Page 14] Internet-Draft Notable CBOR Tags August 2023 +------+-------------+---------------------------------------------+ | 41 | array | Homogeneous Array | +------+-------------+---------------------------------------------+ Table 6: Tag numbers defined for Arrays 7. Domain-Specific (TO DO: Obtain permission to copy the definitions here; explain how tags 52 and 54 essentially obsolete 260/261.) +======+=======+=================+=================================+========+ |Tag |Tag |Short Description|Reference |Author | |number|content| | | | +======+=======+=================+=================================+========+ |37 |byte |Binary UUID |https://github.com/lucas- |Lucas | | |string |(Section 4.1.2 of|clemente/cbor-specs/blob/master/ |Clemente| | | |[RFC4122]) |uuid.md | | +------+-------+-----------------+---------------------------------+--------+ |257 |byte |Binary MIME |http://peteroupc.github.io/CBOR/ |Peter | | |string |message |binarymime.html |Occil | +------+-------+-----------------+---------------------------------+--------+ |260 |byte |Network Address |http://www.employees.org/~ravir/ |Ravi | | |string |(IPv4 or IPv6 or |cbor-network.txt |Raju | | | |MAC Address) | | | +------+-------+-----------------+---------------------------------+--------+ |261 |map |Network Address |https://github.com/toravir/CBOR- |Ravi | | | |Prefix (IPv4 or |Tag-Specs/blob/master/ |Raju | | | |IPv6 Address + |networkPrefix.md | | | | |Mask Length) | | | +------+-------+-----------------+---------------------------------+--------+ |263 |byte |Hexadecimal |https://github.com/toravir/CBOR- |Ravi | | |string |string |Tag-Specs/blob/master/ |Raju | | | | |hexString.md | | +------+-------+-----------------+---------------------------------+--------+ |266 |text |Internationalized|https://peteroupc.github.io/CBOR/|Peter | | |string |resource |iri.html |Occil | | | |identifier (IRI) | | | +------+-------+-----------------+---------------------------------+--------+ |267 |text |Internationalized|https://peteroupc.github.io/CBOR/|Peter | | |string |resource |iri.html |Occil | | | |identifier | | | | | |reference (IRI | | | | | |reference) | | | +------+-------+-----------------+---------------------------------+--------+ Table 7 Bormann Expires 10 February 2024 [Page 15] Internet-Draft Notable CBOR Tags August 2023 7.1. Human-readable Text +=====+===========+========================+==============+ | Tag | Data Item | Semantics | Reference | +=====+===========+========================+==============+ | 38 | array | Language-tagged string | Appendix A | | | | | of [RFC9290] | +-----+-----------+------------------------+--------------+ Table 8 Tag 38 was originally registered by Peter Occil in http://peteroupc.github.io/CBOR/langtags.html (http://peteroupc.github.io/CBOR/langtags.html); it has since been adopted and extended in Appendix A of [RFC9290], where a detailed definition of the tag and a few simple examples for its use are provided. The problem that this tag was designed to solve is that text strings often need additional information to be properly presented to a human. While Unicode (and the UTF-8 form of Unicode used in CBOR) define the characters, additional information about the human language in use and the writing direction appropriate for the text given are often required. The need to provide language information with text has been well- known for a while and led to a common form for this information, the language tag, defined in [BCP47]. Less well-known is the need to provide separate directionality information as well. The need for this information is demonstrated in [W3C-STRINGS-BIDI], which points out that it is "actually a bad idea to rely on language information to apply direction" and points out further reference information on this. [W3C-BIDI-USE-CASES] shows more examples for language tags and directionality, while [W3C-UBA-BASICS] provides an introduction to the way browsers, where "the order of characters in memory (logical) is not the same as the order in which they are displayed (visual)", "produce the correct order at the time of display" (Unicode Bidirectional Algorithm). Tag 38 meets the requirements of its specific application in [RFC9290], which could be summarized as: Supplying the necessary information to present isolated, linear, comparatively small pieces of human-readable text. It neither addresses more complex requirements of specific languages such as [W3C-SIMPLE-RUBY], nor does it address requirements for more complex structure in texts such as emphasis, lists, or tables. These more complex requirements are typically met by specific media types such as HTML [HTML]. Bormann Expires 10 February 2024 [Page 16] Internet-Draft Notable CBOR Tags August 2023 7.2. Extended Time Formats Additional tag definitions have been provided for date and time values. +======+===========+===================+==========================+ | Tag | Data Item | Semantics | Reference | +======+===========+===================+==========================+ | 100 | integer | date in number of | [RFC8943] | | | | days since epoch | | +------+-----------+-------------------+--------------------------+ | 1004 | text | RFC 3339 full- | [RFC8943] | | | string | date string | | +------+-----------+-------------------+--------------------------+ | 1001 | map | extended time | [I-D.ietf-cbor-time-tag] | +------+-----------+-------------------+--------------------------+ | 1002 | map | duration | [I-D.ietf-cbor-time-tag] | +------+-----------+-------------------+--------------------------+ | 1003 | map | period | [I-D.ietf-cbor-time-tag] | +------+-----------+-------------------+--------------------------+ Table 9: Tag numbers for date and time Note that tags 100 and 1004 are for calendar dates that are not anchored to a specific time zone; they are meant to specify calendar dates as perceived by humans, e.g. for use in personal identification documents. Converting such a calendar date into a specific point in time needs the addition of a time-of-day (for which a CBOR tag is outstanding) and timezone information (also outstanding). Alternatively, a calendar date plus timezone information can be converted into a time period (range of time values given by the starting and the ending time); note that these time periods are not always exactly 24 h (86400 s) long. [RFC8943] does not suggest CDDL [RFC8610] type names for the two tags. We suggest copying the definitions in Figure 3 into application-specific CDDL as needed. caldate = #6.100(int) ; calendar date as a number of days from 1970-01-01 tcaldate = #6.1004(tstr) ; calendar date as an RFC 3339 full-date string Figure 3: CDDL for calendar date tags (RFC8943) Tag 1001 extends tag 1 by additional information (such as picosecond resolution) and allows the use of Decimal and Bigfloat numbers for the time. Bormann Expires 10 February 2024 [Page 17] Internet-Draft Notable CBOR Tags August 2023 8. Platform-oriented 8.1. Perl (These are actually not as Perl-specific as the title of this section suggests. See also the penultimate paragraph of Section 3.4 of [STD94].) These are all documented under http://cbor.schmorp.de/; the last pathname component is given in Table 10. (TO DO: Obtain permission to copy the definitions here.) +=======+==========+========================+================+ | Tag | Data | Semantics | Reference | | | Item | | | +=======+==========+========================+================+ | 256 | multiple | mark value as having | stringref | | | | string references | | +-------+----------+------------------------+----------------+ | 25 | unsigned | reference the nth | stringref | | | integer | previously seen string | | +-------+----------+------------------------+----------------+ | 26 | array | Serialized Perl object | perl-object | | | | with classname and | | | | | constructor arguments | | +-------+----------+------------------------+----------------+ | 27 | array | Serialized language- | generic-object | | | | independent object | | | | | with type name and | | | | | constructor arguments | | +-------+----------+------------------------+----------------+ | 28 | multiple | mark value as | value-sharing | | | | (potentially) shared | | +-------+----------+------------------------+----------------+ | 29 | unsigned | reference nth marked | value-sharing | | | integer | value | | +-------+----------+------------------------+----------------+ | 22098 | multiple | hint that indicates an | indirection | | | | additional level of | | | | | indirection | | +-------+----------+------------------------+----------------+ Table 10: Tag numbers that aid the Perl platform Bormann Expires 10 February 2024 [Page 18] Internet-Draft Notable CBOR Tags August 2023 8.2. JSON (TO DO: Obtain permission to copy the definitions here.) Tag number 262 has been registered to identify byte strings that carry embedded JSON text (https://github.com/toravir/CBOR-Tag- Specs/blob/master/embeddedJSON.md). Tag number 275 can be used to identify maps that contain keys that are all of type Text String, as they would occur in JSON (https://github.com/ecorm/cbor-tag-text-key-map). 8.3. Weird text encodings (TO DO: Obtain permission to copy the definitions here.) Some variants of UTF-8 are in use in specific areas of application. Tags have been registered to be able to carry around strings in these variants in case they are not also valid UTF-8 and can therefore not be represented as a CBOR text string (https://github.com/svaarala/ cbor-specs/blob/master/cbor-nonutf8-string-tags.rst). +============+=============+=========================+ | Tag Number | Data Item | Semantics | +============+=============+=========================+ | 272 | byte string | Non-UTF-8 CESU-8 string | +------------+-------------+-------------------------+ | 273 | byte string | Non-UTF-8 WTF-8 string | +------------+-------------+-------------------------+ | 274 | byte string | Non-UTF-8 MUTF-8 string | +------------+-------------+-------------------------+ Table 11: Tag numbers for UTF-8 variants 9. Application-specific (TO DO: Obtain permission to copy the definitions here.) Bormann Expires 10 February 2024 [Page 19] Internet-Draft Notable CBOR Tags August 2023 +======+========+====================+===================================================+========+ |Tag |Tag |Short Description |Reference |Author | |number|content | | | | +======+========+====================+===================================================+========+ |39 |multiple|Identifier |[https://github.com/lucas-clemente/cbor- |Lucas | | | | |specs/blob/master/id.md |Clemente| +------+--------+--------------------+---------------------------------------------------+--------+ |42 |byte |IPLD content |[https://github.com/ipld/cid-cbor/ |Volker | | |string |identifier | |Mische | +------+--------+--------------------+---------------------------------------------------+--------+ |103 |array |Geographic |[https://github.com/allthingstalk/cbor/blob/master/|Danilo | | | |Coordinates |CBOR-Tag103-Geographic-Coordinates.md |Vidovic | +------+--------+--------------------+---------------------------------------------------+--------+ |104 |multiple|Geographic |[I-D.clarke-cbor-crs] | | | | |Coordinate Reference| | | | | |System WKT or EPSG | | | | | |number | | | +------+--------+--------------------+---------------------------------------------------+--------+ |120 |multiple|Internet of Things |[https://github.com/allthingstalk/cbor/blob/master/|Danilo | | | |Data Point |CBOR-Tag120-Internet-of-Things-Data-Points.md |Vidovic | +------+--------+--------------------+---------------------------------------------------+--------+ |258 |array |Mathematical finite |[https://github.com/input-output-hk/cbor-sets- |Alfredo | | | |set |spec/blob/master/CBOR_SETS.md |Di | | | | | |Napoli | +------+--------+--------------------+---------------------------------------------------+--------+ |259 |map |Map datatype with |[https://github.com/shanewholloway/js-cbor- |Shane | | | |key-value operations|codec/blob/master/docs/CBOR-259-spec--explicit- |Holloway| | | |(e.g. .get |maps.md | | | | |()/.set()/.delete())| | | +------+--------+--------------------+---------------------------------------------------+--------+ Table 12 9.1. Enumerated Alternative Data Items (Original Text for this section was contributed by Duncan Coutts and Michael Peyton Jones; all errors are the author's.) A set of CBOR tag numbers has been allocated (Section 11) for encoding data composed of enumerated alternatives: Bormann Expires 10 February 2024 [Page 20] Internet-Draft Notable CBOR Tags August 2023 +============+=============+===================================+ | Tags | Data Item | Meaning | +============+=============+===================================+ | 121..127 | any | alternatives 0..6, 1+1 encoding | +------------+-------------+-----------------------------------+ | 1280..1400 | any | alternatives 7..127, 1+2 encoding | +------------+-------------+-----------------------------------+ | 101 | array | alternatives as given by the uint | | | [uint, any] | + 128 | +------------+-------------+-----------------------------------+ Table 13: Tags for Enumerated Alternative Data Items The tags defined in this section are for encoding data that can be in one of a number of different enumerated forms. For example data representing the result of some action might be either a failure with some failure detail, or a success with some result. In this example there are two cases, the failure case and the success case, and we can enumerate them as 0 and 1. In general the number of alternatives, and what data is expected in each alternative case is entirely application dependent. The tags defined in this specification allow the encoding of any number of alternatives, but provide compact encoding for the common cases of low numbers of alternatives: * Alternatives 0..6 can be encoded in 2 bytes; * Alternatives 7..127 can be encoded in 3 bytes; * Alternatives 128+ can be encoded in 3-12 bytes. There are no special considerations for deterministic encoding Section 4.2 of [STD94]: The case numbers covered by each tag do not overlap; particularly, tag 101 encoding starts where the more compact special encodings for 0..6 and 7..127 end. For cases 0..6 and 7..127, the tag value indicates the value of the alternative. For cases 128+, a single tag number is used with an enclosed two-element array that contains the case number and the value of the alternative. Bormann Expires 10 February 2024 [Page 21] Internet-Draft Notable CBOR Tags August 2023 9.1.1. Semantics The value consists of a case number and a case body. The case number is an unsigned integer that indicates which case out of the set of alternatives is used. The case body is any CBOR data value. In a setting where the application uses a schema (formally or informally), then there will be an appropriate sub-schema for each case in the set of alternatives. The representation of the case body should comply with the schema corresponding to the case number used. To continue the example above about representing failure or success, suppose that the failure detail consists of an integer code and a string, and suppose that the successful result is a byte string. A failure value will use case 0 and the case body will be a CBOR list containing an integer and a text string. Alternatively, a success value will use case 1 and the body will be a single CBOR byte string. Decoders that enforce a schema must check the case number is within the range of cases allowed, and that the case body follows the schema for the supplied case number. Generic decoders should allow any case number and any CBOR data value for the case body. 9.1.2. Rationale CBOR has direct support for _combinations_ of multiple values but not for _alternatives_ of multiple values. Combinations are expressed in CBOR using lists or maps. Most programming languages have a notion of data consisting of combinations of data values, often called records, structs or objects. Many programming languages also have a notion of data consisting of multiple alternative data values. For example C has unions, and other languages have "tagged" unions (where it is always clear which alternative is in use). Crucially for this set of tags, the set of alternatives must be closed and ordered. This allows encoding using an unsigned number to distinguish each case. Note that this does _not_ correspond to the notion in some programming languages of classes and subclasses since in that context the set of alternatives is open and unordered. Alternatives of this kind are well-supported by tag 27 "Serialized language-independent object with type name and constructor arguments". Bormann Expires 10 February 2024 [Page 22] Internet-Draft Notable CBOR Tags August 2023 In functional programming languages, the primary way of forming new data types is to enumerate a set of alternatives (each of which may be a record). Such forms of data are also supported in hybrid functional languages or languages with functional features. Thus, in some applications, it is very common to have data making use of alternatives, and it is worth finding a compact encoding, at least for the common cases. Just as most records are small, most alternatives are also small. In this specification we reserve 7 values in the 2-byte part of the available tag encoding space for alternatives 0..6 which are by far the most common. We reserve a range of 121 values in the 3-bytes tag encoding space. To cover the general case we use an encoding using a pair consisting of an unsigned integer and the case body, the first 24 of which also result in a 3-byte encoding. 9.1.3. Examples To elaborate on the example from the introduction, we have a "result" that is a failure or success, where: * the failure detail consists of an integer code and a string; * the successful result is a byte string. This corresponds to the following schema, in CDDL notation: result = #6.121([int, text]) / #6.122(bytes) Example values: 121([3, "the printer is on fire"]) 122(h'ff00') As a second example, here is one based on a data type defined within the Haskell programming language, representing a simple expression tree. Bormann Expires 10 February 2024 [Page 23] Internet-Draft Notable CBOR Tags August 2023 -- A data type representing simple arithmetic expressions data Expr = Lit Int -- integer literal | Add Expr Expr -- addition | Sub Expr Expr -- subtraction | Neg Expr -- unary negation | Mul Expr Expr -- multiplication | Div Expr Expr -- integer division In CDDL notation, and using the tags in this specification, such data could be encoded using this schema: ; A data type representing simple arithmetic expressions expr = 121(int) ; integer literal / 122([expr, expr]) ; addition / 123([expr, expr]) ; subtraction / 124(expr) ; unary negation / 125([expr, expr]) ; multiplication / 126([expr, expr]) ; integer division 10. Implementation aids 10.1. Invalid Tag The present document registers tag numbers 65535, 4294967295, and 18446744073709551615 (16-bit 0xffff, 32-bit 0xffffffff, and 64-bit 0xffffffffffffffff) as Invalid Tags, tags that are always invalid, independent of the tag content provided. The purpose of these tag number registrations is to enable the tag numbers to be reserved for internal use by implementations to note the absence of a tag on a data item where a tag could also be expected with that data item as tag content. The Invalid Tags are not intended to ever occur in interchanged CBOR data items. Generic CBOR decoder implementations are encouraged to raise an error if an Invalid Tag occurs in a CBOR data item even if there is no validity checking implemented otherwise. 11. IANA Considerations In the registry "CBOR Tags" [IANA.cbor-tags], IANA has allocated the first to third tag in Table 14 from the FCFS space, with the present document as the specification reference. IANA has allocated the tags in the next two rows, and is requested to allocate the tags in the next three rows, from the Specification Required space, with the present document as the specification reference. Bormann Expires 10 February 2024 [Page 24] Internet-Draft Notable CBOR Tags August 2023 +====================+======+===========+=================================+ | Tag|Data |Semantics |Reference | | |Item | | | +====================+======+===========+=================================+ | 65535|(none |always |draft-bormann-cbor-notable-tags, | | |valid)|invalid |Section 10.1 | +--------------------+------+-----------+---------------------------------+ | 4294967295|(none |always |draft-bormann-cbor-notable-tags, | | |valid)|invalid |Section 10.1 | +--------------------+------+-----------+---------------------------------+ |18446744073709551615|(none |always |draft-bormann-cbor-notable-tags, | | |valid)|invalid |Section 10.1 | +--------------------+------+-----------+---------------------------------+ | 63|byte |Encoded |draft-bormann-cbor-notable-tags, | | |string|CBOR |Section 2.1 | | | |Sequence | | | | |[RFC8742] | | +--------------------+------+-----------+---------------------------------+ | 21065|text |I-Regexp |draft-bormann-cbor-notable-tags, | | |string| |Section 2.1; | | | | |[I-D.draft-ietf-jsonpath-iregexp]| +--------------------+------+-----------+---------------------------------+ | 18300 to 18555|byte |Bare Hash |draft-bormann-cbor-notable-tags, | | (inclusive)|string|value (COSE|Section 3.1.1 | | | |algorithm | | | | |-256 to -1)| | +--------------------+------+-----------+---------------------------------+ | 18556|array |[COSE |draft-bormann-cbor-notable-tags, | | | |algorithm |Section 3.1.1 | | | |identifier,| | | | |Bare Hash | | | | |value] | | +--------------------+------+-----------+---------------------------------+ | 18557 to 18811|byte |Bare Hash |draft-bormann-cbor-notable-tags, | | (inclusive)|string|value (COSE|Section 3.1.1 | | | |algorithm 1| | | | |to 255) | | +--------------------+------+-----------+---------------------------------+ Table 14: Values for Tags In addition, IANA is requested to allocate the tags from Table 13, with a reference to the present document. Bormann Expires 10 February 2024 [Page 25] Internet-Draft Notable CBOR Tags August 2023 12. Security Considerations The security considerations of [STD94] apply; the tags discussed here may also have specific security considerations that are mentioned in their specific sections above. 13. References 13.1. Normative References [IANA.cbor-tags] IANA, "Concise Binary Object Representation (CBOR) Tags", . [IANA.cose] IANA, "CBOR Object Signing and Encryption (COSE)", . [IANA.named-information] IANA, "Named Information", . [RFC8152] Schaad, J., "CBOR Object Signing and Encryption (COSE)", RFC 8152, DOI 10.17487/RFC8152, July 2017, . [RFC8392] Jones, M., Wahlstroem, E., Erdtman, S., and H. Tschofenig, "CBOR Web Token (CWT)", RFC 8392, DOI 10.17487/RFC8392, May 2018, . [RFC8610] Birkholz, H., Vigano, C., and C. Bormann, "Concise Data Definition Language (CDDL): A Notational Convention to Express Concise Binary Object Representation (CBOR) and JSON Data Structures", RFC 8610, DOI 10.17487/RFC8610, June 2019, . [RFC8746] Bormann, C., Ed., "Concise Binary Object Representation (CBOR) Tags for Typed Arrays", RFC 8746, DOI 10.17487/RFC8746, February 2020, . [RFC9053] Schaad, J., "CBOR Object Signing and Encryption (COSE): Initial Algorithms", RFC 9053, DOI 10.17487/RFC9053, August 2022, . [RFC9054] Schaad, J., "CBOR Object Signing and Encryption (COSE): Hash Algorithms", RFC 9054, DOI 10.17487/RFC9054, August 2022, . Bormann Expires 10 February 2024 [Page 26] Internet-Draft Notable CBOR Tags August 2023 [RFC9132] Boucadair, M., Ed., Shallow, J., and T. Reddy.K, "Distributed Denial-of-Service Open Threat Signaling (DOTS) Signal Channel Specification", RFC 9132, DOI 10.17487/RFC9132, September 2021, . [RFC9360] Schaad, J., "CBOR Object Signing and Encryption (COSE): Header Parameters for Carrying and Referencing X.509 Certificates", RFC 9360, DOI 10.17487/RFC9360, February 2023, . [STD63] Yergeau, F., "UTF-8, a transformation format of ISO 10646", STD 63, RFC 3629, DOI 10.17487/RFC3629, November 2003, . [STD94] Bormann, C. and P. Hoffman, "Concise Binary Object Representation (CBOR)", STD 94, RFC 8949, DOI 10.17487/RFC8949, December 2020, . [STD96] Schaad, J., "CBOR Object Signing and Encryption (COSE): Structures and Process", STD 96, RFC 9052, August 2022. Schaad, J., "CBOR Object Signing and Encryption (COSE): Countersignatures", STD 96, RFC 9338, December 2022. 13.2. Informative References [BCP47] Phillips, A., Ed. and M. Davis, Ed., "Matching of Language Tags", BCP 47, RFC 4647, September 2006. Phillips, A., Ed. and M. Davis, Ed., "Tags for Identifying Languages", BCP 47, RFC 5646, September 2009. [C] International Organization for Standardization, "Information technology — Programming languages — C", ISO/ IEC 9899:2018, June 2018, . [Cplusplus20] International Organization for Standardization, "Programming languages — C++", ISO/IEC ISO/IEC JTC1 SC22 WG21 N 4860, March 2020, . [HTML] WHATWG, "HTML — Living Standard", . Bormann Expires 10 February 2024 [Page 27] Internet-Draft Notable CBOR Tags August 2023 [I-D.clarke-cbor-crs] Clarke, T., "Concise Binary Object Representation (CBOR) Tag for Coordinate Reference System (CRS) Specification", Work in Progress, Internet-Draft, draft-clarke-cbor-crs- 02, 17 March 2020, . [I-D.draft-ietf-jsonpath-iregexp] Bormann, C. and T. Bray, "I-Regexp: An Interoperable Regexp Format", Work in Progress, Internet-Draft, draft- ietf-jsonpath-iregexp-08, 29 June 2023, . [I-D.ietf-cbor-time-tag] Bormann, C., Gamari, B., and H. Birkholz, "Concise Binary Object Representation (CBOR) Tags for Time, Duration, and Period", Work in Progress, Internet-Draft, draft-ietf- cbor-time-tag-09, 23 July 2023, . [I-D.trammell-rains-protocol] Trammell, B. and C. Fehlmann, "RAINS (Another Internet Naming Service) Protocol Specification", Work in Progress, Internet-Draft, draft-trammell-rains-protocol-05, 29 January 2019, . [IEEE754] IEEE, "IEEE Standard for Floating-Point Arithmetic", IEEE Std 754-2019, DOI 10.1109/IEEESTD.2019.8766229, . [RFC2045] Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996, . [RFC4122] Leach, P., Mealling, M., and R. Salz, "A Universally Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI 10.17487/RFC4122, July 2005, . [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, . Bormann Expires 10 February 2024 [Page 28] Internet-Draft Notable CBOR Tags August 2023 [RFC7049] Bormann, C. and P. Hoffman, "Concise Binary Object Representation (CBOR)", RFC 7049, DOI 10.17487/RFC7049, October 2013, . [RFC7322] Flanagan, H. and S. Ginoza, "RFC Style Guide", RFC 7322, DOI 10.17487/RFC7322, September 2014, . [RFC7493] Bray, T., Ed., "The I-JSON Message Format", RFC 7493, DOI 10.17487/RFC7493, March 2015, . [RFC7519] Jones, M., Bradley, J., and N. Sakimura, "JSON Web Token (JWT)", RFC 7519, DOI 10.17487/RFC7519, May 2015, . [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, . [RFC7951] Lhotka, L., "JSON Encoding of Data Modeled with YANG", RFC 7951, DOI 10.17487/RFC7951, August 2016, . [RFC8259] Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/RFC8259, December 2017, . [RFC8742] Bormann, C., "Concise Binary Object Representation (CBOR) Sequences", RFC 8742, DOI 10.17487/RFC8742, February 2020, . [RFC8943] Jones, M., Nadalin, A., and J. Richter, "Concise Binary Object Representation (CBOR) Tags for Date", RFC 8943, DOI 10.17487/RFC8943, November 2020, . [RFC9254] Veillette, M., Ed., Petrov, I., Ed., Pelov, A., Bormann, C., and M. Richardson, "Encoding of Data Modeled with YANG in the Concise Binary Object Representation (CBOR)", RFC 9254, DOI 10.17487/RFC9254, July 2022, . [RFC9290] Fossati, T. and C. Bormann, "Concise Problem Details for Constrained Application Protocol (CoAP) APIs", RFC 9290, DOI 10.17487/RFC9290, October 2022, . Bormann Expires 10 February 2024 [Page 29] Internet-Draft Notable CBOR Tags August 2023 [W3C-BIDI-USE-CASES] "Use cases for bidi and language metadata on the Web", 6 May 2021, . [W3C-SIMPLE-RUBY] "W3C Rules for Simple Placement of Japanese Ruby", W3C First Public Working Draft, 9 June 2020, . [W3C-STRINGS-BIDI] "Strings and bidi", 31 July 2017, . [W3C-UBA-BASICS] "Unicode Bidirectional Algorithm basics", 9 August 2016, . Acknowledgements (Many, TBD) Contributors Peter Occil Email: poccil14 at gmail dot com Peter Occil registered tags 30, 264, 265, 268–270 (Section 6.1), 38, 257, 266 and 267 (Section 7), and contributed much of the text about these tags in this document. Duncan Coutts Email: duncan@well-typed.com Michael Peyton Jones Email: me@michaelpj.com Jane Doe To do Further contributors will be listed here as text is added. Bormann Expires 10 February 2024 [Page 30] Internet-Draft Notable CBOR Tags August 2023 Plase stay tuned. Author's Address Carsten Bormann Universität Bremen TZI Postfach 330440 D-28359 Bremen Germany Phone: +49-421-218-63921 Email: cabo@tzi.org Bormann Expires 10 February 2024 [Page 31]