netmod J. Haas
Internet-Draft Juniper Networks
Intended status: Standards Track 10 April 2023
Expires: 12 October 2023
Representing Unknown YANG bits in Operational State
draft-haas-netmod-unknown-bits-02
Abstract
Protocols frequently have fields where the contents are a series of
bits that have specific meaning. When modeling operational state for
such protocols in YANG, the 'bits' YANG built-in type is a natural
method for modeling such fields. The YANG 'bits' built-in type is
best suited when the meaning of a bit assignment is clear.
When bits that are currently RESERVED or otherwise unassigned by the
protocol are received, being able to model them is necessary in YANG
operational models. This cannot be done using the YANG 'bits' built-
in type without assigning them a name. However, YANG versioning
rules do not permit renaming of named bits.
This draft proposes a methodology to represent unknown bits in YANG
operational models and creates a YANG typedef to assist in uniformly
naming such unknown bits.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 12 October 2023.
Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the
document authors. All rights reserved.
Haas Expires 12 October 2023 [Page 1]
Internet-Draft YANG Unknown Bits April 2023
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Table of Contents
1. Requirements Language . . . . . . . . . . . . . . . . . . . . 2
2. Modeling Protocol Bit Vectors in YANG . . . . . . . . . . . . 2
3. Modeling Unknown Bits . . . . . . . . . . . . . . . . . . . . 3
3.1. Example of Issue: Modeling BGP's Graceful Restart
Flags . . . . . . . . . . . . . . . . . . . . . . . . . . 3
3.2. Defining Unknown Bits . . . . . . . . . . . . . . . . . . 5
3.3. Consistently Modeling Unknown Bits . . . . . . . . . . . 7
4. IETF YANG Unknown Bit Types Module . . . . . . . . . . . . . 8
5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 16
5.1. URI Registration . . . . . . . . . . . . . . . . . . . . 16
5.2. YANG Module Name Registration . . . . . . . . . . . . . . 16
6. Security Considerations . . . . . . . . . . . . . . . . . . . 16
7. References . . . . . . . . . . . . . . . . . . . . . . . . . 16
7.1. Normative References . . . . . . . . . . . . . . . . . . 16
7.2. Informative References . . . . . . . . . . . . . . . . . 17
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 17
Author's Address . . . . . . . . . . . . . . . . . . . . . . . . 18
1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
2. Modeling Protocol Bit Vectors in YANG
Protocols frequently will have bit vectors as fields. Not all bits
in such bit vectors are assigned during the specification of the
protocol. These unassigned bits are typically made RESERVED and are
used at a later date to provide for new features.
Haas Expires 12 October 2023 [Page 2]
Internet-Draft YANG Unknown Bits April 2023
The YANG 'bits' built-in type (Section 9.7 of [RFC7950]) can be used
to provide a "named bit" mapping to currently assigned bits in such
fields. The representation format of 'bits' is "a space-separated
list of the names of the bits that are set". However, when no
assignment has been made for a bit position, nothing will be
rendered.
There are operational needs for displaying received bits that may not
be part of known assignments in the protocol. One such example is
debugging behavior when unexpected bits have been sent in the
protocol. This may occur when interacting with a version of the
protocol that has assigned a previously unassigned bit.
One way to model such a scenario is to have one YANG leaf that covers
known bit assignments, and have a subsequent YANG leaf contain
unknown bits.
3. Modeling Unknown Bits
3.1. Example of Issue: Modeling BGP's Graceful Restart Flags
BGP's Graceful Restart Capability (Section 3 of [RFC4724]) contains a
Restart Flags field that is four bits wide. Its definition is copied
below:
0 1 2 3
+-+-+-+-+
|R|Resv.|
+-+-+-+-+
Figure 1: BGP Graceful Restart Flags
The 'R' (Restart State) bit has been assigned in RFC 4724. One way
to model this (taken from [I-D.ietf-idr-bgp-model]) is:
Haas Expires 12 October 2023 [Page 3]
Internet-Draft YANG Unknown Bits April 2023
typedef graceful-restart-flags {
type bits {
bit restart {
position 0;
description
"The most significant bit is defined as the Restart
State (R) bit, [...]";
reference
"RFC 4724: Graceful Restart Mechanism for BGP,
Section 3.";
}
}
[...]
}
[...]
leaf flags {
type bt:graceful-restart-flags;
description
"Restart Flags advertised by the Graceful Restart
Capability";
reference
"RFC 4724: Graceful Restart Mechanism for BGP, Section 3.";
}
Figure 2: BGP Graceful Restart Flags
[RFC8538] later assigns bit position 1 to the 'N' flag, updating the
set of flags used in this field:
0 1 2 3
+-+-+-+-+
|R|N| |
+-+-+-+-+
Figure 3: BGP Graceful Restart Flags, Revised by RFC 8538
YANG module versioning rules would require the graceful-restart-flags
typedef to be updated. For protocol well-known fields, this
encourages such typedefs to be IANA-maintained for ease of update. A
revised typedef may resemble:
Haas Expires 12 October 2023 [Page 4]
Internet-Draft YANG Unknown Bits April 2023
typedef graceful-restart-flags {
type bits {
bit restart {
position 0;
description
"The most significant bit is defined as the Restart
State (R) bit, [...]";
reference
"RFC 4724: Graceful Restart Mechanism for BGP,
Section 3.";
}
bit notification {
position 1;
description
"The second most significant bit is defined in [RFC 8538]
as the Graceful Notification ('N') bit. [...]";
reference
"RFC 8538: Notification Message Support for BGP Graceful
Restart, Section 2.";
}
}
}
Figure 4: Revised BGP Graceful Restart Flags Typedef
Consider a router supporting the old typedef receiving a BGP Graceful
Restart Capability containing both the 'R' and 'N' bits in the BGP
protocol. In that typedef, the "flags" leaf could only represent
position 0, the "restart" named bit. The implementation couldn't
represent that the 'N' bit was sent in the protocol.
restart
Figure 5: Flags for 'R' and 'N' bits with original leaves and typedef
3.2. Defining Unknown Bits
One solution to modeling unknown bits is to have a subsequent leaf
whose purposes is only to model unknown bit mappings. When the
protocol does not send the unassigned bits, this leaf would be absent
in the output of the operational state.
Using the example where only the 'R' bit was defined, one way to
model this would be:
Haas Expires 12 October 2023 [Page 5]
Internet-Draft YANG Unknown Bits April 2023
typedef unknown-flags {
type bits {
bit bit-1 {
position 1;
description
"Bit 1 was received but is currently RESERVED.";
}
bit bit-2 {
position 2;
description
"Bit 2 was received but is currently RESERVED.";
}
bit bit-3 {
position 3;
description
"Bit 3 was received but is currently RESERVED.";
}
}
description
"When a bit is exchanged in the Graceful Restart Flags
field that is unknown to this module, their bit position
is rendered using the associated unknown bit.";
reference
"RFC 4724: Graceful Restart Mechanism for BGP, Section 3.";
}
leaf unknown-flags {
type unknown-flags;
description
"Restart Flags advertised by the Graceful Restart
Capability";
reference
"RFC 4724: Graceful Restart Mechanism for BGP, Section 3.";
}
Figure 6: BGP Graceful Restart Specific Unknown Bits
If the router using the above modeling received a BGP Graceful
Restart Capability containing both the 'R' and the 'N' bits, it would
now be rendered:
restart
bit-1
Figure 7: Flags for 'R' and 'N' bits with new leaves and typedefs
Haas Expires 12 October 2023 [Page 6]
Internet-Draft YANG Unknown Bits April 2023
Deleting bit assignments in later versions of the model is not
permitted by current YANG versioning rules. The only purpose of such
unknown named bits is to represent fields that may later be assigned
during maintenance of the protocol.
For example, when position 1, "bit notification" is assigned, the
same example scenario would then render as:
restart unknown
Figure 8: Flags for 'R' and 'N' bits with new leaves and updated
typedef
3.3. Consistently Modeling Unknown Bits
Each YANG module requiring this pattern to represent unknown bits
could define its own protocol-specific typedefs for the appropriate
number of unknown bits for their fields. However, there is
operational benefit to use a consistent pattern for such unknown
bits. A common typedef for this purpose, "unknown-bits", is defined
in the next section.
The unknown-bits typedef defines 64 bits of unknown bits.
Considering the example for the BGP Graceful Restart Flags bits where
only 4 bits are present in the field, 64 bits for the typedef are not
a problem. Only the bits received in the protocol that aren't
recognized would be represented in the protocol-specific "unknown-
flags" leaf, or similar.
Here's an example usage of this typedef using the prior "unknown-
flags" leaf:
include ietf-yang-unknown-bit-types {
prefix yang-ubt;
}
leaf unknown-flags {
type ubt:unknown-bits;
description
"When a bit is exchanged in the Graceful Restart Flags
field that is unknown to this module, their bit position
is rendered using the associated unknown bit.";
reference
"RFC 4724: Graceful Restart Mechanism for BGP, Section 3.";
}
Figure 9: BGP Graceful Restart Specific Unknown Bits with Typedef
Haas Expires 12 October 2023 [Page 7]
Internet-Draft YANG Unknown Bits April 2023
4. IETF YANG Unknown Bit Types Module
module ietf-yang-unknown-bit-types {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-yang-unknown-bit-types";
prefix yang-ubt;
// meta
organization
"IETF NETMOD (NETCONF Data Modeling Language) Working Group";
contact
"WG Web:
WG List:
Editor: Jeffrey Haas
";
description
"This module contains data definitions for modeling operational
state that would normally be represented using the YANG 'bits'
type, but currently no known mapping for that bit position is
registered.
Copyright (c) 2023 IETF Trust and the persons identified as
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject to
the license terms contained in, the Simplified BSD License set
forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(https://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX
(https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
for full legal notices.
The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL
NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED',
'MAY', and 'OPTIONAL' in this document are to be interpreted as
described in BCP 14 (RFC 2119) (RFC 8174) when, and only when,
they appear in all capitals, as shown here.";
revision 2023-01-25 {
description
"Initial Version";
Haas Expires 12 October 2023 [Page 8]
Internet-Draft YANG Unknown Bits April 2023
reference
"RFC XXXX: YANG module for unknown bit types.";
}
/*
* Typedefs
*/
typedef unknown-bits {
type bits {
bit bit-0 {
position 0;
description
"Bit 0 is unknown.";
}
bit bit-1 {
position 1;
description
"Bit 1 is unknown.";
}
bit bit-2 {
position 2;
description
"Bit 2 is unknown.";
}
bit bit-3 {
position 3;
description
"Bit 3 is unknown.";
}
bit bit-4 {
position 4;
description
"Bit 4 is unknown.";
}
bit bit-5 {
position 5;
description
"Bit 5 is unknown.";
}
bit bit-6 {
position 6;
description
"Bit 6 is unknown.";
}
bit bit-7 {
position 7;
description
Haas Expires 12 October 2023 [Page 9]
Internet-Draft YANG Unknown Bits April 2023
"Bit 7 is unknown.";
}
bit bit-8 {
position 8;
description
"Bit 8 is unknown.";
}
bit bit-9 {
position 9;
description
"Bit 9 is unknown.";
}
bit bit-10 {
position 10;
description
"Bit 10 is unknown.";
}
bit bit-11 {
position 11;
description
"Bit 11 is unknown.";
}
bit bit-12 {
position 12;
description
"Bit 12 is unknown.";
}
bit bit-13 {
position 13;
description
"Bit 13 is unknown.";
}
bit bit-14 {
position 14;
description
"Bit 14 is unknown.";
}
bit bit-15 {
position 15;
description
"Bit 15 is unknown.";
}
bit bit-16 {
position 16;
description
"Bit 16 is unknown.";
}
bit bit-17 {
Haas Expires 12 October 2023 [Page 10]
Internet-Draft YANG Unknown Bits April 2023
position 17;
description
"Bit 17 is unknown.";
}
bit bit-18 {
position 18;
description
"Bit 18 is unknown.";
}
bit bit-19 {
position 19;
description
"Bit 19 is unknown.";
}
bit bit-20 {
position 20;
description
"Bit 20 is unknown.";
}
bit bit-21 {
position 21;
description
"Bit 21 is unknown.";
}
bit bit-22 {
position 22;
description
"Bit 22 is unknown.";
}
bit bit-23 {
position 23;
description
"Bit 23 is unknown.";
}
bit bit-24 {
position 24;
description
"Bit 24 is unknown.";
}
bit bit-25 {
position 25;
description
"Bit 25 is unknown.";
}
bit bit-26 {
position 26;
description
"Bit 26 is unknown.";
Haas Expires 12 October 2023 [Page 11]
Internet-Draft YANG Unknown Bits April 2023
}
bit bit-27 {
position 27;
description
"Bit 27 is unknown.";
}
bit bit-28 {
position 28;
description
"Bit 28 is unknown.";
}
bit bit-29 {
position 29;
description
"Bit 29 is unknown.";
}
bit bit-30 {
position 30;
description
"Bit 30 is unknown.";
}
bit bit-31 {
position 31;
description
"Bit 31 is unknown.";
}
bit bit-32 {
position 32;
description
"Bit 32 is unknown.";
}
bit bit-33 {
position 33;
description
"Bit 33 is unknown.";
}
bit bit-34 {
position 34;
description
"Bit 34 is unknown.";
}
bit bit-35 {
position 35;
description
"Bit 35 is unknown.";
}
bit bit-36 {
position 36;
Haas Expires 12 October 2023 [Page 12]
Internet-Draft YANG Unknown Bits April 2023
description
"Bit 36 is unknown.";
}
bit bit-37 {
position 37;
description
"Bit 37 is unknown.";
}
bit bit-38 {
position 38;
description
"Bit 38 is unknown.";
}
bit bit-39 {
position 39;
description
"Bit 39 is unknown.";
}
bit bit-40 {
position 40;
description
"Bit 40 is unknown.";
}
bit bit-41 {
position 41;
description
"Bit 41 is unknown.";
}
bit bit-42 {
position 42;
description
"Bit 42 is unknown.";
}
bit bit-43 {
position 43;
description
"Bit 43 is unknown.";
}
bit bit-44 {
position 44;
description
"Bit 44 is unknown.";
}
bit bit-45 {
position 45;
description
"Bit 45 is unknown.";
}
Haas Expires 12 October 2023 [Page 13]
Internet-Draft YANG Unknown Bits April 2023
bit bit-46 {
position 46;
description
"Bit 46 is unknown.";
}
bit bit-47 {
position 47;
description
"Bit 47 is unknown.";
}
bit bit-48 {
position 48;
description
"Bit 48 is unknown.";
}
bit bit-49 {
position 49;
description
"Bit 49 is unknown.";
}
bit bit-50 {
position 50;
description
"Bit 50 is unknown.";
}
bit bit-51 {
position 51;
description
"Bit 51 is unknown.";
}
bit bit-52 {
position 52;
description
"Bit 52 is unknown.";
}
bit bit-53 {
position 53;
description
"Bit 53 is unknown.";
}
bit bit-54 {
position 54;
description
"Bit 54 is unknown.";
}
bit bit-55 {
position 55;
description
Haas Expires 12 October 2023 [Page 14]
Internet-Draft YANG Unknown Bits April 2023
"Bit 55 is unknown.";
}
bit bit-56 {
position 56;
description
"Bit 56 is unknown.";
}
bit bit-57 {
position 57;
description
"Bit 57 is unknown.";
}
bit bit-58 {
position 58;
description
"Bit 58 is unknown.";
}
bit bit-59 {
position 59;
description
"Bit 59 is unknown.";
}
bit bit-60 {
position 60;
description
"Bit 60 is unknown.";
}
bit bit-61 {
position 61;
description
"Bit 61 is unknown.";
}
bit bit-62 {
position 62;
description
"Bit 62 is unknown.";
}
bit bit-63 {
position 63;
description
"Bit 63 is unknown.";
}
}
description
"Typedef describing 64 bits worth of unknown bits. This can be
used to model operational state that would normally be modeled
using the YANG 'bits' type, but no registered bit has been
created.";
Haas Expires 12 October 2023 [Page 15]
Internet-Draft YANG Unknown Bits April 2023
}
}
Figure 10
5. IANA Considerations
This document registers one URI and one YANG module.
5.1. URI Registration
Following the format in the IETF XML registry [RFC3688] [RFC3688],
the following registration is requested to be made:
URI: urn:ietf:params:xml:ns:yang:ietf-yang-unknown-bit-types
Figure 11
Registrant Contact: The IESG. XML: N/A, the requested URI is an XML
namespace.
5.2. YANG Module Name Registration
This document registers one YANG module in the YANG Module Names
registry YANG [RFC6020].
name: ietf-yang-unknown-bit-types
namespace: urn:ietf:params:xml:ns:yang:ietf-yang-unknown-bit-types
prefix: yang-ubt
reference: RFC XXXX
Figure 12
6. Security Considerations
Lack of operational visibility for protocol state can make
troubleshooting protocol issues more difficult. The mechanism
defined in this document may help reduce the scope of such issues and
potentially remove the security considerations such lack of
operational visibility may cause.
7. References
7.1. Normative References
Haas Expires 12 October 2023 [Page 16]
Internet-Draft YANG Unknown Bits April 2023
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, .
[RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language",
RFC 7950, DOI 10.17487/RFC7950, August 2016,
.
7.2. Informative References
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
.
[RFC4724] Sangli, S., Chen, E., Fernando, R., Scudder, J., and Y.
Rekhter, "Graceful Restart Mechanism for BGP", RFC 4724,
DOI 10.17487/RFC4724, January 2007,
.
[RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DOI 10.17487/RFC6020, October 2010,
.
[RFC8538] Patel, K., Fernando, R., Scudder, J., and J. Haas,
"Notification Message Support for BGP Graceful Restart",
RFC 8538, DOI 10.17487/RFC8538, March 2019,
.
[I-D.ietf-idr-bgp-model]
Jethanandani, M., Patel, K., Hares, S., and J. Haas, "YANG
Model for Border Gateway Protocol (BGP-4)", Work in
Progress, Internet-Draft, draft-ietf-idr-bgp-model-16, 1
March 2023, .
Acknowledgements
Martin Bjorklund provided a review on an early version of this
document.
Thanks to Jurgen Schonwalder and the IETF netmod Working Group for
their feedback.
Haas Expires 12 October 2023 [Page 17]
Internet-Draft YANG Unknown Bits April 2023
Author's Address
Jeffrey Haas
Juniper Networks
1133 Innovation Way
Sunnyvale, CA 94089
United States of America
Email: jhaas@pfrc.org
Haas Expires 12 October 2023 [Page 18]