PCE Working Group D. Dhody, Ed. Internet-Draft Huawei Intended status: Standards Track V. Beeram Expires: 14 March 2024 Juniper Networks J. Hardwick Microsoft J. Tantsura Nvidia 11 September 2023 A YANG Data Model for Path Computation Element Communications Protocol (PCEP) draft-ietf-pce-pcep-yang-22 Abstract This document defines a YANG data model for the management of Path Computation Element communications Protocol (PCEP) for communications between a Path Computation Client (PCC) and a Path Computation Element (PCE), or between two PCEs. The data model includes configuration and state data. Status of This Memo This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79. Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at https://datatracker.ietf.org/drafts/current/. Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress." This Internet-Draft will expire on 14 March 2024. Copyright Notice Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved. This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/ license-info) in effect on the date of publication of this document. Dhody, et al. Expires 14 March 2024 [Page 1] Internet-Draft PCE-YANG September 2023 Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License. Table of Contents 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 2. Requirements Language . . . . . . . . . . . . . . . . . . . . 3 3. Terminology and Notation . . . . . . . . . . . . . . . . . . 3 3.1. Tree Diagrams . . . . . . . . . . . . . . . . . . . . . . 5 3.2. Prefixes in Data Node Names . . . . . . . . . . . . . . . 5 3.3. References in the Model . . . . . . . . . . . . . . . . . 6 4. The Design of PCEP Data Model . . . . . . . . . . . . . . . . 10 4.1. The Entity . . . . . . . . . . . . . . . . . . . . . . . 11 4.1.1. The Peer List . . . . . . . . . . . . . . . . . . . . 15 4.1.1.1. The Session List . . . . . . . . . . . . . . . . 18 4.2. Notifications . . . . . . . . . . . . . . . . . . . . . . 20 4.3. RPC . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 5. The Design of PCEP Statistics Data Model . . . . . . . . . . 21 6. Advanced PCE Features . . . . . . . . . . . . . . . . . . . . 24 6.1. Stateful PCE's LSP-DB . . . . . . . . . . . . . . . . . . 25 7. Other Considerations . . . . . . . . . . . . . . . . . . . . 25 7.1. PCEP over TLS (PCEPS) . . . . . . . . . . . . . . . . . . 25 8. PCEP YANG Modules . . . . . . . . . . . . . . . . . . . . . . 26 8.1. ietf-pcep module . . . . . . . . . . . . . . . . . . . . 26 8.2. ietf-pcep-stats module . . . . . . . . . . . . . . . . . 85 9. Security Considerations . . . . . . . . . . . . . . . . . . . 103 10. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 105 11. Implementation Status . . . . . . . . . . . . . . . . . . . . 106 12. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 106 13. References . . . . . . . . . . . . . . . . . . . . . . . . . 107 13.1. Normative References . . . . . . . . . . . . . . . . . . 107 13.2. Informative References . . . . . . . . . . . . . . . . . 112 Appendix A. The Full PCEP Data Model . . . . . . . . . . . . . . 113 Appendix B. Example . . . . . . . . . . . . . . . . . . . . . . 121 Appendix C. Design Objectives . . . . . . . . . . . . . . . . . 123 Appendix D. Relationship with PCEP MIB . . . . . . . . . . . . . 124 Appendix E. Contributor Addresses . . . . . . . . . . . . . . . 130 Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 131 Dhody, et al. Expires 14 March 2024 [Page 2] Internet-Draft PCE-YANG September 2023 1. Introduction The Path Computation Element (PCE) defined in [RFC4655] is an entity that is capable of computing a network path or route based on a network graph, and applying computational constraints. A Path Computation Client (PCC) may make requests to a PCE for paths to be computed. PCEP is the communication protocol between a PCC and PCE and is defined in [RFC5440]. PCEP interactions include path computation requests and path computation replies as well as notifications of specific states related to the use of a PCE in the context of Multiprotocol Label Switching (MPLS) and Generalized MPLS (GMPLS) Traffic Engineering (TE). [RFC8231] specifies extensions to PCEP to enable stateful control of MPLS TE LSPs. This document defines a YANG [RFC7950] data model for the management of PCEP speakers. It is important to establish a common data model for how PCEP speakers are identified, configured, and monitored. The data model includes configuration data and state data. This document contains a specification of the PCEP YANG module, "ietf-pcep" which provides the PCEP [RFC5440] data model. The PCEP operational state is included in the same tree as the PCEP configuration consistent with Network Management Datastore Architecture (NMDA) [RFC8342]. The origin of the data is indicated as per the origin metadata annotation. 2. Requirements Language The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here. 3. Terminology and Notation This document uses the terminology defined in [RFC4655] and [RFC5440]. In particular, it uses the following acronyms. * Path Computation Request message (PCReq). * Path Computation Reply message (PCRep). * Notification message (PCNtf). Dhody, et al. Expires 14 March 2024 [Page 3] Internet-Draft PCE-YANG September 2023 * Error message (PCErr). * Request Parameters object (RP). * Synchronization Vector object (SVEC). * Explicit Route object (ERO). This document also uses the following terms defined in [RFC7420]: * PCEP entity: a local PCEP speaker. * PCEP peer: to refer to a remote PCEP speaker. * PCEP speaker: where it is not necessary to distinguish between local and remote. Further, this document also uses the following terms defined in [RFC8231] : * Stateful PCE, Passive Stateful PCE, Active Stateful PCE * Delegation, Revocation, Redelegation * LSP State Report, Path Computation Report message (PCRpt). * LSP State Update, Path Computation Update message (PCUpd). * PLSP-ID: a PCEP-specific identifier for the LSP. * SRP: Stateful PCE Request Parameters [RFC8281] : * PCE-initiated LSP, Path Computation LSP Initiate Message (PCInitiate). [RFC8408] : * Path Setup Type (PST). [RFC8664] : * Segment Routing (SR). [RFC5541] : * Objective Function (OF). Dhody, et al. Expires 14 March 2024 [Page 4] Internet-Draft PCE-YANG September 2023 [RFC8697] : * Association. [RFC6241] : * Configuration data. * State data. 3.1. Tree Diagrams A simplified graphical representation of the data model is used in this document. The meaning of the symbols in these diagrams is defined in [RFC8340]. 3.2. Prefixes in Data Node Names In this document, names of data nodes and other data model objects are often used without a prefix, as long as it is clear from the context in which YANG module each name is defined. Otherwise, names are prefixed using the standard prefix associated with the corresponding YANG module, as shown in Table 1. +=========+================+======================================+ |Prefix |YANG module | Reference | +=========+================+======================================+ |yang |ietf-yang-types | [RFC6991] | +---------+----------------+--------------------------------------+ |inet |ietf-inet-types | [RFC6991] | +---------+----------------+--------------------------------------+ |te-types |ietf-te-types | [RFC8776] | +---------+----------------+--------------------------------------+ |key-chain|ietf-key-chain | [RFC8177] | +---------+----------------+--------------------------------------+ |nacm |ietf-netconf-acm| [RFC8341] | +---------+----------------+--------------------------------------+ |tlss |ietf-tls-server | [I-D.ietf-netconf-tls-client-server] | +---------+----------------+--------------------------------------+ |tlsc |ietf-tls-client | [I-D.ietf-netconf-tls-client-server] | +---------+----------------+--------------------------------------+ |ospf |ietf-ospf | [RFC9129] | +---------+----------------+--------------------------------------+ |isis |ietf-isis | [RFC9130] | +---------+----------------+--------------------------------------+ Table 1: Prefixes and corresponding YANG modules Dhody, et al. Expires 14 March 2024 [Page 5] Internet-Draft PCE-YANG September 2023 3.3. References in the Model Following documents are referenced in the model defined in this document - +============================+======================================+ | Documents | Reference | +============================+======================================+ | OSPF Protocol Extensions | [RFC5088] | | for Path Computation | | | Element (PCE) Discovery | | +----------------------------+--------------------------------------+ | IS-IS Protocol | [RFC5089] | | Extensions for Path | | | Computation Element | | | (PCE) Discovery | | +----------------------------+--------------------------------------+ | Path Computation Element | [RFC5440] | | (PCE) Communication | | | Protocol (PCEP) | | +----------------------------+--------------------------------------+ | Preserving Topology | [RFC5520] | | Confidentiality in | | | Inter-Domain Path | | | Computation Using a | | | Path-Key-Based Mechanism | | +----------------------------+--------------------------------------+ | Encoding of Objective | [RFC5541] | | Functions in the Path | | | Computation Element | | | Communication Protocol | | | (PCEP) | | +----------------------------+--------------------------------------+ | Path Computation Element | [RFC5557] | | Communication Protocol | | | (PCEP) Requirements and | | | Protocol Extensions in | | | Support of Global | | | Concurrent Optimization | | +----------------------------+--------------------------------------+ | Common YANG Data Types | [RFC6991] | +----------------------------+--------------------------------------+ | YANG Data Model for Key | [RFC8177] | | Chains | | +----------------------------+--------------------------------------+ | Path Computation Element | [RFC8231] | | Communication Protocol | | | (PCEP) Extensions for | | Dhody, et al. Expires 14 March 2024 [Page 6] Internet-Draft PCE-YANG September 2023 | Stateful PCE | | +----------------------------+--------------------------------------+ | Optimizations of Label | [RFC8232] | | Switched Path State | | | Synchronization | | | Procedures for a | | | Stateful PCE | | +----------------------------+--------------------------------------+ | PCEPS: Usage of TLS to | [RFC8253] | | Provide a Secure | | | Transport for the Path | | | Computation Element | | | Communication Protocol | | | (PCEP) | | +----------------------------+--------------------------------------+ | Path Computation Element | [RFC8281] | | Communication Protocol | | | (PCEP) Extensions for | | | PCE-Initiated LSP Setup | | | in a Stateful PCE Model | | +----------------------------+--------------------------------------+ | Extensions to the Path | [RFC8306] | | Computation Element | | | Communication Protocol | | | (PCEP) for Point-to- | | | Multipoint Traffic | | | Engineering Label | | | Switched Paths | | +----------------------------+--------------------------------------+ | Network Configuration | [RFC8341] | | Access Control Model | | +----------------------------+--------------------------------------+ | Conveying Path Setup | [RFC8408] | | Type in PCE | | | Communication Protocol | | | (PCEP) Messages | | +----------------------------+--------------------------------------+ | Traffic Engineering | [RFC8776] | | Common YANG Types | | +----------------------------+--------------------------------------+ | A YANG Data Model for | [I-D.ietf-teas-yang-te] | | Traffic Engineering | | | Tunnels and Interfaces | | +----------------------------+--------------------------------------+ | YANG Groupings for TLS | [I-D.ietf-netconf-tls-client-server] | | Clients and TLS Servers | | +----------------------------+--------------------------------------+ | PCEP Extensions for | [RFC8664] | Dhody, et al. Expires 14 March 2024 [Page 7] Internet-Draft PCE-YANG September 2023 | Segment Routing | | +----------------------------+--------------------------------------+ | PCEP Extensions for | [RFC8697] | | Establishing | | | Relationships Between | | | Sets of LSPs | | +----------------------------+--------------------------------------+ | YANG Data Model for OSPF | [RFC9129] | | Protocol | | +----------------------------+--------------------------------------+ | YANG Data Model for IS- | [RFC9130] | | IS Protocol | | +----------------------------+--------------------------------------+ | PCEP extensions for | [RFC8779] | | GMPLS | | +----------------------------+--------------------------------------+ | ASSOCIATION Type Field | [IANA-PCEP] | | in Path Computation | | | Element Protocol (PCEP) | | | Numbers | | +----------------------------+--------------------------------------+ | Path Computation Element | [IANA-IGP] | | (PCE) Capability Flags | | | in Interior Gateway | | | Protocol (IGP) | | | Parameters | | +----------------------------+--------------------------------------+ | Path Computation Element | [RFC9168] | | Communication Protocol | | | (PCEP) Extension for | | | Flow Specification | | +----------------------------+--------------------------------------+ | Path Computation Element | [RFC8685] | | Communication Protocol | | | (PCEP) Extensions for | | | the Hierarchical Path | | | Computation Element | | | (H-PCE) Architecture | | +----------------------------+--------------------------------------+ | Hierarchical Stateful | [RFC8751] | | Path Computation Element | | | (PCE) | | +----------------------------+--------------------------------------+ | IGP Extension for Path | [RFC9353] | | Computation Element | | | Communication Protocol | | | (PCEP) Security | | | Capability Support in | | Dhody, et al. Expires 14 March 2024 [Page 8] Internet-Draft PCE-YANG September 2023 | PCE Discovery (PCED) | | +----------------------------+--------------------------------------+ | Stateful Path | [RFC8623] | | Computation Element | | | (PCE) Protocol | | | Extensions for Usage | | | with Point-to-Multipoint | | | TE Label Switched Paths | | | (LSPs) | | +----------------------------+--------------------------------------+ | The TCP Authentication | [RFC5925] | | Option | | +----------------------------+--------------------------------------+ | Path Computation Element | [RFC8745] | | Communication Protocol | | | (PCEP) Extensions for | | | Associating Working and | | | Protection Label | | | Switched Paths (LSPs) | | | with Stateful PCE | | +----------------------------+--------------------------------------+ | Path Computation Element | [RFC8800] | | Communication Protocol | | | (PCEP) Extension for | | | Label Switched Path | | | (LSP) Diversity | | | Constraint Signaling | | +----------------------------+--------------------------------------+ | Path Computation Element | [RFC9358] | | Communication Protocol | | | (PCEP) Extensions for | | | Establishing | | | Relationships between | | | Sets of Label Switched | | | Paths and Virtual | | | Networks | | +----------------------------+--------------------------------------+ | Extensions to the Path | [RFC8282] | | Computation Element | | | Communication Protocol | | | (PCEP) for Inter-Layer | | | MPLS and GMPLS Traffic | | | Engineering | | +----------------------------+--------------------------------------+ | Path Computation Element | [RFC9005] | | Communication Protocol | | | (PCEP) Extension for | | | Associating Policies and | | Dhody, et al. Expires 14 March 2024 [Page 9] Internet-Draft PCE-YANG September 2023 | Label Switched Paths | | | (LSPs) | | +----------------------------+--------------------------------------+ Table 2: References in the YANG modules 4. The Design of PCEP Data Model The PCEP YANG module defined in this document has all the common building blocks for the PCEP protocol. module: ietf-pcep +--rw pcep! +--rw entity +--rw addr inet:ip-address-no-zone +--rw enabled? boolean +--rw role role +--rw description? string +--rw speaker-entity-id? string {sync-opt}? +--rw admin-status? boolean +--ro index? uint32 +--ro oper-status? oper-status +--rw domains | +--rw domain* [type info] | +--... +--rw capabilities | +--... +--rw auth | +--... +--rw pce-info | +--rw scope | | +--... | +--rw neighbour-domains | | +--... | +--rw path-key {path-key}? | +--... +--... +--ro lsp-db {stateful}? | +--ro db-ver? uint64 {sync-opt}? | +--ro association-list* | | [type id source global-source extended-id] | | {association}? | | +--... | +--ro lsp* [plsp-id pcc-id lsp-id] | +--... +--ro path-keys {path-key}? | +--ro path-key* [key] | +--... Dhody, et al. Expires 14 March 2024 [Page 10] Internet-Draft PCE-YANG September 2023 +--rw peers +--rw peer* [addr] +--... +--ro sessions +--ro session* [initiator] +--... rpcs: +---x trigger-resync {stateful,sync-opt}? +---w input +---w pcc? -> /pcep/entity/peers/peer/addr notifications: +---n pcep-session-up | +--... +---n pcep-session-down | +--... +---n pcep-session-local-overload | +--... +---n pcep-session-local-overload-clear | +--... +---n pcep-session-peer-overload | +--... +---n pcep-session-peer-overload-clear +--... 4.1. The Entity The PCEP yang module may contain status information for the local PCEP entity. The entity has an IP address (using ietf-inet-types [RFC6991]) and a "role" leaf (the local entity PCEP role) as mandatory. Note that, the PCEP MIB module [RFC7420] uses an entity list and a system generated entity index as a primary index to the read only entity table. The local PCEP entity contains various information related to this entity such as its domain, capabilities, security parameters etc. When the local entity is PCE it could also have path-key and the LSP- DB information. Note that the timer names in the YANG uses hyphen compared to [RFC5440] (for example, dead-timer in YANG is called DeadTimer in the protocol specification). Dhody, et al. Expires 14 March 2024 [Page 11] Internet-Draft PCE-YANG September 2023 module: ietf-pcep +--rw pcep! +--rw entity +--rw addr inet:ip-address-no-zone +--rw enabled? boolean +--rw role role +--rw description? string +--rw speaker-entity-id? string {sync-opt}? +--rw admin-status? boolean +--ro index? uint32 +--ro oper-status? oper-status +--rw domains | +--rw domain* [type info] | +--rw type identityref | +--rw info domain +--rw capabilities | +--rw capability? bits | +--rw pce-initiated? boolean {pce-initiated}? | +--rw include-db-ver? boolean {stateful,sync-opt}? | +--rw trigger-resync? boolean {stateful,sync-opt}? | +--rw trigger-initial-sync? boolean {stateful,sync-opt}? | +--rw incremental-sync? boolean {stateful,sync-opt}? | +--rw sr {sr}? | | +--rw enabled? boolean | | +--rw msd-limit? boolean | | +--rw nai? boolean | +--rw stateful-gmpls {stateful,gmpls}? | | +--rw enabled? boolean | +--rw inter-layer? boolean {inter-layer}? | +--rw h-pce {h-pce}? | +--rw enabled? boolean | +--rw stateful? boolean {stateful}? | +--rw role? hpce-role +--rw msd? uint8 {sr}? +--rw auth | +--rw (auth-type-selection)? | +--:(auth-key-chain) | | +--rw key-chain? | | key-chain:key-chain-ref | +--:(auth-key) | | +--rw crypto-algorithm identityref | | +--rw (key-string-style)? | | +--:(keystring) | | | +--rw keystring? string | | +--:(hexadecimal) {key-chain:hex-key-string}? | | +--rw hexadecimal-string? yang:hex-string | +--:(auth-tls) {tls}? | +--rw (role)? Dhody, et al. Expires 14 March 2024 [Page 12] Internet-Draft PCE-YANG September 2023 | +--:(server) | | +--rw tls-server | | +--... | +--:(client) | +--rw tls-client | +--... +--rw pce-info | +--rw scope | | +--rw path-scope? bits | | +--rw intra-area-pref? uint8 | | +--rw inter-area-pref? uint8 | | +--rw inter-as-pref? uint8 | | +--rw inter-layer-pref? uint8 | +--rw neighbour-domains | | +--rw domain* [type info] | | +--rw type identityref | | +--rw info domain | +--rw path-key {path-key}? | +--rw enabled? boolean | +--rw discard-timer? uint32 | +--rw reuse-time? uint32 | +--rw pce-id? inet:ip-address-no-zone +--rw connect-timer? uint16 +--rw connect-max-retry? uint32 +--rw init-back-off-timer? uint16 +--rw max-back-off-timer? uint32 +--ro open-wait-timer? uint16 +--ro keep-wait-timer? uint16 +--rw keepalive-timer? uint8 +--rw dead-timer? uint8 +--rw allow-negotiation? boolean +--rw max-keepalive-timer? uint8 +--rw max-dead-timer? uint8 +--rw min-keepalive-timer? uint8 +--rw min-dead-timer? uint8 +--rw sync-timer? uint16 {svec}? +--rw request-timer? uint16 +--rw max-sessions? uint32 +--rw max-unknown-reqs? uint32 +--rw max-unknown-msgs? uint32 +--rw pcep-notification-max-rate uint32 +--rw stateful-parameter {stateful}? | +--rw state-timeout? uint32 | +--rw redelegation-timeout? uint32 | +--rw rpt-non-pcep-lsp? boolean +--rw of-list {objective-function}? | +--rw objective-function* [of] | +--rw of identityref Dhody, et al. Expires 14 March 2024 [Page 13] Internet-Draft PCE-YANG September 2023 +--ro lsp-db {stateful}? | +--ro db-ver? uint64 {sync-opt}? | +--ro association-list* | | [type id source global-source extended-id] | | {association}? | | +--ro type identityref | | +--ro id uint16 | | +--ro source inet:ip-address-no-zone | | +--ro global-source uint32 | | +--ro extended-id string | | +--ro lsp* [plsp-id pcc-id lsp-id] | | +--ro plsp-id -> /pcep/entity/lsp-db/lsp/plsp-id | | +--ro pcc-id -> /pcep/entity/lsp-db/lsp/pcc-id | | +--ro lsp-id -> /pcep/entity/lsp-db/lsp/lsp-id | +--ro lsp* [plsp-id pcc-id lsp-id] | +--ro plsp-id uint32 | +--ro pcc-id inet:ip-address-no-zone | +--ro source? inet:ip-address-no-zone | +--ro destination? inet:ip-address-no-zone | +--ro tunnel-id? uint16 | +--ro lsp-id uint16 | +--ro extended-tunnel-id? inet:ip-address-no-zone | +--ro admin-state? boolean | +--ro operational-state? operational-state | +--ro delegated | | +--ro enabled? boolean | | +--ro peer? -> /pcep/entity/peers/peer/addr | | +--ro srp-id? uint32 | +--ro initiation {pce-initiated}? | | +--ro enabled? boolean | | +--ro peer? -> /pcep/entity/peers/peer/addr | +--ro symbolic-path-name? string | +--ro last-error? identityref | +--ro pst? identityref | +--ro association-list* | [type id source global-source extended-id] | {association}? | +--ro type | | -> /pcep/entity/lsp-db/association-list/type | +--ro id | | -> /pcep/entity/lsp-db/association-list/id | +--ro source | | -> /pcep/entity/lsp-db/association-list/source | +--ro global-source leafref | +--ro extended-id leafref +--ro path-keys {path-key}? | +--ro path-key* [key] | +--ro key uint16 Dhody, et al. Expires 14 March 2024 [Page 14] Internet-Draft PCE-YANG September 2023 | +--ro cps | | +--ro explicit-route-objects* [index] | | +--ro index uint32 | | +--ro (type)? | | +--:(numbered-node-hop) | | | +--ro numbered-node-hop | | | +--ro node-id te-node-id | | | +--ro hop-type? te-hop-type | | +--:(numbered-link-hop) | | | +--ro numbered-link-hop | | | +--ro link-tp-id te-tp-id | | | +--ro hop-type? te-hop-type | | | +--ro direction? te-link-direction | | +--:(unnumbered-link-hop) | | | +--ro unnumbered-link-hop | | | +--ro link-tp-id te-tp-id | | | +--ro node-id te-node-id | | | +--ro hop-type? te-hop-type | | | +--ro direction? te-link-direction | | +--:(as-number) | | | +--ro as-number-hop | | | +--ro as-number inet:as-number | | | +--ro hop-type? te-hop-type | | +--:(label) | | +--ro label-hop | | +--ro te-label | | ... | +--ro pcc-original? -> /pcep/entity/peers/peer/addr | +--ro req-id? uint32 | +--ro retrieved? boolean | +--ro pcc-retrieved? -> /pcep/entity/peers/peer/addr | +--ro creation-time? yang:timestamp | +--ro discard-time? uint32 | +--ro reuse-time? uint32 +--rw peers +--rw peer* [addr] +--... 4.1.1. The Peer List The peer list contains peer(s) that the local PCEP entity knows about. A PCEP speaker is identified by its IP address. If there is a PCEP speaker in the network that uses multiple IP addresses then it looks like multiple distinct peers to the other PCEP speakers in the network. Dhody, et al. Expires 14 March 2024 [Page 15] Internet-Draft PCE-YANG September 2023 Since PCEP sessions can be ephemeral, the peer list tracks a peer even when no PCEP session currently exists to that peer. The statistics contained are an aggregate of the statistics for all successive sessions to that peer. To limit the quantity of information that is stored, an implementation MAY choose to discard this information if and only if no PCEP session exists to the corresponding peer. The data model for PCEP peer presented in this document uses a flat list of peers. Each peer in the list is identified by its IP address. This peer list includes peers that are explicitly configured at the local PCEP entity as well as peers that are learned dynamically. For example, at a PCC, the remote PCE peer to use could be explicitly configured. A PCC could also learn PCE in the network via IGP discovery and it will show up in this list. When a session is initiated at a PCE, the remote PCC peer information is also added by the system to the peer list. module: ietf-pcep +--rw pcep! +--rw entity +--... +--rw peers +--rw peer* [addr] +--rw addr inet:ip-address-no-zone +--rw role role +--rw description? string +--rw domains | +--rw domain* [type info] | +--rw type identityref | +--rw info domain +--rw capabilities | +--rw capability? bits | +--rw pce-initiated? boolean {pce-initiated}? | +--rw include-db-ver? boolean | | {stateful,sync-opt}? | +--rw trigger-resync? boolean | | {stateful,sync-opt}? | +--rw trigger-initial-sync? boolean | | {stateful,sync-opt}? | +--rw incremental-sync? boolean | | {stateful,sync-opt}? | +--rw sr {sr}? | | +--rw enabled? boolean | | +--rw msd-limit? boolean Dhody, et al. Expires 14 March 2024 [Page 16] Internet-Draft PCE-YANG September 2023 | | +--rw nai? boolean | +--rw stateful-gmpls {stateful,gmpls}? | | +--rw enabled? boolean | +--rw inter-layer? boolean {inter-layer}? | +--rw h-pce {h-pce}? | +--rw enabled? boolean | +--rw stateful? boolean {stateful}? | +--rw role? hpce-role +--rw msd? uint8 {sr}? +--rw pce-info | +--rw scope | | +--rw path-scope? bits | | +--rw intra-area-pref? uint8 | | +--rw inter-area-pref? uint8 | | +--rw inter-as-pref? uint8 | | +--rw inter-layer-pref? uint8 | +--rw neighbour-domains | +--rw domain* [type info] | +--rw type identityref | +--rw info domain +--rw delegation-pref? uint8 {stateful}? +--rw auth | +--rw (auth-type-selection)? | +--:(auth-key-chain) | | +--rw key-chain? | | key-chain:key-chain-ref | +--:(auth-key) | | +--rw crypto-algorithm identityref | | +--rw (key-string-style)? | | +--:(keystring) | | | +--rw keystring? string | | +--:(hexadecimal) {key-chain:hex-key-string}? | | +--rw hexadecimal-string? yang:hex-string | +--:(auth-tls) {tls}? | +--rw (role)? | +--:(server) | | +--rw tls-server | | ... | +--:(client) | +--rw tls-client | ... +--ro discontinuity-time? yang:timestamp +--ro initiate-session? boolean +--ro session-exists? boolean +--ro session-up-time? yang:timestamp +--ro session-fail-time? yang:timestamp +--ro session-fail-up-time? yang:timestamp +--ro sessions Dhody, et al. Expires 14 March 2024 [Page 17] Internet-Draft PCE-YANG September 2023 +--ro session* [initiator] +--... 4.1.1.1. The Session List The session list contains PCEP sessions that the PCEP entity (PCE or PCC) is currently participating in. The statistics in session are semantically different from those in peer since the former applies to the current session only, whereas the latter is the aggregate for all sessions that have existed to that peer. Although [RFC5440] forbids more than one active PCEP session between a given pair of PCEP entities at any given time, there is a window during session establishment where two sessions may exist for a given pair, one representing a session initiated by the local PCEP entity and the other representing a session initiated by the peer. When one of these sessions reaches the active state, then the other is discarded. The data model for PCEP session presented in this document uses a flat list of sessions. Each session in the list is identified by its initiator. This index allows two sessions to exist transiently for a given peer, as discussed above. Dhody, et al. Expires 14 March 2024 [Page 18] Internet-Draft PCE-YANG September 2023 module: ietf-pcep +--rw pcep! +--rw entity +--... +--rw peers +--rw peer* [addr] +--... +--ro sessions +--ro session* [initiator] +--ro initiator initiator +--ro role? | -> /pcep/entity/role +--ro state-last-change? yang:timestamp +--ro state? sess-state +--ro session-creation? yang:timestamp +--ro connect-retry? yang:counter32 +--ro local-id? uint8 +--ro remote-id? uint8 +--ro keepalive-timer? uint8 +--ro peer-keepalive-timer? uint8 +--ro dead-timer? uint8 +--ro peer-dead-timer? uint8 +--ro ka-hold-time-rem? uint8 +--ro overloaded? boolean +--ro overloaded-timestamp? yang:timestamp +--ro overload-time? uint32 +--ro peer-overloaded? boolean +--ro peer-overloaded-timestamp? yang:timestamp +--ro peer-overload-time? uint32 +--ro lspdb-sync? sync-state | {stateful}? +--ro recv-db-ver? uint64 | {stateful,sync-opt}? +--ro of-list {objective-function}? | +--ro objective-function* [of] | +--ro of identityref +--ro pst-list | +--ro path-setup-type* [pst] | +--ro pst identityref +--ro assoc-type-list {association}? | +--ro assoc-type* [at] | +--ro at identityref +--ro speaker-entity-id? string {sync-opt}? Dhody, et al. Expires 14 March 2024 [Page 19] Internet-Draft PCE-YANG September 2023 4.2. Notifications This YANG model defines a list of notifications to inform client of important events detected during the protocol operation. The notifications defined cover the PCEP MIB [RFC7420] notifications. notifications: +---n pcep-session-up | +--ro peer-addr? -> /pcep/entity/peers/peer/addr | +--ro session-initiator? | | -> /pcep/entity/peers/peer/sessions/session/initiator | +--ro state-last-change? yang:timestamp | +--ro state? sess-state +---n pcep-session-down | +--ro peer-addr? -> /pcep/entity/peers/peer/addr | +--ro session-initiator? initiator | +--ro state-last-change? yang:timestamp | +--ro state? sess-state +---n pcep-session-local-overload | +--ro peer-addr? -> /pcep/entity/peers/peer/addr | +--ro session-initiator? | | -> /pcep/entity/peers/peer/sessions/session/initiator | +--ro overloaded? boolean | +--ro overloaded-timestamp? yang:timestamp | +--ro overload-time? uint32 +---n pcep-session-local-overload-clear | +--ro peer-addr? | | -> /pcep/entity/peers/peer/addr | +--ro overloaded? boolean | +--ro overloaded-clear-timestamp? yang:timestamp +---n pcep-session-peer-overload | +--ro peer-addr? | | -> /pcep/entity/peers/peer/addr | +--ro session-initiator? | | -> /pcep/entity/peers/peer/sessions/session/initiator | +--ro peer-overloaded? boolean | +--ro peer-overloaded-timestamp? yang:timestamp | +--ro peer-overload-time? uint32 +---n pcep-session-peer-overload-clear +--ro peer-addr? | -> /pcep/entity/peers/peer/addr +--ro peer-overloaded? boolean +--ro peer-overloaded-clear-timestamp? yang:timestamp Dhody, et al. Expires 14 March 2024 [Page 20] Internet-Draft PCE-YANG September 2023 4.3. RPC This YANG model defines a RPC to trigger state resynchronize at the PCE for sanity check with a particular PCC. rpcs: +---x trigger-resync {stateful,sync-opt}? +---w input +---w pcc? -> /pcep/entity/peers/peer/addr 5. The Design of PCEP Statistics Data Model The module, "ietf-pcep-stats", augments the ietf-pcep module to include statistics at the PCEP peer and session level. It includes a RPC to reset statistics. module: ietf-pcep-stats augment /pcep:pcep/pcep:entity/pcep:peers/pcep:peer: +--ro sess-setup-ok? yang:counter32 +--ro sess-setup-fail? yang:counter32 +--ro stats +--ro discontinuity-time? yang:timestamp +--ro rsp-time-avg? uint32 +--ro rsp-time-lwm? uint32 +--ro rsp-time-hwm? uint32 +--ro pcreq-sent? yang:counter32 +--ro pcreq-rcvd? yang:counter32 +--ro pcrep-sent? yang:counter32 +--ro pcrep-rcvd? yang:counter32 +--ro pcerr-sent? yang:counter32 +--ro pcerr-rcvd? yang:counter32 +--ro pcntf-sent? yang:counter32 +--ro pcntf-rcvd? yang:counter32 +--ro keepalive-sent? yang:counter32 +--ro keepalive-rcvd? yang:counter32 +--ro unknown-rcvd? yang:counter32 +--ro corrupt-rcvd? yang:counter32 +--ro req-sent? yang:counter32 +--ro req-sent-pend-rep? yang:counter32 +--ro req-sent-ero-rcvd? yang:counter32 +--ro req-sent-nopath-rcvd? yang:counter32 +--ro req-sent-cancel-rcvd? yang:counter32 +--ro req-sent-error-rcvd? yang:counter32 +--ro req-sent-timeout? yang:counter32 +--ro req-sent-cancel-sent? yang:counter32 +--ro req-rcvd? yang:counter32 +--ro req-rcvd-pend-rep? yang:counter32 Dhody, et al. Expires 14 March 2024 [Page 21] Internet-Draft PCE-YANG September 2023 +--ro req-rcvd-ero-sent? yang:counter32 +--ro req-rcvd-nopath-sent? yang:counter32 +--ro req-rcvd-cancel-sent? yang:counter32 +--ro req-rcvd-error-sent? yang:counter32 +--ro req-rcvd-cancel-rcvd? yang:counter32 +--ro rep-rcvd-unknown? yang:counter32 +--ro req-rcvd-unknown? yang:counter32 +--ro svec {pcep:svec}? | +--ro svec-sent? yang:counter32 | +--ro svec-req-sent? yang:counter32 | +--ro svec-rcvd? yang:counter32 | +--ro svec-req-rcvd? yang:counter32 +--ro stateful {pcep:stateful}? | +--ro pcrpt-sent? yang:counter32 | +--ro pcrpt-rcvd? yang:counter32 | +--ro pcupd-sent? yang:counter32 | +--ro pcupd-rcvd? yang:counter32 | +--ro rpt-sent? yang:counter32 | +--ro rpt-rcvd? yang:counter32 | +--ro rpt-rcvd-error-sent? yang:counter32 | +--ro upd-sent? yang:counter32 | +--ro upd-rcvd? yang:counter32 | +--ro upd-rcvd-unknown? yang:counter32 | +--ro upd-rcvd-undelegated? yang:counter32 | +--ro upd-rcvd-error-sent? yang:counter32 | +--ro initiation {pcep:pce-initiated}? | +--ro pcinitiate-sent? yang:counter32 | +--ro pcinitiate-rcvd? yang:counter32 | +--ro initiate-sent? yang:counter32 | +--ro initiate-rcvd? yang:counter32 | +--ro initiate-rcvd-error-sent? yang:counter32 +--ro path-key {pcep:path-key}? | +--ro unknown-path-key? yang:counter32 | +--ro exp-path-key? yang:counter32 | +--ro dup-path-key? yang:counter32 | +--ro path-key-no-attempt? yang:counter32 +--ro req-sent-closed? yang:counter32 +--ro req-rcvd-closed? yang:counter32 augment /pcep:pcep/pcep:entity/pcep:peers/pcep:peer/pcep:sessions /pcep:session: +--ro stats +--ro discontinuity-time? yang:timestamp +--ro rsp-time-avg? uint32 +--ro rsp-time-lwm? uint32 +--ro rsp-time-hwm? uint32 +--ro pcreq-sent? yang:counter32 +--ro pcreq-rcvd? yang:counter32 +--ro pcrep-sent? yang:counter32 Dhody, et al. Expires 14 March 2024 [Page 22] Internet-Draft PCE-YANG September 2023 +--ro pcrep-rcvd? yang:counter32 +--ro pcerr-sent? yang:counter32 +--ro pcerr-rcvd? yang:counter32 +--ro pcntf-sent? yang:counter32 +--ro pcntf-rcvd? yang:counter32 +--ro keepalive-sent? yang:counter32 +--ro keepalive-rcvd? yang:counter32 +--ro unknown-rcvd? yang:counter32 +--ro corrupt-rcvd? yang:counter32 +--ro req-sent? yang:counter32 +--ro req-sent-pend-rep? yang:counter32 +--ro req-sent-ero-rcvd? yang:counter32 +--ro req-sent-nopath-rcvd? yang:counter32 +--ro req-sent-cancel-rcvd? yang:counter32 +--ro req-sent-error-rcvd? yang:counter32 +--ro req-sent-timeout? yang:counter32 +--ro req-sent-cancel-sent? yang:counter32 +--ro req-rcvd? yang:counter32 +--ro req-rcvd-pend-rep? yang:counter32 +--ro req-rcvd-ero-sent? yang:counter32 +--ro req-rcvd-nopath-sent? yang:counter32 +--ro req-rcvd-cancel-sent? yang:counter32 +--ro req-rcvd-error-sent? yang:counter32 +--ro req-rcvd-cancel-rcvd? yang:counter32 +--ro rep-rcvd-unknown? yang:counter32 +--ro req-rcvd-unknown? yang:counter32 +--ro svec {pcep:svec}? | +--ro svec-sent? yang:counter32 | +--ro svec-req-sent? yang:counter32 | +--ro svec-rcvd? yang:counter32 | +--ro svec-req-rcvd? yang:counter32 +--ro stateful {pcep:stateful}? | +--ro pcrpt-sent? yang:counter32 | +--ro pcrpt-rcvd? yang:counter32 | +--ro pcupd-sent? yang:counter32 | +--ro pcupd-rcvd? yang:counter32 | +--ro rpt-sent? yang:counter32 | +--ro rpt-rcvd? yang:counter32 | +--ro rpt-rcvd-error-sent? yang:counter32 | +--ro upd-sent? yang:counter32 | +--ro upd-rcvd? yang:counter32 | +--ro upd-rcvd-unknown? yang:counter32 | +--ro upd-rcvd-undelegated? yang:counter32 | +--ro upd-rcvd-error-sent? yang:counter32 | +--ro initiation {pcep:pce-initiated}? | +--ro pcinitiate-sent? yang:counter32 | +--ro pcinitiate-rcvd? yang:counter32 | +--ro initiate-sent? yang:counter32 Dhody, et al. Expires 14 March 2024 [Page 23] Internet-Draft PCE-YANG September 2023 | +--ro initiate-rcvd? yang:counter32 | +--ro initiate-rcvd-error-sent? yang:counter32 +--ro path-key {pcep:path-key}? +--ro unknown-path-key? yang:counter32 +--ro exp-path-key? yang:counter32 +--ro dup-path-key? yang:counter32 +--ro path-key-no-attempt? yang:counter32 rpcs: +---x statistics-reset +---w input +---w (peer-or-all)? +--:(peer) | +---w peer-addr? -> /pcep:pcep/entity/peers/peer/addr +--:(all) 6. Advanced PCE Features This document contains a specification of the base PCEP YANG module, "ietf-pcep" which provides the basic PCEP [RFC5440] data model. This document further handles advanced PCE features like - * Capability and Scope * Domain information (local/neighbour) * Path-Key * Objective Function (OF) * Global Concurrent Optimization (GCO) * P2MP * GMPLS * Inter-Layer * Stateful PCE * Segment Routing (SR) for MPLS data plane * Authentication including PCEPS (TLS) * Hierarchical PCE (H-PCE) Dhody, et al. Expires 14 March 2024 [Page 24] Internet-Draft PCE-YANG September 2023 6.1. Stateful PCE's LSP-DB In the operational datastore of stateful PCE, the list of LSP state are maintained in the LSP-DB. The key is the PLSP-ID, the PCC's IP address, and the LSP-ID. The PCEP data model contains the operational state of LSPs (/pcep/entity/lsp-db/lsp/) with PCEP specific attributes. The generic TE attributes of the LSP are defined in [I-D.ietf-teas-yang-te]. A reference to LSP state in TE model is maintained. 7. Other Considerations 7.1. PCEP over TLS (PCEPS) [RFC8253] describes the use of TLSv1.2 [RFC5246] or later in PCEP. Further, [I-D.dhody-pce-pceps-tls13] specify how to protect PCEP messages with TLS 1.3 [RFC8446] by disallowing the use of early data (0-RTT) and listing the cipher suites that need to be supported with TLS 1.3. The peer acting as the PCEP client must act as the TLS client. The TLS client actively opens the TLS connection and the TLS server passively listens for the incoming TLS connections. The well-known TCP port number 4189 is used by PCEP servers to listen for TCP connections established by PCEP over TLS clients. The TLS client sends the TLS ClientHello message to begin the TLS handshake. The TLS server sends a CertificateRequest in order to request a certificate from the TLS client. Once the TLS handshake has finished, the client and the server begin to exchange PCEP messages. Client and server identity verification is done before the PCEP open message is sent. This means that the identity verification is completed before the PCEP session is started. Note that, a PCEP speaker could act as both a client (PCC) and a server (PCE). The role within the context of a PCEP session is determined by the relationship it has with its peer (the same holds good for TLS as well). The YANG module uses the TLS grouping in [I-D.ietf-netconf-tls-client-server]. Note that any TLS version can be configured but [I-D.ietf-netconf-tls-client-server] recommends the use of TLS 1.3 only. At the time of publication of this document, TLS 1.2 is still in common use for PCEP and can still be enabled with feature "tls12" even though it is marked with status as "deprecated". Dhody, et al. Expires 14 March 2024 [Page 25] Internet-Draft PCE-YANG September 2023 8. PCEP YANG Modules 8.1. ietf-pcep module RFC Ed.: In this section, replace all occurrences of 'XXXX' with the actual RFC number and all occurrences of the revision date below with the date of RFC publication (and remove this note). file "ietf-pcep@2023-09-11.yang" module ietf-pcep { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-pcep"; prefix pcep; import ietf-inet-types { prefix inet; reference "RFC 6991: Common YANG Data Types"; } import ietf-yang-types { prefix yang; reference "RFC 6991: Common YANG Data Types"; } import ietf-te-types { prefix te-types; reference "RFC 8776: Common YANG Data Types for Traffic Engineering"; } import ietf-key-chain { prefix key-chain; reference "RFC 8177: YANG Data Model for Key Chains"; } import ietf-netconf-acm { prefix nacm; reference "RFC 8341: Network Configuration Protocol (NETCONF) Access Control Model"; } import ietf-tls-server { prefix tlss; reference "I-D.ietf-netconf-tls-client-server: YANG Groupings for TLS Clients and TLS Servers"; } import ietf-tls-client { prefix tlsc; Dhody, et al. Expires 14 March 2024 [Page 26] Internet-Draft PCE-YANG September 2023 reference "I-D.ietf-netconf-tls-client-server: YANG Groupings for TLS Clients and TLS Servers"; } import ietf-ospf { prefix ospf; reference "RFC 9129: YANG Data Model for OSPF Protocol"; } import ietf-isis { prefix isis; reference "RFC 9130: YANG Data Model for IS-IS Protocol"; } organization "IETF PCE (Path Computation Element) Working Group"; contact "WG Web: WG List: Editor: Dhruv Dhody "; description "The YANG module defines a generic configuration and operational model for Path Computation Element Communication Protocol (PCEP). Copyright (c) 2023 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC XXXX; see the RFC itself for full legal notices. The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here."; revision 2023-09-11 { description Dhody, et al. Expires 14 March 2024 [Page 27] Internet-Draft PCE-YANG September 2023 "Initial revision."; reference "RFC XXXX: A YANG Data Model for Path Computation Element Communications Protocol (PCEP)"; } /* * Typedefs */ typedef role { type enumeration { enum unknown { value 0; description "An unknown role"; } enum pcc { value 1; description "The role of a Path Computation Client"; } enum pce { value 2; description "The role of Path Computation Element"; } enum pcc-and-pce { value 3; description "The role of both Path Computation Client and Path Computation Element"; } } description "The role of a PCEP speaker. Takes one of the following values - unknown(0): the role is not known. - pcc(1): the role is of a Path Computation Client (PCC). - pce(2): the role is of a Path Computation Server (PCE). - pcc-and-pce(3): the role is of both a PCC and a PCE."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } Dhody, et al. Expires 14 March 2024 [Page 28] Internet-Draft PCE-YANG September 2023 typedef oper-status { type enumeration { enum oper-status-up { value 1; description "The PCEP entity is active"; } enum oper-status-down { value 2; description "The PCEP entity is inactive"; } enum oper-status-going-up { value 3; description "The PCEP entity is activating"; } enum oper-status-going-down { value 4; description "The PCEP entity is deactivating"; } enum oper-status-failed { value 5; description "The PCEP entity has failed and will recover when possible."; } enum oper-status-failed-perm { value 6; description "The PCEP entity has failed and will not recover without operator intervention"; } } description "The operational status of the PCEP entity. Takes one of the following values - oper-status-up(1): Active - oper-status-down(2): Inactive - oper-status-going-up(3): Activating - oper-status-going-down(4): Deactivating - oper-status-failed(5): Failed - oper-status-failed-perm(6): Failed Permanently"; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } Dhody, et al. Expires 14 March 2024 [Page 29] Internet-Draft PCE-YANG September 2023 typedef initiator { type enumeration { enum local { value 1; description "The local PCEP entity initiated the session"; } enum remote { value 2; description "The remote PCEP peer initiated the session"; } } description "The initiator of the session, that is, whether the TCP connection was initiated by the local PCEP entity or the remote peer. Takes one of the following values - local(1): Initiated locally - remote(2): Initiated remotely"; } typedef sess-state { type enumeration { enum tcp-pending { value 1; description "The TCPPending state of PCEP session."; } enum open-wait { value 2; description "The OpenWait state of PCEP session."; } enum keep-wait { value 3; description "The KeepWait state of PCEP session."; } enum session-up { value 4; description "The SessionUP state of PCEP session."; } } description "The current state of the session. The set of possible states excludes the idle state Dhody, et al. Expires 14 March 2024 [Page 30] Internet-Draft PCE-YANG September 2023 since entries do not exist in the idle state. Takes one of the following values - tcp-pending(1): PCEP TCPPending state - open-wait(2): PCEP OpenWait state - keep-wait(3): PCEP KeepWait state - session-up(4): PCEP SessionUP state"; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } typedef domain { type union { type ospf:area-id-type; type isis:area-address; type inet:as-number; } description "The Domain Information"; } typedef operational-state { type enumeration { enum down { value 0; description "not active."; } enum up { value 1; description "signalled."; } enum active { value 2; description "up and carrying traffic."; } enum going-down { value 3; description "LSP is being torn down, resources are being released."; } enum going-up { value 4; description "LSP is being signalled."; Dhody, et al. Expires 14 March 2024 [Page 31] Internet-Draft PCE-YANG September 2023 } } description "The operational status of the LSP"; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } typedef sync-state { type enumeration { enum pending { value 0; description "The state synchronization has not started."; } enum ongoing { value 1; description "The state synchronization is ongoing."; } enum finished { value 2; description "The state synchronization is finished."; } } description "The LSP-DB state synchronization operational status."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } typedef hpce-role { type enumeration { enum unknown { value 0; description "An unknown role"; } enum child { value 1; description Dhody, et al. Expires 14 March 2024 [Page 32] Internet-Draft PCE-YANG September 2023 "The PCE is acting as child PCE."; } enum parent { value 2; description "The PCE is acting as parent PCE."; } } description "The H-PCE role of the PCE."; reference "RFC 8685: Path Computation Element Communication Protocol (PCEP) Extensions for the Hierarchical Path Computation Element (H-PCE) Architecture"; } /* * Features */ feature svec { description "Support synchronized path computation."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } feature gmpls { description "Support GMPLS."; reference "RFC 8779: PCEP extensions for GMPLS"; } feature objective-function { description "Support OF as per RFC 5541."; reference "RFC 5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)"; } feature global-concurrent { description "Support Global Concurrent Optimization (GCO) as per RFC 5557."; reference Dhody, et al. Expires 14 March 2024 [Page 33] Internet-Draft PCE-YANG September 2023 "RFC 5557: Path Computation Element Communication Protocol (PCEP) Requirements and Protocol Extensions in Support of Global Concurrent Optimization"; } feature path-key { description "Support path-key as per RFC 5520."; reference "RFC 5520: Preserving Topology Confidentiality in Inter- Domain Path Computation Using a Path-Key-Based Mechanism"; } feature p2mp { description "Support Point-to-Multipoint (P2MP) as per RFC 8306."; reference "RFC 8306: Extensions to the Path Computation Element Communication Protocol (PCEP) for Point-to-Multipoint Traffic Engineering Label Switched Paths"; } feature stateful { description "Support Stateful PCE as per RFC 8231."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } feature sync-opt { description "Support Stateful state synchronization optimization as per RFC 8232"; reference "RFC 8232: Optimizations of Label Switched Path State Synchronization Procedures for a Stateful PCE"; } feature pce-initiated { description "Support PCE-Initiated LSP as per RFC 8281."; reference "RFC 8281: Path Computation Element Communication Protocol (PCEP) Extensions for PCE-Initiated LSP Setup in a Stateful PCE Model"; } Dhody, et al. Expires 14 March 2024 [Page 34] Internet-Draft PCE-YANG September 2023 feature tls { description "Support PCEP over TLS as per RFC 8253."; reference "RFC 8253: PCEPS: Usage of TLS to Provide a Secure Transport for the Path Computation Element Communication Protocol (PCEP)"; } feature sr { description "Support Segment Routing (SR) for PCE."; reference "RFC 8664: Path Computation Element Communication Protocol (PCEP) Extensions for Segment Routing"; } feature association { description "Support Association in PCEP."; reference "RFC 8697: Path Computation Element Communication Protocol (PCEP) Extensions for Establishing Relationships between Sets of Label Switched Paths (LSPs)"; } feature flowspec { description "Support Flow Specification in PCEP."; reference "RFC 9168: Path Computation Element Communication Protocol (PCEP) Extension for Flow Specification"; } feature h-pce { description "Support Hierarchical-PCE (H-PCE)."; reference "RFC 8685: Path Computation Element Communication Protocol (PCEP) Extensions for the Hierarchical Path Computation Element (H-PCE) Architecture"; } feature inter-layer { description "Support Inter-layer path computation."; reference "RFC 8282: Extensions to the Path Computation Dhody, et al. Expires 14 March 2024 [Page 35] Internet-Draft PCE-YANG September 2023 Element Communication Protocol (PCEP) for Inter- Layer MPLS and GMPLS Traffic Engineering"; } /* * Identities */ identity domain-type { description "Base Domain Type for PCE"; } identity ospf-area { base domain-type; description "The OSPF area."; } identity isis-area { base domain-type; description "The IS-IS area."; } identity autonomous-system { base domain-type; description "The Autonomous System (AS)."; } identity lsp-error { if-feature "stateful"; description "Base LSP error"; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } identity no-error-lsp-error { if-feature "stateful"; base lsp-error; description "No error, LSP is fine."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; Dhody, et al. Expires 14 March 2024 [Page 36] Internet-Draft PCE-YANG September 2023 } identity unknown-lsp-error { if-feature "stateful"; base lsp-error; description "Unknown reason. LSP Error Code value = 1."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } identity limit-lsp-error { if-feature "stateful"; base lsp-error; description "Limit reached for PCE-controlled LSPs. LSP Error Code value = 2."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } identity pending-lsp-error { if-feature "stateful"; base lsp-error; description "Too many pending LSP update requests. LSP Error Code value = 3."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } identity unacceptable-lsp-error { if-feature "stateful"; base lsp-error; description "Unacceptable parameters. LSP Error Code value = 4."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } identity internal-lsp-error { if-feature "stateful"; base lsp-error; description Dhody, et al. Expires 14 March 2024 [Page 37] Internet-Draft PCE-YANG September 2023 "Internal error. LSP Error Code value = 5."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } identity admin-lsp-error { if-feature "stateful"; base lsp-error; description "LSP administratively bought down. LSP Error Code value = 6."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } identity preempted-lsp-error { if-feature "stateful"; base lsp-error; description "LSP preempted. LSP Error Code value = 7."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } identity rsvp-lsp-error { if-feature "stateful"; base lsp-error; description "RSVP signaling error. LSP Error Code value = 8."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } identity path-protection { base te-types:association-type; description "Path Protection Association"; reference "RFC 8745: Path Computation Element Communication Protocol (PCEP) Extensions for Associating Working and Protection Label Switched Paths (LSPs) with Stateful PCE"; } identity disjoint { Dhody, et al. Expires 14 March 2024 [Page 38] Internet-Draft PCE-YANG September 2023 base te-types:association-type; description "Disjoint Association"; reference "RFC 8800: Path Computation Element Communication Protocol (PCEP) Extension for Label Switched Path (LSP) Diversity Constraint Signaling"; } identity policy { base te-types:association-type; description "Policy Association"; reference "RFC 9005: Path Computation Element Communication Protocol (PCEP) Extension for Associating Policies and Label Switched Paths (LSPs)"; } identity vn { base te-types:association-type; description "Virtual Network (VN) Association"; reference "RFC 9358: Path Computation Element Communication Protocol (PCEP) Extensions for Establishing Relationships between Sets of Label Switched Paths and Virtual Networks"; } /* * Groupings */ grouping domain { description "This grouping specifies a Domain where the PCEP speaker has topology visibility."; leaf type { type identityref { base domain-type; } description "The domain type."; } leaf info { type domain; description "The domain Information."; Dhody, et al. Expires 14 March 2024 [Page 39] Internet-Draft PCE-YANG September 2023 } } grouping info { description "This grouping specifies all information which maybe relevant to both PCC and PCE. This information corresponds to PCE auto-discovery information. The scope relates to either a local entity or a peer."; container domains { description "The domain for the local PCEP entity or a peer."; list domain { key "type info"; description "The domain information."; uses domain { description "The domain for the local PCEP entity or a peer."; } } } container capabilities { description "The PCEP entity or peer capability information. This may be relevant to PCE selection as well. This information corresponds to PCE auto- discovery information."; reference "IANA IGP: Path Computation Element (PCE) Capability Flags in Interior Gateway Protocol (IGP) Parameters RFC 5088: OSPF Protocol Extensions for Path Computation Element (PCE) Discovery RFC 5089: IS-IS Protocol Extensions for Path Computation Element (PCE) Discovery RFC 9353: IGP Extension for Path Computation Element Communication Protocol (PCEP) Security Capability Support in PCE Discovery (PCED)"; leaf capability { type bits { bit gmpls { if-feature "gmpls"; description "Path computation with GMPLS link constraints."; } bit bi-dir { Dhody, et al. Expires 14 March 2024 [Page 40] Internet-Draft PCE-YANG September 2023 description "Bidirectional path computation."; } bit diverse { description "Diverse path computation."; } bit load-balance { description "Load-balanced path computation."; } bit synchronize { if-feature "svec"; description "Synchronized paths computation."; } bit objective-function { if-feature "objective-function"; description "Support for multiple objective functions."; } bit add-path-constraint { description "Support for additive path constraints (max hop count, etc.)."; } bit prioritization { description "Support for request prioritization."; } bit multi-request { description "Support for multiple requests per message."; } bit global-concurrent { if-feature "global-concurrent"; description "Support for Global Concurrent Optimization (GCO)."; reference "RFC 5557: Path Computation Element Communication Protocol (PCEP) Requirements and Protocol Extensions in Support of Global Concurrent Optimization"; } bit p2mp { if-feature "p2mp"; description Dhody, et al. Expires 14 March 2024 [Page 41] Internet-Draft PCE-YANG September 2023 "Support for P2MP path computation."; reference "RFC 8306: Extensions to the Path Computation Element Communication Protocol (PCEP) for Point-to-Multipoint Traffic Engineering Label Switched Paths"; } bit active { if-feature "stateful"; description "Support for active stateful PCE."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } bit passive { if-feature "stateful"; description "Support for passive stateful PCE."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } bit p2mp-active { if-feature "stateful"; if-feature "p2mp"; description "Support for active stateful PCE for P2MP."; reference "RFC 8623: Stateful Path Computation Element (PCE) Protocol Extensions for Usage with Point-to-Multipoint TE Label Switched Paths (LSPs)"; } bit p2mp-passive { if-feature "stateful"; if-feature "p2mp"; description "Support for passive stateful PCE for P2MP."; reference "RFC 8623: Stateful Path Computation Element (PCE) Protocol Extensions for Usage with Point-to-Multipoint TE Label Switched Paths (LSPs)"; } bit p2mp-pce-initiated { Dhody, et al. Expires 14 March 2024 [Page 42] Internet-Draft PCE-YANG September 2023 if-feature "stateful"; if-feature "pce-initiated"; if-feature "p2mp"; description "Support for PCE-initiated LSP for P2MP."; reference "RFC 8623: Stateful Path Computation Element (PCE) Protocol Extensions for Usage with Point-to-Multipoint TE Label Switched Paths (LSPs)"; } bit flowspec { if-feature "flowspec"; description "Support for Flow specification."; reference "RFC 9168: Path Computation Element Communication Protocol (PCEP) Extension for Flow Specification"; } bit tcp-ao { description "Support for The TCP Authentication Option (TCP-AO)"; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP) RFC 5925: The TCP Authentication Option"; } bit tls { if-feature "tls"; description "Support for TLS"; reference "RFC 8253: PCEPS: Usage of TLS to Provide a Secure Transport for the Path Computation Element Communication Protocol (PCEP)"; } } description "The bits string indicating the capabilities"; reference "IANA IGP: Path Computation Element (PCE) Capability Flags in Interior Gateway Protocol (IGP) Parameters RFC 5088: OSPF Protocol Extensions for Path Computation Element (PCE) Discovery RFC 5089: IS-IS Protocol Extensions for Path Computation Element (PCE) Discovery RFC 9353: IGP Extension for Path Computation Element Dhody, et al. Expires 14 March 2024 [Page 43] Internet-Draft PCE-YANG September 2023 Communication Protocol (PCEP) Security Capability Support in PCE Discovery (PCED)"; } leaf pce-initiated { if-feature "pce-initiated"; type boolean; description "Set to true if PCE-initiated LSP capability is enabled."; reference "RFC 8281: Path Computation Element Communication Protocol (PCEP) Extensions for PCE-Initiated LSP Setup in a Stateful PCE Model"; } leaf include-db-ver { if-feature "stateful"; if-feature "sync-opt"; type boolean; description "Support inclusion of LSP-DB-VERSION in LSP object"; reference "RFC 8232: Optimizations of Label Switched Path State Synchronization Procedures for a Stateful PCE"; } leaf trigger-resync { if-feature "stateful"; if-feature "sync-opt"; type boolean; description "Support PCE triggered re-synchronization"; reference "RFC 8232: Optimizations of Label Switched Path State Synchronization Procedures for a Stateful PCE"; } leaf trigger-initial-sync { if-feature "stateful"; if-feature "sync-opt"; type boolean; description "PCE triggered initial synchronization"; reference "RFC 8232: Optimizations of Label Switched Path State Synchronization Procedures for a Stateful PCE"; } leaf incremental-sync { if-feature "stateful"; if-feature "sync-opt"; Dhody, et al. Expires 14 March 2024 [Page 44] Internet-Draft PCE-YANG September 2023 type boolean; description "Support incremental (delta) sync"; reference "RFC 8232: Optimizations of Label Switched Path State Synchronization Procedures for a Stateful PCE"; } container sr { if-feature "sr"; description "If segment routing for MPLS is supported at the local entity or a peer."; reference "RFC 8664: Path Computation Element Communication Protocol (PCEP) Extensions for Segment Routing"; leaf enabled { type boolean; description "Set to true if SR-MPLS is enabled"; } leaf msd-limit { type boolean; default "false"; description "True indicates no limit on MSD, the leaf msd is ignored"; } leaf nai { type boolean; default "false"; description "True indicates the capability to resolve Node or Adjacency Identifier (NAI) to Segment Identifier (SID)"; } } container stateful-gmpls { if-feature "stateful"; if-feature "gmpls"; description "If Stateful GMPLS is supported for a local entity or a peer"; reference "RFC 8779: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE Usage in GMPLS-controlled Networks"; leaf enabled { Dhody, et al. Expires 14 March 2024 [Page 45] Internet-Draft PCE-YANG September 2023 type boolean; description "Set to true if Stateful GMPLS is enabled"; } } leaf inter-layer { if-feature "inter-layer"; type boolean; description "If inter-layer path computation is supported for local entity or a peer"; reference "RFC 8282: Extensions to the Path Computation Element Communication Protocol (PCEP) for Inter- Layer MPLS and GMPLS Traffic Engineering"; } container h-pce { if-feature "h-pce"; description "If Hierarchical PCE (H-PCE) is supported for local entity or a peer"; reference "RFC 8685: Path Computation Element Communication Protocol (PCEP) Extensions for the Hierarchical Path Computation Element (H-PCE) Architecture"; leaf enabled { type boolean; description "Set to true if Stateful GMPLS is enabled"; } leaf stateful { if-feature "stateful"; type boolean; description "Set to true if Stateful H-PCE is enabled"; reference "RFC 8751: Hierarchical Stateful Path Computation Element (PCE)"; } leaf role { when "../../../role = 'pce'" + "or " + "../../../role = 'pcc-and-pce'" { description "These fields are applicable when the role is PCE."; } type hpce-role; description Dhody, et al. Expires 14 March 2024 [Page 46] Internet-Draft PCE-YANG September 2023 "The H-PCE role of the PCE."; } } } leaf msd { if-feature "sr"; type uint8; description "Maximum SID Depth for SR-MPLS i.e. the label stack depth that a router is capable of imposing on a packet."; reference "RFC 8664: Path Computation Element Communication Protocol (PCEP) Extensions for Segment Routing"; } } grouping pce-info { description "This grouping specifies all PCE information which may be relevant to the PCE selection. This information corresponds to PCE auto-discovery information."; container scope { description "This container defines PCE path computation scope information which may be relevant to PCE selection. This information corresponds to PCE auto-discovery information."; leaf path-scope { type bits { bit intra-area-scope { description "PCE can compute intra-area paths (L bit)."; } bit inter-area-scope { description "PCE can compute inter-area paths (R bit)."; } bit inter-area-scope-default { description "PCE can act as a default PCE for inter-area path computation. (Rd bit)"; } bit inter-as-scope { description "PCE can compute inter-AS paths (S bit)."; } bit inter-as-scope-default { Dhody, et al. Expires 14 March 2024 [Page 47] Internet-Draft PCE-YANG September 2023 description "PCE can act as a default PCE for inter-AS path computation (Sd bit)."; } bit inter-layer-scope { description "PCE can compute inter-layer paths (Y bit)."; } } description "The field corresponding to the path scope bits"; } leaf intra-area-pref { type uint8 { range "0..7"; } description "The PCE's preference for intra-area TE LSP computation (PrefL field). Where 7 reflects the highest preference."; } leaf inter-area-pref { type uint8 { range "0..7"; } description "The PCE's preference for inter-area TE LSP computation (PrefR field). Where 7 reflects the highest preference."; } leaf inter-as-pref { type uint8 { range "0..7"; } description "The PCE's preference for inter-AS TE LSP computation (PrefS field). Where 7 reflects the highest preference."; } leaf inter-layer-pref { type uint8 { range "0..7"; } description "The PCE's preference for inter-layer TE LSP computation (PrefY field). Where 7 reflects the highest preference."; } Dhody, et al. Expires 14 March 2024 [Page 48] Internet-Draft PCE-YANG September 2023 reference "RFC 5088: OSPF Protocol Extensions for Path Computation Element (PCE) Discovery RFC 5089: IS-IS Protocol Extensions for Path Computation Element (PCE) Discovery"; } container neighbour-domains { description "The list of neighbour PCE-Domain toward which a PCE can compute paths"; list domain { key "type info"; description "The neighbour domain."; uses domain { description "The PCE neighbour domain."; } } } } grouping notification-instance-hdr { description "This group describes common instance-specific data for notifications."; leaf peer-addr { type leafref { path "/pcep/entity/peers/peer/addr"; } description "Reference to peer address"; } } grouping notification-session-hdr { description "This group describes common session instance specific data for notifications."; leaf session-initiator { type leafref { path "/pcep/entity/peers/peer/sessions/" + "session/initiator"; } description "Reference to pcep session initiator leaf"; } Dhody, et al. Expires 14 March 2024 [Page 49] Internet-Draft PCE-YANG September 2023 } grouping of-list { description "List of Objective Functions (OF)"; reference "RFC 5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)"; list objective-function { key "of"; description "The list of authorized OF"; leaf of { type identityref { base te-types:objective-function-type; } description "The OF authorized"; } } } grouping auth { description "The Authentication options"; container auth { description "The Authentication options"; choice auth-type-selection { description "Options for expressing authentication setting."; case auth-key-chain { leaf key-chain { type key-chain:key-chain-ref; description "key-chain name."; } } case auth-key { leaf crypto-algorithm { type identityref { base key-chain:crypto-algorithm; } mandatory true; description "Cryptographic algorithm associated with key."; Dhody, et al. Expires 14 March 2024 [Page 50] Internet-Draft PCE-YANG September 2023 } choice key-string-style { description "Key string styles"; case keystring { leaf keystring { nacm:default-deny-all; type string; description "Key string in ASCII format."; } } case hexadecimal { if-feature "key-chain:hex-key-string"; leaf hexadecimal-string { nacm:default-deny-all; type yang:hex-string; description "Key in hexadecimal string format. When compared to ASCII, specification in hexadecimal affords greater key entropy with the same number of internal key-string octets. Additionally, it discourages usage of well-known words or numbers."; } } } } case auth-tls { if-feature "tls"; choice role { description "The role of the local entity"; case server { container tls-server { uses tlss:tls-server-grouping { description "Server TLS information."; } description "TLS related information"; } } case client { container tls-client { uses tlsc:tls-client-grouping { description Dhody, et al. Expires 14 March 2024 [Page 51] Internet-Draft PCE-YANG September 2023 "Client TLS information."; } description "TLS related information"; } } } } } } } /* * Configuration data nodes */ container pcep { presence "The PCEP is enabled"; description "Parameters for list of configured PCEP entities on the device."; container entity { description "The configured PCEP entity on the device."; leaf addr { type inet:ip-address-no-zone; mandatory true; description "The local Internet address of this PCEP entity. If operating as a PCE server, the PCEP entity listens on this address. If operating as a PCC, the PCEP entity binds outgoing TCP connections to this address. It is possible for the PCEP entity to operate both as a PCC and a PCE Server, in which case it uses this address both to listen for incoming TCP connections and to bind outgoing TCP connections."; } leaf enabled { type boolean; default "true"; description "The administrative status of this PCEP Entity; set to true when UP."; } leaf role { type role; mandatory true; description Dhody, et al. Expires 14 March 2024 [Page 52] Internet-Draft PCE-YANG September 2023 "The role that this entity can play. Takes one of the following values. - unknown(0): this PCEP Entity role is not known. - pcc(1): this PCEP Entity is a PCC. - pce(2): this PCEP Entity is a PCE. - pcc-and-pce(3): this PCEP Entity is both a PCC and a PCE."; } leaf description { type string; description "Description of the PCEP entity configured by the user"; } leaf speaker-entity-id { if-feature "sync-opt"; type string; description "The Speaker Entity Identifier"; reference "RFC 8232: Optimizations of Label Switched Path State Synchronization Procedures for a Stateful PCE"; } leaf admin-status { type boolean; default "true"; description "The administrative status of this PCEP Entity. The value true represents admin status as up. This is the desired operational status as currently set by an operator or by default in the implementation. The value of oper-status represents the current status of an attempt to reach this desired status."; } leaf index { type uint32; config false; description "The index of the operational PECP entity"; } leaf oper-status { type oper-status; config false; description "The operational status of the PCEP entity. Dhody, et al. Expires 14 March 2024 [Page 53] Internet-Draft PCE-YANG September 2023 Takes one of the following values. - oper-status-up(1): the PCEP entity is active. - oper-status-down(2): the PCEP entity is inactive. - oper-status-going-up(3): the PCEP entity is activating. - oper-status-going-down(4): the PCEP entity is deactivating. - oper-status-failed(5): the PCEP entity has failed and will recover when possible. - oper-status-failed-perm(6): the PCEP entity has failed and will not recover without operator intervention."; } uses info { description "Local PCEP entity information"; } uses auth { description "Local authorization and security parameters"; } container pce-info { when "../role = 'pce'" + "or " + "../role = 'pcc-and-pce'" { description "These fields are applicable when the role is PCE."; } description "The Local PCE Entity PCE information"; uses pce-info { description "Local PCE information"; } container path-key { if-feature "path-key"; description "Path-Key Configuration"; reference "RFC 5520: Preserving Topology Confidentiality in Inter-Domain Path Computation Using a Path-Key -Based Mechanism"; leaf enabled { type boolean; description "Enabled or Disabled; set to true when Enabled"; } leaf discard-timer { Dhody, et al. Expires 14 March 2024 [Page 54] Internet-Draft PCE-YANG September 2023 type uint32; units "minutes"; default "10"; description "A timer to discard unwanted path-keys"; } leaf reuse-time { type uint32 { range "30..max"; } units "minutes"; default "30"; description "A time after which the path-keys could be reused"; } leaf pce-id { type inet:ip-address-no-zone; description "PCE Address to be used in each Path-Key Subobject (PKS)"; } } } leaf connect-timer { type uint16 { range "1..max"; } units "seconds"; default "60"; description "The time in seconds that the PCEP entity will wait to establish a TCP connection with a peer. If a TCP connection is not established within this time then PCEP aborts the session setup attempt."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf connect-max-retry { type uint32; default "5"; description "The maximum number of times the system tries to establish a TCP connection to a peer before the session with the peer transitions to the idle state."; reference "RFC 5440: Path Computation Element (PCE) Communication Dhody, et al. Expires 14 March 2024 [Page 55] Internet-Draft PCE-YANG September 2023 Protocol (PCEP)"; } leaf init-back-off-timer { type uint16 { range "1..max"; } units "seconds"; description "The initial back-off time in seconds for retrying a failed session setup attempt to a peer. The back-off time increases for each failed session setup attempt, until a maximum back-off time is reached. The maximum back-off time is the max-back-off-timer leaf."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf max-back-off-timer { type uint32; units "seconds"; description "The maximum back-off time in seconds for retrying a failed session setup attempt to a peer. The back-off time increases for each failed session setup attempt, until this maximum value is reached. Session setup attempts then repeat periodically without any further increase in back-off time."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf open-wait-timer { type uint16; units "seconds"; config false; description "The time in seconds that the PCEP entity will wait to receive an Open message from a peer after the TCP connection has come up. If no Open message is received within this time then PCEP terminates the TCP connection and deletes the associated sessions."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf keep-wait-timer { Dhody, et al. Expires 14 March 2024 [Page 56] Internet-Draft PCE-YANG September 2023 type uint16; units "seconds"; config false; description "The time in seconds that the PCEP entity will wait to receive a Keepalive or PCErr message from a peer during session initialization after receiving an Open message. If no Keepalive or PCErr message is received within this time then PCEP terminates the TCP connection and deletes the associated sessions."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf keepalive-timer { type uint8; units "seconds"; default "30"; description "The Keepalive timer that this PCEP entity will propose in the initial Open message of each session it is involved in. This is the maximum time between two consecutive messages sent to a peer. Zero means that the PCEP entity prefers not to send Keepalives at all. Note that the actual Keepalive transmission intervals, in either direction of an active PCEP session, are determined by negotiation between the peers as specified by RFC 5440, and so may differ from this configured value."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf dead-timer { type uint8; units "seconds"; must '(. > ../keepalive-timer)' { error-message "The DeadTimer must be " + "larger than the Keepalive timer"; } default "120"; description "The DeadTimer that this PCEP entity will propose in the initial Open message of each session it is involved in. This is the time after which a peer should declare a session down if it does not Dhody, et al. Expires 14 March 2024 [Page 57] Internet-Draft PCE-YANG September 2023 receive any PCEP messages. Zero suggests that the peer does not run a DeadTimer at all."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf allow-negotiation { type boolean; default "true"; description "Whether the PCEP entity will permit negotiation of session parameters."; } leaf max-keepalive-timer { type uint8; units "seconds"; description "The maximum value that this PCEP entity will accept from a peer for the interval between Keepalive transmissions. Zero means that the PCEP entity will allow no Keepalive transmission at all."; } leaf max-dead-timer { type uint8; units "seconds"; description "The maximum value in seconds, that this PCEP entity will accept from a peer for the DeadTimer. Zero means that the PCEP entity will allow not running a DeadTimer."; } leaf min-keepalive-timer { type uint8; units "seconds"; description "The minimum value in seconds, that this PCEP entity will accept for the interval between Keepalive transmissions. Zero means that the PCEP entity insists on no Keepalive transmission at all."; } leaf min-dead-timer { type uint8; units "seconds"; description "The minimum value in seconds, that this PCEP entity will accept for the DeadTimer. Zero Dhody, et al. Expires 14 March 2024 [Page 58] Internet-Draft PCE-YANG September 2023 means that the PCEP entity insists on not running a DeadTimer."; } leaf sync-timer { if-feature "svec"; type uint16; units "seconds"; default "60"; description "The value of SyncTimer in seconds is used in the case of synchronized path computation request using the SVEC object. Consider the case where a PCReq message is received by a PCE that contains the SVEC object referring to M synchronized path computation requests. If after the expiration of the SyncTimer all the M path computation requests have not been, received a protocol error is triggered and the PCE must cancel the whole set of path computation requests. The aim of the SyncTimer is to avoid the storage of unused synchronized requests should one of them get lost for some reason (for example, a misbehaving PCC). Zero means that the PCEP entity does not use the SyncTimer."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf request-timer { type uint16 { range "1..max"; } units "seconds"; description "The maximum time that the PCEP entity will wait for a response to a PCReq message."; } leaf max-sessions { type uint32; description "Maximum number of sessions involving this PCEP entity that can exist at any time."; } leaf max-unknown-reqs { type uint32; default "5"; description Dhody, et al. Expires 14 March 2024 [Page 59] Internet-Draft PCE-YANG September 2023 "The maximum number of unrecognized requests and replies that any session on this PCEP entity is willing to accept per minute before terminating the session. A PCRep message contains an unrecognized reply if it contains an RP object whose request ID does not correspond to any in-progress request sent by this PCEP entity. A PCReq message contains an unrecognized request if it contains an RP object whose request ID is zero."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf max-unknown-msgs { type uint32; default "5"; description "The maximum number of unknown messages that any session on this PCEP entity is willing to accept per minute before terminating the session."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf pcep-notification-max-rate { type uint32; mandatory true; description "This variable indicates the maximum number of notifications issued per second. If events occur more rapidly, the implementation may simply fail to emit these notifications during that period, or may queue them until an appropriate time. A value of 0 means no notifications are emitted and all should be discarded (that is, not queued)."; } container stateful-parameter { if-feature "stateful"; description "The configured stateful PCE parameters"; leaf state-timeout { type uint32; units "seconds"; description "When a PCEP session is terminated, a PCC Dhody, et al. Expires 14 March 2024 [Page 60] Internet-Draft PCE-YANG September 2023 waits for this time period before flushing LSP state associated with that PCEP session and reverting to operator-defined default parameters or behaviours."; } leaf redelegation-timeout { when "../../role = 'pcc'" + "or " + "../../role = 'pcc-and-pce'" { description "This field is applicable when the role is PCC"; } type uint32; units "seconds"; description "When a PCEP session is terminated, a PCC waits for this time period before revoking LSP delegation to a PCE and attempting to redelegate LSPs associated with the terminated PCEP session to an alternate PCE."; } leaf rpt-non-pcep-lsp { when "../../role = 'pcc'" + "or " + "../../role = 'pcc-and-pce'" { description "This field is applicable when the role is PCC"; } type boolean; default "true"; description "If set, a PCC reports LSPs that are not controlled by any PCE (for example, LSPs that are statically configured at the PCC). "; } reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } container of-list { when "../role = 'pce'" + "or " + "../role = 'pcc-and-pce'" { description Dhody, et al. Expires 14 March 2024 [Page 61] Internet-Draft PCE-YANG September 2023 "These field are applicable when the role is PCE"; } if-feature "objective-function"; uses of-list; description "The authorized OF-List at PCE for all peers"; } container lsp-db { if-feature "stateful"; config false; description "The LSP-DB"; leaf db-ver { when "../../role = 'pcc'" + "or " + "../../role = 'pcc-and-pce'" { description "This field is applicable when the role is PCC"; } if-feature "sync-opt"; type uint64; description "The LSP State Database Version Number"; } list association-list { if-feature "association"; key "type id source global-source extended-id"; description "List of all PCEP associations"; reference "RFC 8697: Path Computation Element Communication Protocol (PCEP) Extensions for Establishing Relationships between Sets of Label Switched Paths (LSPs)"; leaf type { type identityref { base te-types:association-type; } description "The PCEP Association Type"; reference "IANA PCEP: ASSOCIATION Type Field in Path Computation Element Protocol (PCEP) Numbers RFC 8697: Path Computation Element Communication Protocol (PCEP) Extensions for Establishing Relationships between Sets of Label Switched Dhody, et al. Expires 14 March 2024 [Page 62] Internet-Draft PCE-YANG September 2023 Paths (LSPs)"; } leaf id { type uint16; description "PCEP Association ID"; } leaf source { type inet:ip-address-no-zone; description "PCEP Association Source."; } leaf global-source { type uint32; description "PCEP Global Association Source."; } leaf extended-id { type string; description "Additional information to support unique identification (Extended Association ID)."; } list lsp { key "plsp-id pcc-id lsp-id"; description "List of all LSP in this association"; leaf plsp-id { type leafref { path "/pcep/entity/lsp-db/" + "lsp/plsp-id"; } description "Reference to PLSP-ID in LSP-DB"; } leaf pcc-id { type leafref { path "/pcep/entity/lsp-db/" + "lsp/pcc-id"; } description "Reference to PCC-ID in LSP-DB"; } leaf lsp-id { type leafref { path "/pcep/entity/lsp-db/" + "lsp/lsp-id"; } Dhody, et al. Expires 14 March 2024 [Page 63] Internet-Draft PCE-YANG September 2023 description "Reference to LSP ID in LSP-DB"; } } } list lsp { key "plsp-id pcc-id lsp-id"; description "List of all LSPs in LSP-DB"; leaf plsp-id { type uint32 { range "1..1048575"; } description "A PCEP-specific identifier for the LSP. A PCC creates a unique PLSP-ID for each LSP that is constant for the lifetime of a PCEP session. PLSP-ID is 20 bits with 0 and 0xFFFFF are reserved"; } leaf pcc-id { type inet:ip-address-no-zone; description "The local internet address of the PCC, that generated the PLSP-ID."; } leaf source { type inet:ip-address-no-zone; description "Tunnel sender address extracted from LSP-IDENTIFIERS TLV"; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } leaf destination { type inet:ip-address-no-zone; description "Tunnel endpoint address extracted from LSP-IDENTIFIERS TLV"; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } leaf tunnel-id { type uint16; Dhody, et al. Expires 14 March 2024 [Page 64] Internet-Draft PCE-YANG September 2023 description "Tunnel identifier used in the LSP-IDENTIFIERS TLV that remains constant over the life of the tunnel."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } leaf lsp-id { type uint16; description "Identifier used in the LSP-IDENTIFIERS TLV that can be changed to allow a sender to share resources with itself."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } leaf extended-tunnel-id { type inet:ip-address-no-zone; description "Extended Tunnel ID of the LSP in LSP-IDENTIFIERS TLV. The all-zeros format is represented as 0.0.0.0 and ::."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } leaf admin-state { type boolean; default "true"; description "The desired operational state"; } leaf operational-state { type operational-state; description "The operational status of the LSP"; } container delegated { description "The delegation related parameters"; leaf enabled { type boolean; default "false"; Dhody, et al. Expires 14 March 2024 [Page 65] Internet-Draft PCE-YANG September 2023 description "LSP is delegated or not; set to true when delegated"; } leaf peer { type leafref { path "/pcep/entity/peers/peer/addr"; } must '(../enabled = true())' { error-message "The LSP must be delegated"; } description "At the PCC, the reference to the PCEP peer to which LSP is delegated; At the PCE, the reference to the PCEP peer which delegated this LSP"; } leaf srp-id { type uint32 { range "1..4294967294"; } description "The last SRP-ID-number associated with this LSP. The value 0x00000000 and 0xFFFFFFFF are reserved."; } } container initiation { if-feature "pce-initiated"; description "The PCE initiation related parameters"; reference "RFC 8281: Path Computation Element Communication Protocol (PCEP) Extensions for PCE-Initiated LSP Setup in a Stateful PCE Model"; leaf enabled { type boolean; default "false"; description "Set to true if this LSP is initiated by a PCE"; } leaf peer { type leafref { path "/pcep/entity/peers/peer/addr"; } must '(../enabled = true())' { error-message "The LSP must be PCE-Initiated"; } Dhody, et al. Expires 14 March 2024 [Page 66] Internet-Draft PCE-YANG September 2023 description "If the role is PCC, this leaf refers to the PCEP peer (PCE) that initiated this LSP. If the role is PCE, this leaf refers to the PCEP peer (PCC) where the LSP is initiated"; } } leaf symbolic-path-name { type string; description "The symbolic path name associated with the LSP."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } leaf last-error { type identityref { base lsp-error; } description "The last error for the LSP."; } leaf pst { type identityref { base te-types:path-signaling-type; } default "te-types:path-setup-rsvp"; description "The Path Setup Type (PST). Note that the te-types model uses the term Path Signaling Type"; reference "RFC 8408: Conveying Path Setup Type in PCE Communication Protocol (PCEP) Messages"; } list association-list { if-feature "association"; key "type id source global-source extended-id"; description "List of all PCEP associations"; leaf type { type leafref { path "/pcep/entity/lsp-db/" + "association-list/type"; } description "PCEP Association Type"; } Dhody, et al. Expires 14 March 2024 [Page 67] Internet-Draft PCE-YANG September 2023 leaf id { type leafref { path "/pcep/entity/lsp-db/" + "association-list/id"; } description "PCEP Association ID"; } leaf source { type leafref { path "/pcep/entity/lsp-db/" + "association-list/source"; } description "PCEP Association Source."; } leaf global-source { type leafref { path "/pcep/entity/lsp-db/" + "association-list/global-source"; } description "PCEP Global Association Source."; } leaf extended-id { type leafref { path "/pcep/entity/lsp-db/" + "association-list/extended-id"; } description "Additional information to support unique identification."; } reference "RFC 8697: Path Computation Element Communication Protocol (PCEP) Extensions for Establishing Relationships between Sets of Label Switched Paths (LSPs)"; } } } container path-keys { when "../role = 'pce' or ../role = 'pcc-and-pce'" { description "These fields are applicable when the role is PCE"; } if-feature "path-key"; Dhody, et al. Expires 14 March 2024 [Page 68] Internet-Draft PCE-YANG September 2023 config false; description "The path-keys generated by the PCE"; reference "RFC 5520: Preserving Topology Confidentiality in Inter-Domain Path Computation Using a Path- Key-Based Mechanism"; list path-key { key "key"; description "The list of path-keys generated by the PCE"; leaf key { type uint16; description "The identifier, or token used to represent the Confidential Path Segment (CPS) within the context of the PCE"; } container cps { description "The Confidential Path Segment (CPS)"; list explicit-route-objects { key "index"; description "List of explicit route objects"; leaf index { type uint32; description "ERO subobject index"; } uses te-types:explicit-route-hop; } } leaf pcc-original { type leafref { path "/pcep/entity/peers/peer/addr"; } description "Reference to PCC peer address of the original request"; } leaf req-id { type uint32; description "The request ID of the original PCReq."; } leaf retrieved { type boolean; Dhody, et al. Expires 14 March 2024 [Page 69] Internet-Draft PCE-YANG September 2023 description "If path-key has been retrieved yet"; } leaf pcc-retrieved { type leafref { path "/pcep/entity/peers/peer/addr"; } must '(../retrieved = true())' { error-message "The Path-key should be retrieved"; } description "Reference to PCC peer address which retrieved the path-key"; } leaf creation-time { type yang:timestamp; description "The timestamp value at the time this Path-Key was created."; } leaf discard-time { type uint32; units "minutes"; description "A time after which this path-keys will be discarded"; } leaf reuse-time { type uint32; units "minutes"; description "A time after which this path-keys could be reused"; } } } container peers { description "The list of configured peers for the entity (remote PCE)"; list peer { key "addr"; description "The peer configured for the entity. (remote PCE)"; leaf addr { type inet:ip-address-no-zone; description Dhody, et al. Expires 14 March 2024 [Page 70] Internet-Draft PCE-YANG September 2023 "The local Internet address of this PCEP peer."; } leaf role { type role; must '(. != "pcc-and-pce")' { error-message "The PCEP peer cannot be both PCE and PCC at the same time"; } mandatory true; description "The role of the PCEP Peer. Takes one of the following values. - unknown(0): this PCEP peer role is not known. - pcc(1): this PCEP peer is a PCC. - pce(2): this PCEP peer is a PCE. - pcc-and-pce(3): is not allowed as PCEP peer cannot be acting as both a PCC and a PCE at the sametime."; } leaf description { type string; description "Description of the PCEP peer configured by the user"; } uses info { description "PCE Peer information"; } container pce-info { uses pce-info { description "PCE Peer information"; } description "The PCE Peer information"; } leaf delegation-pref { if-feature "stateful"; type uint8 { range "0..7"; } description "The PCE peer delegation preference."; } Dhody, et al. Expires 14 March 2024 [Page 71] Internet-Draft PCE-YANG September 2023 uses auth { description "The PCE peer authorization and security parameters"; } leaf discontinuity-time { type yang:timestamp; config false; description "The timestamp of the time when the information and statistics were last reset."; } leaf initiate-session { type boolean; config false; description "Indicates whether the local PCEP entity initiates sessions to this peer, or wait for the peer to initiate a session."; } leaf session-exists { type boolean; config false; description "Indicates whether a session with this peer currently exists."; } leaf session-up-time { type yang:timestamp; config false; description "The timestamp value of the last time a session with this peer was successfully established."; } leaf session-fail-time { type yang:timestamp; config false; description "The timestamp value of the last time a session with this peer failed to be established."; } leaf session-fail-up-time { type yang:timestamp; config false; description "The timestamp value of the last time a Dhody, et al. Expires 14 March 2024 [Page 72] Internet-Draft PCE-YANG September 2023 session with this peer failed from active."; } container sessions { config false; description "This entry represents a single PCEP session in which the local PCEP entity participates. This entry exists only if the corresponding PCEP session has been initialized by some event, such as manual user configuration, auto-discovery of a peer, or an incoming TCP connection."; list session { key "initiator"; description "The list of sessions, note that for a time being two sessions may exist for a peer"; leaf initiator { type initiator; description "The initiator of the session, that is, whether the TCP connection was initiated by the local PCEP entity or the peer. There is a window during session initialization where two sessions can exist between a pair of PCEP speakers, each initiated by one of the speakers. One of these sessions is always discarded before it leaves OpenWait state. However, before it is discarded, two sessions to the given peer appear transiently in this YANG module. The sessions are distinguished by who initiated them, and so this field is the key."; } leaf role { type leafref { path "/pcep/entity/role"; } description "The reference to peer role ."; } leaf state-last-change { type yang:timestamp; description "The timestamp value at the time this session entered its current state as denoted by the state leaf."; } Dhody, et al. Expires 14 March 2024 [Page 73] Internet-Draft PCE-YANG September 2023 leaf state { type sess-state; description "The current state of the session. The set of possible states excludes the idle state since entries do not exist in the idle state."; } leaf session-creation { type yang:timestamp; description "The timestamp value at the time this session was created."; } leaf connect-retry { type yang:counter32; description "The number of times that the local PCEP entity has attempted to establish a TCP connection for this session without success. The PCEP entity gives up when this reaches connect-max-retry."; } leaf local-id { type uint8; description "The value of the PCEP session ID used by the local PCEP entity in the Open message for this session. If state is tcp-pending then this is the session ID that will be used in the Open message. Otherwise, this is the session ID that was sent in the Open message."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf remote-id { type uint8; must "((../state != 'tcp-pending'" + "and " + "../state != 'open-wait' )" + "or " + "((../state = 'tcp-pending'" + " or " + "../state = 'open-wait' )" + "and (. = 0)))" { error-message "Invalid remote-id"; Dhody, et al. Expires 14 March 2024 [Page 74] Internet-Draft PCE-YANG September 2023 description "If state is TCPPending or OpenWait then this leaf is not used and MUST be set to zero."; } description "The value of the PCEP session ID used by the peer in its Open message for this session."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf keepalive-timer { type uint8; units "seconds"; must "(../state = 'session-up'" + "or " + "(../state != 'session-up'" + "and (. = 0)))" { error-message "Invalid Keepalive timer"; description "This field is used if and only if state is session-up. Otherwise, it is not used and MUST be set to zero."; } description "The agreed maximum interval at which the local PCEP entity transmits PCEP messages on this PCEP session. Zero means that the local PCEP entity never sends Keepalives on this session."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf peer-keepalive-timer { type uint8; units "seconds"; must "(../state = 'session-up'" + "or " + "(../state != 'session-up'" + "and " + "(. = 0)))" { error-message "Invalid Peer Keepalive timer"; description "This field is used if and only if state is session-up. Otherwise, it is not used and MUST be set to zero."; } Dhody, et al. Expires 14 March 2024 [Page 75] Internet-Draft PCE-YANG September 2023 description "The agreed maximum interval at which the peer transmits PCEP messages on this PCEP session. Zero means that the peer never sends Keepalives on this session."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf dead-timer { type uint8; units "seconds"; description "The DeadTimer interval for this PCEP session."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf peer-dead-timer { type uint8; units "seconds"; must "((../state != 'tcp-pending'" + "and " + "../state != 'open-wait' )" + "or " + "((../state = 'tcp-pending'" + " or " + "../state = 'open-wait' )" + "and " + "(. = 0)))" { error-message "Invalid Peer DeadTimer"; description "If state is TCPPending or OpenWait then this leaf is not used and MUST be set to zero."; } description "The peer's DeadTimer interval for this PCEP session."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf ka-hold-time-rem { type uint8; units "seconds"; must "((../state != 'tcp-pending'" + "and " + "../state != 'open-wait' ) " Dhody, et al. Expires 14 March 2024 [Page 76] Internet-Draft PCE-YANG September 2023 + "or " + "((../state = 'tcp-pending'" + "or " + "../state = 'open-wait' )" + "and " + "(. = 0)))" { error-message "Invalid Keepalive hold time remaining"; description "If state is TCPPending or OpenWait then this field is not used and MUST be set to zero."; } description "The Keepalive hold time remaining for this session."; } leaf overloaded { type boolean; description "If the local PCEP entity has informed the peer that it is currently overloaded, then this is set to true. Otherwise, it is set to false."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf overloaded-timestamp { when '(../overloaded = true())' { description "Valid when overloaded"; } type yang:timestamp; description "The timestamp value of the time when the overloaded field was set to true."; } leaf overload-time { type uint32; units "seconds"; must '((../overloaded = true()) ' + 'or ((../overloaded != true()) ' + 'and (. = 0)))' { error-message "Invalid overload-time"; description "This field is only used if overloaded is set to true. Otherwise, it is not used and MUST be set to zero."; } Dhody, et al. Expires 14 March 2024 [Page 77] Internet-Draft PCE-YANG September 2023 description "The interval of time that is remaining until the local PCEP entity will cease to be overloaded on this session."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf peer-overloaded { type boolean; description "If the peer has informed the local PCEP entity that it is currently overloaded, then this is set to true. Otherwise, it is set to false."; reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf peer-overloaded-timestamp { when '(../peer-overloaded = true())' { description "Valid when Peer is overloaded"; } type yang:timestamp; description "The timestamp value of the time when the peer-overloaded field was set to true."; } leaf peer-overload-time { type uint32; units "seconds"; must '((../peer-overloaded = ' + 'true()) or ' + '((../peer-overloaded !=' + 'true())' + ' and ' + '(. = 0)))' { error-message "Invalid peer overload time"; description "This field is only used if peer-overloaded is set to true. Otherwise, it is not used and MUST be set to zero."; } description "The interval of time that is remaining until the peer will cease to be overloaded. If it is not known how long the peer will stay in overloaded state, this leaf is set to zero."; Dhody, et al. Expires 14 March 2024 [Page 78] Internet-Draft PCE-YANG September 2023 reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } leaf lspdb-sync { if-feature "stateful"; type sync-state; description "The LSP-DB state synchronization status."; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } leaf recv-db-ver { when "../role = 'pcc'" + "or " + "../role = 'pcc-and-pce'" { description "This field is applicable when the role is PCC"; } if-feature "stateful"; if-feature "sync-opt"; type uint64; description "The last received LSP State Database Version Number"; reference "RFC 8231: Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE"; } container of-list { when "../role = 'pce'" + "or " + "../role = 'pcc-and-pce'" { description "These fields are applicable when the role is PCE"; } if-feature "objective-function"; uses of-list; description "Indicate the list of supported OF on this session"; reference "RFC 5541: Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)"; Dhody, et al. Expires 14 March 2024 [Page 79] Internet-Draft PCE-YANG September 2023 } container pst-list { when "../role = 'pce'" + "or " + "../role = 'pcc-and-pce'" { description "These fields are applicable when the role is PCE"; } description "Indicate the list of supported PST on this session"; reference "RFC 8408: Conveying Path Setup Type in PCE Communication Protocol (PCEP) Messages"; list path-setup-type { key "pst"; description "The list of PST"; leaf pst { type identityref { base te-types:path-signaling-type; } description "The PST supported"; } } } container assoc-type-list { if-feature "association"; description "Indicate the list of supported association types on this session"; reference "RFC 8697: Path Computation Element Communication Protocol (PCEP) Extensions for Establishing Relationships between Sets of Label Switched Paths (LSPs)"; list assoc-type { key "at"; description "The list of authorized association types"; leaf at { type identityref { base te-types:association-type; } description "The association type authorized"; Dhody, et al. Expires 14 March 2024 [Page 80] Internet-Draft PCE-YANG September 2023 } } } leaf speaker-entity-id { if-feature "sync-opt"; type string; description "The Speaker Entity Identifier"; reference "RFC 8232: Optimizations of Label Switched Path State Synchronization Procedures for a Stateful PCE"; } } } } } } } /* * Notifications */ notification pcep-session-up { description "This notification is sent when the value of '/pcep/peers/peer/sessions/session/state' enters the 'session-up' state."; uses notification-instance-hdr; uses notification-session-hdr; leaf state-last-change { type yang:timestamp; description "The timestamp value at the time this session entered its current state as denoted by the state leaf."; } leaf state { type sess-state; description "The current state of the session. The set of possible states excludes the idle state since entries do not exist in the idle state."; } reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; Dhody, et al. Expires 14 March 2024 [Page 81] Internet-Draft PCE-YANG September 2023 } notification pcep-session-down { description "This notification is sent when the value of '/pcep/peers/peer/sessions/session/state' leaves the 'session-up' state."; uses notification-instance-hdr; leaf session-initiator { type initiator; description "The initiator of the session."; } leaf state-last-change { type yang:timestamp; description "The timestamp value at the time this session entered its current state as denoted by the state leaf."; } leaf state { type sess-state; description "The current state of the session. The set of possible states excludes the idle state since entries do not exist in the idle state."; } reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } notification pcep-session-local-overload { description "This notification is sent when the local PCEP entity enters overload state for a peer."; uses notification-instance-hdr; uses notification-session-hdr; leaf overloaded { type boolean; description "If the local PCEP entity has informed the peer that it is currently overloaded, then this is set to true. Otherwise, it is set to false."; } leaf overloaded-timestamp { type yang:timestamp; description Dhody, et al. Expires 14 March 2024 [Page 82] Internet-Draft PCE-YANG September 2023 "The timestamp value of the time when the overloaded field was set to true."; } leaf overload-time { type uint32; units "seconds"; description "The interval of time that is remaining until the local PCEP entity will cease to be overloaded on this session."; } reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } notification pcep-session-local-overload-clear { description "This notification is sent when the local PCEP entity leaves overload state for a peer."; uses notification-instance-hdr; leaf overloaded { type boolean; description "If the local PCEP entity has informed the peer that it is currently overloaded, then this is set to true. Otherwise, it is set to false."; } leaf overloaded-clear-timestamp { type yang:timestamp; description "The timestamp value of the time when the overloaded field was set to false."; } reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } notification pcep-session-peer-overload { description "This notification is sent when a peer enters overload state."; uses notification-instance-hdr; uses notification-session-hdr; leaf peer-overloaded { type boolean; description Dhody, et al. Expires 14 March 2024 [Page 83] Internet-Draft PCE-YANG September 2023 "If the peer has informed the local PCEP entity that it is currently overloaded, then this is set to true. Otherwise, it is set to false."; } leaf peer-overloaded-timestamp { type yang:timestamp; description "The timestamp value of the time when the peer-overloaded field was set to true."; } leaf peer-overload-time { type uint32; units "seconds"; description "The interval of time that is remaining until the peer will cease to be overloaded. If it is not known how long the peer will stay in overloaded state, this leaf is set to zero."; } reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } notification pcep-session-peer-overload-clear { description "This notification is sent when a peer leaves overload state."; uses notification-instance-hdr; leaf peer-overloaded { type boolean; description "If the peer has informed the local PCEP entity that it is currently overloaded, then this is set to true. Otherwise, it is set to false."; } leaf peer-overloaded-clear-timestamp { type yang:timestamp; description "The timestamp value of the time when the peer-overloaded field was set to false."; } reference "RFC 5440: Path Computation Element (PCE) Communication Protocol (PCEP)"; } /* Dhody, et al. Expires 14 March 2024 [Page 84] Internet-Draft PCE-YANG September 2023 * RPC */ rpc trigger-resync { if-feature "stateful"; if-feature "sync-opt"; nacm:default-deny-all; description "Trigger the resynchronization at the PCE"; reference "RFC 8232: Optimizations of Label Switched Path State Synchronization Procedures for a Stateful PCE"; input { leaf pcc { type leafref { path "/pcep/entity/peers/peer/addr"; } description "The IP address to identify the PCC. The state syncronization is re-triggered for all LSPs from the PCC. The rpc on the PCC will be ignored."; } } } } 8.2. ietf-pcep-stats module file "ietf-pcep-stats@2023-09-11.yang" module ietf-pcep-stats { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-pcep-stats"; prefix pcep-stats; import ietf-pcep { prefix pcep; reference "RFC XXXX: A YANG Data Model for Path Computation Element Communications Protocol (PCEP)"; } import ietf-yang-types { prefix yang; reference "RFC 6991: Common YANG Data Types"; } organization Dhody, et al. Expires 14 March 2024 [Page 85] Internet-Draft PCE-YANG September 2023 "IETF PCE (Path Computation Element) Working Group"; contact "WG Web: WG List: Editor: Dhruv Dhody "; description "The YANG module augments the Path Computation Element Communication Protocol (PCEP) YANG operational model with statistics, counters and telemetry data. Copyright (c) 2023 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Revised BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC XXXX; see the RFC itself for full legal notices."; revision 2023-09-11 { description "Initial revision."; reference "RFC XXXX: A YANG Data Model for Path Computation Element Communications Protocol (PCEP)"; } /* * Groupings */ grouping stats { description "This grouping defines statistics for PCEP. It is used for both peer and current sessions."; leaf discontinuity-time { type yang:timestamp; description "The timestamp value of the time when the statistics were last reset."; } leaf rsp-time-avg { when "../../pcep:role = 'pce'" Dhody, et al. Expires 14 March 2024 [Page 86] Internet-Draft PCE-YANG September 2023 + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type uint32; units "milliseconds"; description "The average response time. If an average response time has not been calculated then this leaf has the value zero."; } leaf rsp-time-lwm { when "../../pcep:role = 'pce'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type uint32; units "milliseconds"; description "The smallest (low-water mark) response time seen. If no responses have been received then this leaf has the value zero."; } leaf rsp-time-hwm { when "../../pcep:role = 'pce'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type uint32; units "milliseconds"; description "The greatest (high-water mark) response time seen. If no responses have been received then this object has the value zero."; } leaf pcreq-sent { when "../../pcep:role = 'pce'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; Dhody, et al. Expires 14 March 2024 [Page 87] Internet-Draft PCE-YANG September 2023 description "The number of PCReq messages sent."; } leaf pcreq-rcvd { when "../../pcep:role = 'pcc'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of PCReq messages received."; } leaf pcrep-sent { when "../../pcep:role = 'pcc'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of PCRep messages sent."; } leaf pcrep-rcvd { when "../../pcep:role = 'pce'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of PCRep messages received."; } leaf pcerr-sent { type yang:counter32; description "The number of PCErr messages sent."; } leaf pcerr-rcvd { type yang:counter32; description "The number of PCErr messages received."; } leaf pcntf-sent { type yang:counter32; Dhody, et al. Expires 14 March 2024 [Page 88] Internet-Draft PCE-YANG September 2023 description "The number of PCNtf messages sent."; } leaf pcntf-rcvd { type yang:counter32; description "The number of PCNtf messages received."; } leaf keepalive-sent { type yang:counter32; description "The number of Keepalive messages sent."; } leaf keepalive-rcvd { type yang:counter32; description "The number of Keepalive messages received."; } leaf unknown-rcvd { type yang:counter32; description "The number of unknown messages received."; } leaf corrupt-rcvd { type yang:counter32; description "The number of corrupted PCEP messages received."; } leaf req-sent { when "../../pcep:role = 'pce'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of requests sent. A request corresponds 1:1 with an RP object in a PCReq message. This might be greater than pcreq-sent because multiple requests can be batched into a single PCReq message."; } leaf req-sent-pend-rep { when "../../pcep:role = 'pce'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description Dhody, et al. Expires 14 March 2024 [Page 89] Internet-Draft PCE-YANG September 2023 "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of requests that have been sent for which a response is still pending."; } leaf req-sent-ero-rcvd { when "../../pcep:role = 'pce'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of requests that have been sent for which a response with an ERO object was received. Such responses indicate that a path was successfully computed by the peer."; } leaf req-sent-nopath-rcvd { when "../../pcep:role = 'pce'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of requests that have been sent for which a response with a NO-PATH object was received. Such responses indicate that the peer could not find a path to satisfy the request."; } leaf req-sent-cancel-rcvd { when "../../pcep:role = 'pce'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of requests that were cancelled with a PCNtf message. This might be different than pcntf-rcvd because not all PCNtf messages are Dhody, et al. Expires 14 March 2024 [Page 90] Internet-Draft PCE-YANG September 2023 used to cancel requests, and a single PCNtf message can cancel multiple requests."; } leaf req-sent-error-rcvd { when "../../pcep:role = 'pce'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of requests that were rejected with a PCErr message. This might be different than pcerr-rcvd because not all PCErr messages are used to reject requests, and a single PCErr message can reject multiple requests."; } leaf req-sent-timeout { when "../../pcep:role = 'pce'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of requests that have been sent to a peer and have been abandoned because the peer has taken too long to respond to them."; } leaf req-sent-cancel-sent { when "../../pcep:role = 'pce'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of requests that were sent to the peer and explicitly cancelled by the local PCEP entity sending a PCNtf."; } leaf req-rcvd { when "../../pcep:role = 'pcc'" + "or " + "../../pcep:role = 'pcc-and-pce'" { Dhody, et al. Expires 14 March 2024 [Page 91] Internet-Draft PCE-YANG September 2023 description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of requests received. A request corresponds 1:1 with an RP object in a PCReq message. This might be greater than pcreq-rcvd because multiple requests can be batched into a single PCReq message."; } leaf req-rcvd-pend-rep { when "../../pcep:role = 'pcc'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of requests that have been received for which a response is still pending."; } leaf req-rcvd-ero-sent { when "../../pcep:role = 'pcc'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of requests that have been received for which a response with an ERO object was sent. Such responses indicate that a path was successfully computed by the local PCEP entity."; } leaf req-rcvd-nopath-sent { when "../../pcep:role = 'pcc'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of requests that have been received for Dhody, et al. Expires 14 March 2024 [Page 92] Internet-Draft PCE-YANG September 2023 which a response with a NO-PATH object was sent. Such responses indicate that the local PCEP entity could not find a path to satisfy the request."; } leaf req-rcvd-cancel-sent { when "../../pcep:role = 'pcc'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of requests received that were cancelled by the local PCEP entity sending a PCNtf message. This might be different than pcntf-sent because not all PCNtf messages are used to cancel requests, and a single PCNtf message can cancel multiple requests."; } leaf req-rcvd-error-sent { when "../../pcep:role = 'pcc'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of requests received that were cancelled by the local PCEP entity sending a PCErr message. This might be different than pcerr-sent because not all PCErr messages are used to cancel requests, and a single PCErr message can cancel multiple requests."; } leaf req-rcvd-cancel-rcvd { when "../../pcep:role = 'pcc'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of requests that were received from the peer and explicitly cancelled by the peer sending a PCNtf."; Dhody, et al. Expires 14 March 2024 [Page 93] Internet-Draft PCE-YANG September 2023 } leaf rep-rcvd-unknown { when "../../pcep:role = 'pce'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of responses to unknown requests received. A response to an unknown request is a response whose RP object does not contain the request ID of any request that is currently outstanding on the session."; } leaf req-rcvd-unknown { when "../../pcep:role = 'pcc'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of unknown requests that have been received. An unknown request is a request whose RP object contains a request ID of zero."; } container svec { if-feature "pcep:svec"; description "If synchronized path computation is supported"; leaf svec-sent { when "../../../pcep:role = 'pce'" + "or " + "../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of SVEC objects sent in PCReq messages. An SVEC object represents a set of synchronized requests."; } leaf svec-req-sent { when "../../../pcep:role = 'pce'" Dhody, et al. Expires 14 March 2024 [Page 94] Internet-Draft PCE-YANG September 2023 + "or " + "../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of requests sent that appeared in one or more SVEC objects."; } leaf svec-rcvd { when "../../../pcep:role = 'pcc'" + "or " + "../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of SVEC objects received in PCReq messages. An SVEC object represents a set of synchronized requests."; } leaf svec-req-rcvd { when "../../../pcep:role = 'pcc'" + "or " + "../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of requests received that appeared in one or more SVEC objects."; } } container stateful { if-feature "pcep:stateful"; description "Stateful PCE related statistics"; leaf pcrpt-sent { when "../../../pcep:role = 'pce'" + "or " + "../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; Dhody, et al. Expires 14 March 2024 [Page 95] Internet-Draft PCE-YANG September 2023 description "The number of PCRpt messages sent."; } leaf pcrpt-rcvd { when "../../../pcep:role = 'pcc'" + "or " + "../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of PCRpt messages received."; } leaf pcupd-sent { when "../../../pcep:role = 'pcc'" + "or " + "../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of PCUpd messages sent."; } leaf pcupd-rcvd { when "../../../pcep:role = 'pce'" + "or " + "../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of PCUpd messages received."; } leaf rpt-sent { when "../../../pcep:role = 'pce'" + "or " + "../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of LSP Reports sent. An LSP report corresponds 1:1 with an LSP object in a PCRpt message. This might be greater than Dhody, et al. Expires 14 March 2024 [Page 96] Internet-Draft PCE-YANG September 2023 pcrpt-sent because multiple reports can be batched into a single PCRpt message."; } leaf rpt-rcvd { when "../../../pcep:role = 'pcc'" + "or " + "../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of LSP Reports received. An LSP report corresponds 1:1 with an LSP object in a PCRpt message. This might be greater than pcrpt-rcvd because multiple reports can be batched into a single PCRpt message."; } leaf rpt-rcvd-error-sent { when "../../../pcep:role = 'pcc'" + "or " + "../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of reports of LSPs received that were responded by the local PCEP entity by sending a PCErr message."; } leaf upd-sent { when "../../../pcep:role = 'pcc'" + "or " + "../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of LSP updates sent. An LSP update corresponds 1:1 with an LSP object in a PCUpd message. This might be greater than pcupd-sent because multiple updates can be batched into a single PCUpd message."; } leaf upd-rcvd { Dhody, et al. Expires 14 March 2024 [Page 97] Internet-Draft PCE-YANG September 2023 when "../../../pcep:role = 'pce'" + "or " + "../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of LSP Updates received. An LSP update corresponds 1:1 with an LSP object in a PCUpd message. This might be greater than pcupd-rcvd because multiple updates can be batched into a single PCUpd message."; } leaf upd-rcvd-unknown { when "../../../pcep:role = 'pce'" + "or " + "../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of updates to unknown LSPs received. An update to an unknown LSP is a update whose LSP object does not contain the PLSP-ID of any LSP that is currently present."; } leaf upd-rcvd-undelegated { when "../../../pcep:role = 'pce'" + "or " + "../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of updates to not delegated LSPs received. An update to an undelegated LSP is a update whose LSP object does not contain the PLSP-ID of any LSP that is currently delegated to the current PCEP session."; } leaf upd-rcvd-error-sent { when "../../../pcep:role = 'pce'" + "or " Dhody, et al. Expires 14 March 2024 [Page 98] Internet-Draft PCE-YANG September 2023 + "../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of updates to LSPs received that were responded by the local PCEP entity by sending a PCErr message."; } container initiation { if-feature "pcep:pce-initiated"; description "PCE-Initiated related statistics"; leaf pcinitiate-sent { when "../../../../pcep:role = 'pcc'" + "or " + "../../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of PCInitiate messages sent."; } leaf pcinitiate-rcvd { when "../../../../pcep:role = 'pce'" + "or " + "../../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of PCInitiate messages received."; } leaf initiate-sent { when "../../../../pcep:role = 'pcc'" + "or " + "../../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of LSP Initiation sent via PCE. An LSP initiation corresponds 1:1 with an LSP object in a PCInitiate message. This might be Dhody, et al. Expires 14 March 2024 [Page 99] Internet-Draft PCE-YANG September 2023 greater than pcinitiate-sent because multiple initiations can be batched into a single PCInitiate message."; } leaf initiate-rcvd { when "../../../../pcep:role = 'pce'" + "or " + "../../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of LSP Initiation received from PCE. An LSP initiation corresponds 1:1 with an LSP object in a PCInitiate message. This might be greater than pcinitiate-rcvd because multiple initiations can be batched into a single PCInitiate message."; } leaf initiate-rcvd-error-sent { when "../../../../pcep:role = 'pce'" + "or " + "../../../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of initiations of LSPs received that were responded to by the local PCEP entity by sending a PCErr message."; } } } container path-key { when "../../pcep:role = 'pcc'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } if-feature "pcep:path-key"; description "If Path-Key is supported"; leaf unknown-path-key { type yang:counter32; description Dhody, et al. Expires 14 March 2024 [Page 100] Internet-Draft PCE-YANG September 2023 "The number of attempts to expand an unknown path-key."; } leaf exp-path-key { type yang:counter32; description "The number of attempts to expand an expired path-key."; } leaf dup-path-key { type yang:counter32; description "The number of duplicate attempts to expand same path-key."; } leaf path-key-no-attempt { type yang:counter32; description "The number of expired path-keys with no attempt to expand it."; } } } /* * Augment modules to add statistics */ augment "/pcep:pcep/pcep:entity/pcep:peers/pcep:peer" { description "Augmenting the statistics"; leaf sess-setup-ok { type yang:counter32; config false; description "The number of PCEP sessions successfully established with the peer, including any current session. This counter is incremented each time a session with this peer is successfully established."; } leaf sess-setup-fail { type yang:counter32; config false; description "The number of PCEP sessions with the peer that have been attempted but failed before being fully established. This counter is incremented each time a Dhody, et al. Expires 14 March 2024 [Page 101] Internet-Draft PCE-YANG September 2023 session retry to this peer fails."; } container stats { config false; description "The container for all statistics at peer level."; uses stats { description "Since PCEP sessions can be ephemeral, the peer statistics tracks a peer even when no PCEP session currently exists to that peer. The statistics contained are an aggregate of the statistics for all successive sessions to that peer."; } leaf req-sent-closed { when "../../pcep:role = 'pce'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCE"; } type yang:counter32; description "The number of requests that were sent to the peer and implicitly cancelled when the session they were sent over was closed."; } leaf req-rcvd-closed { when "../../pcep:role = 'pcc'" + "or " + "../../pcep:role = 'pcc-and-pce'" { description "Valid for PCEP Peer as PCC"; } type yang:counter32; description "The number of requests that were received from the peer and implicitly cancelled when the session they were received over was closed."; } } } augment "/pcep:pcep/pcep:entity/pcep:peers/pcep:peer/" + "pcep:sessions/pcep:session" { description "Augmenting the statistics"; container stats { description Dhody, et al. Expires 14 March 2024 [Page 102] Internet-Draft PCE-YANG September 2023 "The container for all statistics at session level."; uses stats { description "The statistics contained are for the current sessions to that peer. These are lost when the session goes down."; } } } rpc statistics-reset { description "Reset statistics collected."; input { choice peer-or-all { description "Resets statistics for a particular peer or all"; case peer { leaf peer-addr { type leafref { path "/pcep:pcep/pcep:entity/pcep:peers" + "/pcep:peer/pcep:addr"; } description "Reference to peer address"; } description "This resets all the statistics collected for the peer."; } case all { description "This resets all the statistics collected."; } } } } } 9. Security Considerations The YANG modules defined in this document are designed to be accessed via network management protocol such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer and the mandatory-to-implement secure transport is SSH [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446] Dhody, et al. Expires 14 March 2024 [Page 103] Internet-Draft PCE-YANG September 2023 The NETCONF access control model [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a pre- configured subset of all available NETCONF or RESTCONF protocol operations and content. There are a number of data nodes defined in the ietf-pcep YANG module which are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., ) to these data nodes without proper protection can have a negative effect on network operations. These are the subtrees and data nodes and their sensitivity/vulnerability: /pcep/entity/ - configure local parameters, capabilities etc. /pcep/entity/peers - configure remote peers to setup PCEP session. Unauthorized access to above list can adversely affect the PCEP session between the local entity and the peers. This may lead to inability to compute new paths, stateful operations on the delegated as well as PCE-initiated LSPs. Some of the readable data nodes in the ietf-pcep YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability: /pcep/lsp-db - All the LSPs in the network. Unauthorized access to this could provide the all path and network usage information. /pcep/path-keys/ - The Confidential Path Segments (CPS) are hidden using path-keys. Unauthorized access to this could leak confidential path information. Some of the RPC operations in the ietf-pcep YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control access to these operations. These are the operations and their sensitivity/vulnerability: trigger-resync - trigger resynchronization with the PCE. Unauthorized access to this could force a PCEP session into continuous state synchronization. Dhody, et al. Expires 14 March 2024 [Page 104] Internet-Draft PCE-YANG September 2023 The actual authentication key data (whether locally specified or part of a key-chain) is sensitive and needs to be kept secret from unauthorized parties; compromise of the key data would allow an attacker to forge PCEP traffic that would be accepted as authentic, potentially compromising the TE domain. The model describes several notifications, implementations must rate- limit the generation of these notifications to avoid creating significant notification load. Otherwise, this notification load may have some side effects on the system stability and may be exploited as an attack vector. Further, this document also include another YANG module (called ietf- pcep-stats) for maintaining the statistics by augmenting the ietf- pcep YANG module. There are no data nodes defined in this module which are writable/creatable/deletable (i.e., config true). The readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. The statistics could provide information related to the current usage patterns of the network. It is thus important to control read access (e.g., via get, get-config, or notification). Some of the RPC operations in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control access to these operations. These are the operations and their sensitivity/vulnerability: statistics-reset - The RPC is used to reset statistics. Unauthorized reset could impact monitoring. The "auth" container includes various authentication and security options for PCEP. Further, Section 7.1 describes how to configure TLS1.2 and TLS1.3 for a PCEP session via this YANG module. 10. IANA Considerations This document request the IANA to register two URIs in the "IETF XML Registry" [RFC3688]. Following the format in RFC 3688, the following registrations are requested - URI: urn:ietf:params:xml:ns:yang:ietf-pcep Registrant Contact: The IESG XML: N/A; the requested URI is an XML namespace. URI: urn:ietf:params:xml:ns:yang:ietf-pcep-stats Registrant Contact: The IESG XML: N/A; the requested URI is an XML namespace. Dhody, et al. Expires 14 March 2024 [Page 105] Internet-Draft PCE-YANG September 2023 This document request the IANA to register two YANG modules in the "YANG Module Names" registry [RFC6020], as follows - Name: ietf-pcep Namespace: urn:ietf:params:xml:ns:yang:ietf-pcep Prefix: pcep Reference: [This.I-D] Name: ietf-pcep-stats Namespace: urn:ietf:params:xml:ns:yang:ietf-pcep-stats Prefix: pcep-stats Reference: [This.I-D] 11. Implementation Status [Note to the RFC Editor - remove this section before publication, as well as remove the reference to RFC 7942.] This section records the status of known implementations of the protocol defined by this specification at the time of posting of this Internet-Draft, and is based on a proposal described in [RFC7942]. The description of implementations in this section is intended to assist the IETF in its decision processes in progressing drafts to RFCs. Please note that the listing of any individual implementation here does not imply endorsement by the IETF. Furthermore, no effort has been spent to verify the information presented here that was supplied by IETF contributors. This is not intended as, and must not be construed to be, a catalog of available implementations or their features. Readers are advised to note that other implementations may exist. According to [RFC7942], "this will allow reviewers and working groups to assign due consideration to documents that have the benefit of running code, which may serve as evidence of valuable experimentation and feedback that have made the implemented protocols more mature. It is up to the individual working groups to use this information as they see fit". Currently, there are no known implementations of the YANG Module as specified. 12. Acknowledgements The initial document is based on the PCEP MIB [RFC7420]. We would like to thank the authors of the aforementioned documents. Dhody, et al. Expires 14 March 2024 [Page 106] Internet-Draft PCE-YANG September 2023 Thanks to Martin Bjorklund and Tom Petch for detailed review and providing guidance regarding the YANG guidelines. Thanks to Mahesh Jethanandani for the YANGDOCTOR review. Thanks to Scott Kelly for the SECDIR review. Thanks to Gyan Mishra for the RTGDIR review. 13. References 13.1. Normative References [I-D.ietf-netconf-tls-client-server] Watsen, K., "YANG Groupings for TLS Clients and TLS Servers", Work in Progress, Internet-Draft, draft-ietf- netconf-tls-client-server-33, 17 April 2023, . [I-D.ietf-teas-yang-te] Saad, T., Gandhi, R., Liu, X., Beeram, V. P., Bryskin, I., and O. G. de Dios, "A YANG Data Model for Traffic Engineering Tunnels, Label Switched Paths and Interfaces", Work in Progress, Internet-Draft, draft-ietf-teas-yang-te- 33, 4 July 2023, . [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, . [RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, DOI 10.17487/RFC3688, January 2004, . [RFC5088] Le Roux, JL., Ed., Vasseur, JP., Ed., Ikejiri, Y., and R. Zhang, "OSPF Protocol Extensions for Path Computation Element (PCE) Discovery", RFC 5088, DOI 10.17487/RFC5088, January 2008, . [RFC5089] Le Roux, JL., Ed., Vasseur, JP., Ed., Ikejiri, Y., and R. Zhang, "IS-IS Protocol Extensions for Path Computation Element (PCE) Discovery", RFC 5089, DOI 10.17487/RFC5089, January 2008, . [RFC5440] Vasseur, JP., Ed. and JL. Le Roux, Ed., "Path Computation Element (PCE) Communication Protocol (PCEP)", RFC 5440, DOI 10.17487/RFC5440, March 2009, . Dhody, et al. Expires 14 March 2024 [Page 107] Internet-Draft PCE-YANG September 2023 [RFC5520] Bradford, R., Ed., Vasseur, JP., and A. Farrel, "Preserving Topology Confidentiality in Inter-Domain Path Computation Using a Path-Key-Based Mechanism", RFC 5520, DOI 10.17487/RFC5520, April 2009, . [RFC5541] Le Roux, JL., Vasseur, JP., and Y. Lee, "Encoding of Objective Functions in the Path Computation Element Communication Protocol (PCEP)", RFC 5541, DOI 10.17487/RFC5541, June 2009, . [RFC5557] Lee, Y., Le Roux, JL., King, D., and E. Oki, "Path Computation Element Communication Protocol (PCEP) Requirements and Protocol Extensions in Support of Global Concurrent Optimization", RFC 5557, DOI 10.17487/RFC5557, July 2009, . [RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP Authentication Option", RFC 5925, DOI 10.17487/RFC5925, June 2010, . [RFC6020] Bjorklund, M., Ed., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, DOI 10.17487/RFC6020, October 2010, . [RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed., and A. Bierman, Ed., "Network Configuration Protocol (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011, . [RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011, . [RFC6991] Schoenwaelder, J., Ed., "Common YANG Data Types", RFC 6991, DOI 10.17487/RFC6991, July 2013, . [RFC7950] Bjorklund, M., Ed., "The YANG 1.1 Data Modeling Language", RFC 7950, DOI 10.17487/RFC7950, August 2016, . [RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017, . Dhody, et al. Expires 14 March 2024 [Page 108] Internet-Draft PCE-YANG September 2023 [RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017, . [RFC8177] Lindem, A., Ed., Qu, Y., Yeung, D., Chen, I., and J. Zhang, "YANG Data Model for Key Chains", RFC 8177, DOI 10.17487/RFC8177, June 2017, . [RFC8231] Crabbe, E., Minei, I., Medved, J., and R. Varga, "Path Computation Element Communication Protocol (PCEP) Extensions for Stateful PCE", RFC 8231, DOI 10.17487/RFC8231, September 2017, . [RFC8232] Crabbe, E., Minei, I., Medved, J., Varga, R., Zhang, X., and D. Dhody, "Optimizations of Label Switched Path State Synchronization Procedures for a Stateful PCE", RFC 8232, DOI 10.17487/RFC8232, September 2017, . [RFC8253] Lopez, D., Gonzalez de Dios, O., Wu, Q., and D. Dhody, "PCEPS: Usage of TLS to Provide a Secure Transport for the Path Computation Element Communication Protocol (PCEP)", RFC 8253, DOI 10.17487/RFC8253, October 2017, . [RFC8281] Crabbe, E., Minei, I., Sivabalan, S., and R. Varga, "Path Computation Element Communication Protocol (PCEP) Extensions for PCE-Initiated LSP Setup in a Stateful PCE Model", RFC 8281, DOI 10.17487/RFC8281, December 2017, . [RFC8282] Oki, E., Takeda, T., Farrel, A., and F. Zhang, "Extensions to the Path Computation Element Communication Protocol (PCEP) for Inter-Layer MPLS and GMPLS Traffic Engineering", RFC 8282, DOI 10.17487/RFC8282, December 2017, . [RFC8306] Zhao, Q., Dhody, D., Ed., Palleti, R., and D. King, "Extensions to the Path Computation Element Communication Protocol (PCEP) for Point-to-Multipoint Traffic Engineering Label Switched Paths", RFC 8306, DOI 10.17487/RFC8306, November 2017, . Dhody, et al. Expires 14 March 2024 [Page 109] Internet-Draft PCE-YANG September 2023 [RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams", BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018, . [RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration Access Control Model", STD 91, RFC 8341, DOI 10.17487/RFC8341, March 2018, . [RFC8408] Sivabalan, S., Tantsura, J., Minei, I., Varga, R., and J. Hardwick, "Conveying Path Setup Type in PCE Communication Protocol (PCEP) Messages", RFC 8408, DOI 10.17487/RFC8408, July 2018, . [RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018, . [RFC8623] Palle, U., Dhody, D., Tanaka, Y., and V. Beeram, "Stateful Path Computation Element (PCE) Protocol Extensions for Usage with Point-to-Multipoint TE Label Switched Paths (LSPs)", RFC 8623, DOI 10.17487/RFC8623, June 2019, . [RFC8664] Sivabalan, S., Filsfils, C., Tantsura, J., Henderickx, W., and J. Hardwick, "Path Computation Element Communication Protocol (PCEP) Extensions for Segment Routing", RFC 8664, DOI 10.17487/RFC8664, December 2019, . [RFC8685] Zhang, F., Zhao, Q., Gonzalez de Dios, O., Casellas, R., and D. King, "Path Computation Element Communication Protocol (PCEP) Extensions for the Hierarchical Path Computation Element (H-PCE) Architecture", RFC 8685, DOI 10.17487/RFC8685, December 2019, . [RFC8697] Minei, I., Crabbe, E., Sivabalan, S., Ananthakrishnan, H., Dhody, D., and Y. Tanaka, "Path Computation Element Communication Protocol (PCEP) Extensions for Establishing Relationships between Sets of Label Switched Paths (LSPs)", RFC 8697, DOI 10.17487/RFC8697, January 2020, . Dhody, et al. Expires 14 March 2024 [Page 110] Internet-Draft PCE-YANG September 2023 [RFC8745] Ananthakrishnan, H., Sivabalan, S., Barth, C., Minei, I., and M. Negi, "Path Computation Element Communication Protocol (PCEP) Extensions for Associating Working and Protection Label Switched Paths (LSPs) with Stateful PCE", RFC 8745, DOI 10.17487/RFC8745, March 2020, . [RFC8776] Saad, T., Gandhi, R., Liu, X., Beeram, V., and I. Bryskin, "Common YANG Data Types for Traffic Engineering", RFC 8776, DOI 10.17487/RFC8776, June 2020, . [RFC8779] Margaria, C., Ed., Gonzalez de Dios, O., Ed., and F. Zhang, Ed., "Path Computation Element Communication Protocol (PCEP) Extensions for GMPLS", RFC 8779, DOI 10.17487/RFC8779, July 2020, . [RFC8800] Litkowski, S., Sivabalan, S., Barth, C., and M. Negi, "Path Computation Element Communication Protocol (PCEP) Extension for Label Switched Path (LSP) Diversity Constraint Signaling", RFC 8800, DOI 10.17487/RFC8800, July 2020, . [RFC9005] Litkowski, S., Sivabalan, S., Tantsura, J., Hardwick, J., and C. Li, "Path Computation Element Communication Protocol (PCEP) Extension for Associating Policies and Label Switched Paths (LSPs)", RFC 9005, DOI 10.17487/RFC9005, March 2021, . [RFC9129] Yeung, D., Qu, Y., Zhang, Z., Chen, I., and A. Lindem, "YANG Data Model for the OSPF Protocol", RFC 9129, DOI 10.17487/RFC9129, October 2022, . [RFC9130] Litkowski, S., Ed., Yeung, D., Lindem, A., Zhang, J., and L. Lhotka, "YANG Data Model for the IS-IS Protocol", RFC 9130, DOI 10.17487/RFC9130, October 2022, . [RFC9168] Dhody, D., Farrel, A., and Z. Li, "Path Computation Element Communication Protocol (PCEP) Extension for Flow Specification", RFC 9168, DOI 10.17487/RFC9168, January 2022, . Dhody, et al. Expires 14 March 2024 [Page 111] Internet-Draft PCE-YANG September 2023 [RFC9353] Lopez, D., Wu, Q., Dhody, D., Ma, Q., and D. King, "IGP Extension for Path Computation Element Communication Protocol (PCEP) Security Capability Support in PCE Discovery (PCED)", RFC 9353, DOI 10.17487/RFC9353, January 2023, . [RFC9358] Lee, Y., Zheng, H., and D. Ceccarelli, "Path Computation Element Communication Protocol (PCEP) Extensions for Establishing Relationships between Sets of Label Switched Paths and Virtual Networks", RFC 9358, DOI 10.17487/RFC9358, February 2023, . 13.2. Informative References [I-D.dhody-pce-pceps-tls13] Dhody, D., Turner, S., and R. Housley, "Updates for PCEPS", Work in Progress, Internet-Draft, draft-dhody-pce- pceps-tls13-02, 13 March 2023, . [IANA-IGP] "Path Computation Element (PCE) Capability Flags in Interior Gateway Protocol (IGP) Parameters", . [IANA-PCEP] "ASSOCIATION Type Field in Path Computation Element Protocol (PCEP) Numbers", . [RFC4655] Farrel, A., Vasseur, J.-P., and J. Ash, "A Path Computation Element (PCE)-Based Architecture", RFC 4655, DOI 10.17487/RFC4655, August 2006, . [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/RFC5246, August 2008, . [RFC7420] Koushik, A., Stephan, E., Zhao, Q., King, D., and J. Hardwick, "Path Computation Element Communication Protocol (PCEP) Management Information Base (MIB) Module", RFC 7420, DOI 10.17487/RFC7420, December 2014, . Dhody, et al. Expires 14 March 2024 [Page 112] Internet-Draft PCE-YANG September 2023 [RFC7942] Sheffer, Y. and A. Farrel, "Improving Awareness of Running Code: The Implementation Status Section", BCP 205, RFC 7942, DOI 10.17487/RFC7942, July 2016, . [RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K., and R. Wilton, "Network Management Datastore Architecture (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018, . [RFC8751] Dhody, D., Lee, Y., Ceccarelli, D., Shin, J., and D. King, "Hierarchical Stateful Path Computation Element (PCE)", RFC 8751, DOI 10.17487/RFC8751, March 2020, . Appendix A. The Full PCEP Data Model The module, "ietf-pcep", defines the basic components of a PCE speaker. The tree depth in the tree is set to 10. module: ietf-pcep +--rw pcep! +--rw entity +--rw addr inet:ip-address-no-zone +--rw enabled? boolean +--rw role role +--rw description? string +--rw speaker-entity-id? string {sync-opt}? +--rw admin-status? boolean +--ro index? uint32 +--ro oper-status? oper-status +--rw domains | +--rw domain* [type info] | +--rw type identityref | +--rw info domain +--rw capabilities | +--rw capability? bits | +--rw pce-initiated? boolean {pce-initiated}? | +--rw include-db-ver? boolean {stateful,sync-opt}? | +--rw trigger-resync? boolean {stateful,sync-opt}? | +--rw trigger-initial-sync? boolean {stateful,sync-opt}? | +--rw incremental-sync? boolean {stateful,sync-opt}? | +--rw sr {sr}? | | +--rw enabled? boolean | | +--rw msd-limit? boolean | | +--rw nai? boolean | +--rw stateful-gmpls {stateful,gmpls}? | | +--rw enabled? boolean Dhody, et al. Expires 14 March 2024 [Page 113] Internet-Draft PCE-YANG September 2023 | +--rw inter-layer? boolean {inter-layer}? | +--rw h-pce {h-pce}? | +--rw enabled? boolean | +--rw stateful? boolean {stateful}? | +--rw role? hpce-role +--rw msd? uint8 {sr}? +--rw auth | +--rw (auth-type-selection)? | +--:(auth-key-chain) | | +--rw key-chain? | | key-chain:key-chain-ref | +--:(auth-key) | | +--rw crypto-algorithm identityref | | +--rw (key-string-style)? | | +--:(keystring) | | | +--rw keystring? string | | +--:(hexadecimal) {key-chain:hex-key-string}? | | +--rw hexadecimal-string? yang:hex-string | +--:(auth-tls) {tls}? | +--rw (role)? | +--:(server) | | +--rw tls-server | | +--rw server-identity | | | +--rw (auth-type) | | | ... | | +--rw client-authentication! | | | {client-auth-supported}? | | | +--rw ca-certs! {client-auth-x509-cert}? | | | | ... | | | +--rw ee-certs! {client-auth-x509-cert}? | | | | ... | | | +--rw raw-public-keys! | | | | {client-auth-raw-public-key}? | | | | ... | | | +--rw tls12-psks? empty | | | | {client-auth-tls12-psk}? | | | +--rw tls13-epsks? empty | | | {client-auth-tls13-epsk}? | | +--rw hello-params {tlscmn:hello-params}? | | | +--rw tls-versions | | | | ... | | | +--rw cipher-suites | | | ... | | +--rw keepalives {tls-server-keepalives}? | | +--rw peer-allowed-to-send? empty | | +--rw test-peer-aliveness! | | ... | +--:(client) Dhody, et al. Expires 14 March 2024 [Page 114] Internet-Draft PCE-YANG September 2023 | +--rw tls-client | +--rw client-identity! | | +--rw (auth-type) | | ... | +--rw server-authentication | | +--rw ca-certs! {server-auth-x509-cert}? | | | ... | | +--rw ee-certs! {server-auth-x509-cert}? | | | ... | | +--rw raw-public-keys! | | | {server-auth-raw-public-key}? | | | ... | | +--rw tls12-psks? empty | | | {server-auth-tls12-psk}? | | +--rw tls13-epsks? empty | | {server-auth-tls13-epsk}? | +--rw hello-params {tlscmn:hello-params}? | | +--rw tls-versions | | | ... | | +--rw cipher-suites | | ... | +--rw keepalives {tls-client-keepalives}? | +--rw peer-allowed-to-send? empty | +--rw test-peer-aliveness! | ... +--rw pce-info | +--rw scope | | +--rw path-scope? bits | | +--rw intra-area-pref? uint8 | | +--rw inter-area-pref? uint8 | | +--rw inter-as-pref? uint8 | | +--rw inter-layer-pref? uint8 | +--rw neighbour-domains | | +--rw domain* [type info] | | +--rw type identityref | | +--rw info domain | +--rw path-key {path-key}? | +--rw enabled? boolean | +--rw discard-timer? uint32 | +--rw reuse-time? uint32 | +--rw pce-id? inet:ip-address-no-zone +--rw connect-timer? uint16 +--rw connect-max-retry? uint32 +--rw init-back-off-timer? uint16 +--rw max-back-off-timer? uint32 +--ro open-wait-timer? uint16 +--ro keep-wait-timer? uint16 +--rw keepalive-timer? uint8 Dhody, et al. Expires 14 March 2024 [Page 115] Internet-Draft PCE-YANG September 2023 +--rw dead-timer? uint8 +--rw allow-negotiation? boolean +--rw max-keepalive-timer? uint8 +--rw max-dead-timer? uint8 +--rw min-keepalive-timer? uint8 +--rw min-dead-timer? uint8 +--rw sync-timer? uint16 {svec}? +--rw request-timer? uint16 +--rw max-sessions? uint32 +--rw max-unknown-reqs? uint32 +--rw max-unknown-msgs? uint32 +--rw pcep-notification-max-rate uint32 +--rw stateful-parameter {stateful}? | +--rw state-timeout? uint32 | +--rw redelegation-timeout? uint32 | +--rw rpt-non-pcep-lsp? boolean +--rw of-list {objective-function}? | +--rw objective-function* [of] | +--rw of identityref +--ro lsp-db {stateful}? | +--ro db-ver? uint64 {sync-opt}? | +--ro association-list* | | [type id source global-source extended-id] | | {association}? | | +--ro type identityref | | +--ro id uint16 | | +--ro source inet:ip-address-no-zone | | +--ro global-source uint32 | | +--ro extended-id string | | +--ro lsp* [plsp-id pcc-id lsp-id] | | +--ro plsp-id -> /pcep/entity/lsp-db/lsp/plsp-id | | +--ro pcc-id -> /pcep/entity/lsp-db/lsp/pcc-id | | +--ro lsp-id -> /pcep/entity/lsp-db/lsp/lsp-id | +--ro lsp* [plsp-id pcc-id lsp-id] | +--ro plsp-id uint32 | +--ro pcc-id inet:ip-address-no-zone | +--ro source? inet:ip-address-no-zone | +--ro destination? inet:ip-address-no-zone | +--ro tunnel-id? uint16 | +--ro lsp-id uint16 | +--ro extended-tunnel-id? inet:ip-address-no-zone | +--ro admin-state? boolean | +--ro operational-state? operational-state | +--ro delegated | | +--ro enabled? boolean | | +--ro peer? -> /pcep/entity/peers/peer/addr | | +--ro srp-id? uint32 | +--ro initiation {pce-initiated}? Dhody, et al. Expires 14 March 2024 [Page 116] Internet-Draft PCE-YANG September 2023 | | +--ro enabled? boolean | | +--ro peer? -> /pcep/entity/peers/peer/addr | +--ro symbolic-path-name? string | +--ro last-error? identityref | +--ro pst? identityref | +--ro association-list* | [type id source global-source extended-id] | {association}? | +--ro type | | -> /pcep/entity/lsp-db/association-list/type | +--ro id | | -> /pcep/entity/lsp-db/association-list/id | +--ro source | | -> /pcep/entity/lsp-db/association-list/source | +--ro global-source leafref | +--ro extended-id leafref +--ro path-keys {path-key}? | +--ro path-key* [key] | +--ro key uint16 | +--ro cps | | +--ro explicit-route-objects* [index] | | +--ro index uint32 | | +--ro (type)? | | +--:(numbered-node-hop) | | | +--ro numbered-node-hop | | | +--ro node-id-uri? nw:node-id | | | +--ro node-id? te-node-id | | | +--ro hop-type? te-hop-type | | +--:(numbered-link-hop) | | | +--ro numbered-link-hop | | | +--ro link-tp-id te-tp-id | | | +--ro hop-type? te-hop-type | | | +--ro direction? te-link-direction | | +--:(unnumbered-link-hop) | | | +--ro unnumbered-link-hop | | | +--ro link-tp-id-uri? nt:tp-id | | | +--ro link-tp-id? te-tp-id | | | +--ro node-id-uri? nw:node-id | | | +--ro node-id? te-node-id | | | +--ro hop-type? te-hop-type | | | +--ro direction? te-link-direction | | +--:(as-number) | | | +--ro as-number-hop | | | +--ro as-number inet:as-number | | | +--ro hop-type? te-hop-type | | +--:(label) | | +--ro label-hop | | +--ro te-label Dhody, et al. Expires 14 March 2024 [Page 117] Internet-Draft PCE-YANG September 2023 | | ... | +--ro pcc-original? -> /pcep/entity/peers/peer/addr | +--ro req-id? uint32 | +--ro retrieved? boolean | +--ro pcc-retrieved? -> /pcep/entity/peers/peer/addr | +--ro creation-time? yang:timestamp | +--ro discard-time? uint32 | +--ro reuse-time? uint32 +--rw peers +--rw peer* [addr] +--rw addr inet:ip-address-no-zone +--rw role role +--rw description? string +--rw domains | +--rw domain* [type info] | +--rw type identityref | +--rw info domain +--rw capabilities | +--rw capability? bits | +--rw pce-initiated? boolean {pce-initiated}? | +--rw include-db-ver? boolean | | {stateful,sync-opt}? | +--rw trigger-resync? boolean | | {stateful,sync-opt}? | +--rw trigger-initial-sync? boolean | | {stateful,sync-opt}? | +--rw incremental-sync? boolean | | {stateful,sync-opt}? | +--rw sr {sr}? | | +--rw enabled? boolean | | +--rw msd-limit? boolean | | +--rw nai? boolean | +--rw stateful-gmpls {stateful,gmpls}? | | +--rw enabled? boolean | +--rw inter-layer? boolean {inter-layer}? | +--rw h-pce {h-pce}? | +--rw enabled? boolean | +--rw stateful? boolean {stateful}? | +--rw role? hpce-role +--rw msd? uint8 {sr}? +--rw pce-info | +--rw scope | | +--rw path-scope? bits | | +--rw intra-area-pref? uint8 | | +--rw inter-area-pref? uint8 | | +--rw inter-as-pref? uint8 | | +--rw inter-layer-pref? uint8 | +--rw neighbour-domains Dhody, et al. Expires 14 March 2024 [Page 118] Internet-Draft PCE-YANG September 2023 | +--rw domain* [type info] | +--rw type identityref | +--rw info domain +--rw delegation-pref? uint8 {stateful}? +--rw auth | +--rw (auth-type-selection)? | +--:(auth-key-chain) | | +--rw key-chain? | | key-chain:key-chain-ref | +--:(auth-key) | | +--rw crypto-algorithm identityref | | +--rw (key-string-style)? | | +--:(keystring) | | | +--rw keystring? string | | +--:(hexadecimal) {key-chain:hex-key-string}? | | +--rw hexadecimal-string? yang:hex-string | +--:(auth-tls) {tls}? | +--rw (role)? | +--:(server) | | +--rw tls-server | | ... | +--:(client) | +--rw tls-client | ... +--ro discontinuity-time? yang:timestamp +--ro initiate-session? boolean +--ro session-exists? boolean +--ro session-up-time? yang:timestamp +--ro session-fail-time? yang:timestamp +--ro session-fail-up-time? yang:timestamp +--ro sessions +--ro session* [initiator] +--ro initiator initiator +--ro role? | -> /pcep/entity/role +--ro state-last-change? yang:timestamp +--ro state? sess-state +--ro session-creation? yang:timestamp +--ro connect-retry? yang:counter32 +--ro local-id? uint8 +--ro remote-id? uint8 +--ro keepalive-timer? uint8 +--ro peer-keepalive-timer? uint8 +--ro dead-timer? uint8 +--ro peer-dead-timer? uint8 +--ro ka-hold-time-rem? uint8 +--ro overloaded? boolean +--ro overloaded-timestamp? yang:timestamp Dhody, et al. Expires 14 March 2024 [Page 119] Internet-Draft PCE-YANG September 2023 +--ro overload-time? uint32 +--ro peer-overloaded? boolean +--ro peer-overloaded-timestamp? yang:timestamp +--ro peer-overload-time? uint32 +--ro lspdb-sync? sync-state | {stateful}? +--ro recv-db-ver? uint64 | {stateful,sync-opt}? +--ro of-list {objective-function}? | +--ro objective-function* [of] | +--ro of identityref +--ro pst-list | +--ro path-setup-type* [pst] | +--ro pst identityref +--ro assoc-type-list {association}? | +--ro assoc-type* [at] | +--ro at identityref +--ro speaker-entity-id? string {sync-opt}? rpcs: +---x trigger-resync {stateful,sync-opt}? +---w input +---w pcc? -> /pcep/entity/peers/peer/addr notifications: +---n pcep-session-up | +--ro peer-addr? -> /pcep/entity/peers/peer/addr | +--ro session-initiator? | | -> /pcep/entity/peers/peer/sessions/session/initiator | +--ro state-last-change? yang:timestamp | +--ro state? sess-state +---n pcep-session-down | +--ro peer-addr? -> /pcep/entity/peers/peer/addr | +--ro session-initiator? initiator | +--ro state-last-change? yang:timestamp | +--ro state? sess-state +---n pcep-session-local-overload | +--ro peer-addr? -> /pcep/entity/peers/peer/addr | +--ro session-initiator? | | -> /pcep/entity/peers/peer/sessions/session/initiator | +--ro overloaded? boolean | +--ro overloaded-timestamp? yang:timestamp | +--ro overload-time? uint32 +---n pcep-session-local-overload-clear | +--ro peer-addr? | | -> /pcep/entity/peers/peer/addr | +--ro overloaded? boolean Dhody, et al. Expires 14 March 2024 [Page 120] Internet-Draft PCE-YANG September 2023 | +--ro overloaded-clear-timestamp? yang:timestamp +---n pcep-session-peer-overload | +--ro peer-addr? | | -> /pcep/entity/peers/peer/addr | +--ro session-initiator? | | -> /pcep/entity/peers/peer/sessions/session/initiator | +--ro peer-overloaded? boolean | +--ro peer-overloaded-timestamp? yang:timestamp | +--ro peer-overload-time? uint32 +---n pcep-session-peer-overload-clear +--ro peer-addr? | -> /pcep/entity/peers/peer/addr +--ro peer-overloaded? boolean +--ro peer-overloaded-clear-timestamp? yang:timestamp Appendix B. Example The example below provide an overview of PCEP peer session informations and LSP-DB in the Yang Module. +-------+ +-------+ | | | | | PCC1 |<---------------->| | | | | | +-------+ | | IP:192.0.2.1 | | | PCE | | | +-------+ | | | | | | | PCC2 |<---------------->| | | | | | +-------+ | | IP:192.0.2.2 | | | | +-------+ at PCE: { "ietf-pcep:pcep": { "entity": { "addr": "192.0.2.3", "role": "pce", "oper-status": "oper-status-up", "capabilities": { "capability": "active passive" }, Dhody, et al. Expires 14 March 2024 [Page 121] Internet-Draft PCE-YANG September 2023 "lsp-db": [ { "lsp": { "plsp-id": 3, "pcc-id": "192.0.2.1", "source": "192.0.2.1", "destination": "192.0.2.4", "tunnel-id": 16, "lsp-id": 3, "extended-tunnel-id": 0, "operational-status": "oper-status-up", "delegated": { "enabled": true }, "symbolic-path-name": "iewauh" } }, { "lsp": { "plsp-id": 4, "pcc-id": "192.0.2.2", "source": "192.0.2.2", "destination": "192.0.2.5", "tunnel-id": 17, "lsp-id": 4, "extended-tunnel-id": 0, "operational-status": "oper-status-up", "delegated": { "enabled": true }, "symbolic-path-name": "iewauhiewauh" } } ], "peers": [ { "peer": { "addr": "192.0.2.1", "role": "pcc", "capabilities": { "capability": "active passive" }, "sessions": [ { "session": { "initiator": "remote", "role": "pcc" } Dhody, et al. Expires 14 March 2024 [Page 122] Internet-Draft PCE-YANG September 2023 } ] } }, { "peer": { "addr": "192.0.2.2", "role": "pcc", "capabilities": { "capability": "active passive" }, "sessions": [ { "session": { "initiator": "remote", "role": "pcc" } } ] } } ] } } } Similarly a PCEP session with IPv6 address between PCE (2001:DB8::3) and a PCC (2001:DB8::4) could also be setup. Appendix C. Design Objectives This section describes some of the design objectives for the model: * In case of existing implementations, it needs to map the data model defined in this document to their proprietary native data model. To facilitate such mappings, the data model should be simple. * The data model should be suitable for new implementations to use as is. * Mapping to the PCEP MIB Module [RFC7420] should be clear. * The data model should allow for static configurations of peers. Dhody, et al. Expires 14 March 2024 [Page 123] Internet-Draft PCE-YANG September 2023 * The data model should include read-only counters in order to gather statistics for sent and received PCEP messages, received messages with errors, and messages that could not be sent due to errors. This could be in a separate model which augments the base data model. * It should be fairly straightforward to augment the base data model for advanced PCE features. Appendix D. Relationship with PCEP MIB If a node implements the PCEP-MIB [RFC7420], data nodes from the YANG module can be mapped to table entries in the PCEP-MIB. +==========================================+====================+ | YANG Data Nodes | PCEP MIB Objects | +==========================================+====================+ | /pcep/entity | PcePcepEntityEntry | +------------------------------------------+--------------------+ | /pcep/entity/peers/peer | pcePcepPeerEntry | +------------------------------------------+--------------------+ | /pcep/entity/peers/peer/sessions/session | pcePcepSessEntry | +------------------------------------------+--------------------+ Table 3: High Level Relationship with PCEP MIB +=====================+==========================================+ | YANG Data Nodes | PCEP MIB Objects | +=====================+==========================================+ | - | pcePcepEntityIndex | +---------------------+------------------------------------------+ | admin-status | pcePcepEntityAdminStatus | +---------------------+------------------------------------------+ | oper-status | pcePcepEntityOperStatus | +---------------------+------------------------------------------+ | addr | pcePcepEntityAddrType, pcePcepEntityAddr | +---------------------+------------------------------------------+ | connect-timer | pcePcepEntityConnectTimer | +---------------------+------------------------------------------+ | connect-max-retry | pcePcepEntityConnectMaxRetry | +---------------------+------------------------------------------+ | init-back-off-timer | pcePcepEntityInitBackoffTimer | +---------------------+------------------------------------------+ | max-back-off-timer | pcePcepEntityMaxBackoffTimer | +---------------------+------------------------------------------+ | open-wait-timer | pcePcepEntityOpenWaitTimer | +---------------------+------------------------------------------+ | keep-wait-timer | pcePcepEntityKeepWaitTimer | Dhody, et al. Expires 14 March 2024 [Page 124] Internet-Draft PCE-YANG September 2023 +---------------------+------------------------------------------+ | keepalive-timer | pcePcepEntityKeepAliveTimer | +---------------------+------------------------------------------+ | dead-timer | pcePcepEntityDeadTimer | +---------------------+------------------------------------------+ | allow-negotiation | pcePcepEntityAllowNegotiation | +---------------------+------------------------------------------+ | max-keepalive-timer | pcePcepEntityMaxKeepAliveTimer | +---------------------+------------------------------------------+ | max-dead-timer | pcePcepEntityMaxDeadTimer | +---------------------+------------------------------------------+ | min-keepalive-timer | pcePcepEntityMinKeepAliveTimer | +---------------------+------------------------------------------+ | min-dead-timer | pcePcepEntityMinDeadTimer | +---------------------+------------------------------------------+ | sync-timer | pcePcepEntitySyncTimer | +---------------------+------------------------------------------+ | request-timer | pcePcepEntityRequestTimer | +---------------------+------------------------------------------+ | max-sessions | pcePcepEntityMaxSessions | +---------------------+------------------------------------------+ | max-unknown-reqs | pcePcepEntityMaxUnknownReqs | +---------------------+------------------------------------------+ | max-unknown-msgs | pcePcepEntityMaxUnknownMsgs | +---------------------+------------------------------------------+ Table 4: Relationship with PCEP MIB for Entity +=========================+=====================================+ | YANG Data Nodes in | PCEP MIB Objects | | /pcep/entity/peers/peer | | +=========================+=====================================+ | addr | pcePcepPeerAddrType,pcePcepPeerAddr | +-------------------------+-------------------------------------+ | role | pcePcepPeerRole | +-------------------------+-------------------------------------+ | discontinuity-time | pcePcepPeerDiscontinuityTime | +-------------------------+-------------------------------------+ | initiate-session | pcePcepPeerInitiateSession | +-------------------------+-------------------------------------+ | session-exists | pcePcepPeerSessionExists | +-------------------------+-------------------------------------+ | sess-setup-ok | pcePcepPeerNumSessSetupOK | +-------------------------+-------------------------------------+ | sess-setup-fail | pcePcepPeerNumSessSetupFail | +-------------------------+-------------------------------------+ | session-up-time | pcePcepPeerSessionUpTime | +-------------------------+-------------------------------------+ Dhody, et al. Expires 14 March 2024 [Page 125] Internet-Draft PCE-YANG September 2023 | session-fail-time | pcePcepPeerSessionFailTime | +-------------------------+-------------------------------------+ | session-fail-up-time | pcePcepPeerSessionFailUpTime | +-------------------------+-------------------------------------+ | /stats/rsp-time-avg | pcePcepPeerAvgRspTime | +-------------------------+-------------------------------------+ | /stats/rsp-time-lwm | pcePcepPeerLWMRspTime | +-------------------------+-------------------------------------+ | /stats/rsp-time-hwm | pcePcepPeerHWMRspTime | +-------------------------+-------------------------------------+ | /stats/pcreq-sent | pcePcepPeerNumPCReqSent | +-------------------------+-------------------------------------+ | /stats/pcreq-rcvd | pcePcepPeerNumPCReqRcvd | +-------------------------+-------------------------------------+ | /stats/pcrep-sent | pcePcepPeerNumPCRepSent | +-------------------------+-------------------------------------+ | /stats/pcrep-rcvd | pcePcepPeerNumPCRepRcvd | +-------------------------+-------------------------------------+ | /stats/pcerr-sent | pcePcepPeerNumPCErrSent | +-------------------------+-------------------------------------+ | /stats/pcerr-rcvd | pcePcepPeerNumPCErrRcvd | +-------------------------+-------------------------------------+ | /stats/pcntf-sent | pcePcepPeerNumPCNtfSent | +-------------------------+-------------------------------------+ | /stats/pcntf-rcvd | pcePcepPeerNumPCNtfRcvd | +-------------------------+-------------------------------------+ | /stats/keepalive-sent | pcePcepPeerNumKeepaliveSent | +-------------------------+-------------------------------------+ | /stats/keepalive-rcvd | pcePcepPeerNumKeepaliveRcvd | +-------------------------+-------------------------------------+ | /stats/unknown-rcvd | pcePcepPeerNumUnknownRcvd | +-------------------------+-------------------------------------+ | /stats/corrupt-rcvd | pcePcepPeerNumCorruptRcvd | +-------------------------+-------------------------------------+ | /stats/req-sent | pcePcepPeerNumReqSent | +-------------------------+-------------------------------------+ | /stats/svec/svec-sent | pcePcepPeerNumSvecSent | +-------------------------+-------------------------------------+ | /stats/svec/svec-req- | pcePcepPeerNumSvecReqSent | | sent | | +-------------------------+-------------------------------------+ | /stats/req-sent-pend- | pcePcepPeerNumReqSentPendRep | | rep | | +-------------------------+-------------------------------------+ | /stats/req-sent-ero- | pcePcepPeerNumReqSentEroRcvd | | rcvd | | +-------------------------+-------------------------------------+ | /stats/req-sent-nopath- | pcePcepPeerNumReqSentNoPathRcvd | Dhody, et al. Expires 14 March 2024 [Page 126] Internet-Draft PCE-YANG September 2023 | rcvd | | +-------------------------+-------------------------------------+ | /stats/req-sent-cancel- | pcePcepPeerNumReqSentCancelRcvd | | rcvd | | +-------------------------+-------------------------------------+ | /stats/req-sent-error- | pcePcepPeerNumReqSentErrorRcvd | | rcvd | | +-------------------------+-------------------------------------+ | /stats/req-sent-timeout | pcePcepPeerNumReqSentTimeout | +-------------------------+-------------------------------------+ | /stats/req-sent-cancel- | pcePcepPeerNumReqSentCancelSent | | sent | | +-------------------------+-------------------------------------+ | /stats/req-sent-closed | pcePcepPeerNumReqSentClosed | +-------------------------+-------------------------------------+ | /stats/req-rcvd | pcePcepPeerNumReqRcvd | +-------------------------+-------------------------------------+ | /stats/svec/svec-rcvd | pcePcepPeerNumSvecRcvd | +-------------------------+-------------------------------------+ | /stats/svec/svec-req- | pcePcepPeerNumSvecReqRcvd | | rcvd | | +-------------------------+-------------------------------------+ | /stats/req-rcvd-pend- | pcePcepPeerNumReqRcvdPendRep | | rep | | +-------------------------+-------------------------------------+ | /stats/req-rcvd-ero- | pcePcepPeerNumReqRcvdEroSent | | sent | | +-------------------------+-------------------------------------+ | /stats/req-rcvd-nopath- | pcePcepPeerNumReqRcvdNoPathSent | | sent | | +-------------------------+-------------------------------------+ | /stats/req-rcvd-cancel- | pcePcepPeerNumReqRcvdCancelSent | | sent | | +-------------------------+-------------------------------------+ | /stats/req-rcvd-error- | pcePcepPeerNumReqRcvdErrorSent | | sent | | +-------------------------+-------------------------------------+ | /stats/req-rcvd-cancel- | pcePcepPeerNumReqRcvdCancelRcvd | | rcvd | | +-------------------------+-------------------------------------+ | /stats/req-rcvd-closed | pcePcepPeerNumReqRcvdClosed | +-------------------------+-------------------------------------+ | /stats/rep-rcvd-unknown | pcePcepPeerNumRepRcvdUnknown | +-------------------------+-------------------------------------+ | /stats/req-rcvd-unknown | pcePcepPeerNumReqRcvdUnknown | +-------------------------+-------------------------------------+ Table 5: Relationship with PCEP MIB for Peer Dhody, et al. Expires 14 March 2024 [Page 127] Internet-Draft PCE-YANG September 2023 +=================================+===============================+ |YANG Data Nodes in |PCEP MIB Objects | |/pcep/entity/peers/peer/sessions/| | |session | | +=================================+===============================+ |initiator |pcePcepSessInitiator | +---------------------------------+-------------------------------+ |state-last-change |pcePcepSessStateLastChange | +---------------------------------+-------------------------------+ |state |pcePcepSessState | +---------------------------------+-------------------------------+ |connect-retry |pcePcepSessConnectRetry | +---------------------------------+-------------------------------+ |local-id |pcePcepSessLocalID | +---------------------------------+-------------------------------+ |remote-id |pcePcepSessRemoteID | +---------------------------------+-------------------------------+ |keepalive-timer |pcePcepSessKeepaliveTimer | +---------------------------------+-------------------------------+ |peer-keepalive-timer |pcePcepSessPeerKeepaliveTimer | +---------------------------------+-------------------------------+ |dead-timer |pcePcepSessDeadTimer | +---------------------------------+-------------------------------+ |peer-dead-timer |pcePcepSessPeerDeadTimer | +---------------------------------+-------------------------------+ |ka-hold-time-rem |pcePcepSessKAHoldTimeRem | +---------------------------------+-------------------------------+ |overloaded |pcePcepSessOverloaded | +---------------------------------+-------------------------------+ |overloaded-timestamp |pcePcepSessOverloadTime | +---------------------------------+-------------------------------+ |peer-overloaded |pcePcepSessPeerOverloaded | +---------------------------------+-------------------------------+ |peer-overloaded-timestamp |pcePcepSessPeerOverloadTime | +---------------------------------+-------------------------------+ |/stats/discontinuity-time |pcePcepSessDiscontinuityTime | +---------------------------------+-------------------------------+ |/stats/rsp-time-avg |pcePcepSessAvgRspTime | +---------------------------------+-------------------------------+ |/stats/rsp-time-lwm |pcePcepSessLWMRspTime | +---------------------------------+-------------------------------+ |/stats/rsp-time-hwm |pcePcepSessHWMRspTime | +---------------------------------+-------------------------------+ |/stats/pcreq-sent |pcePcepSessNumPCReqSent | +---------------------------------+-------------------------------+ |/stats/pcreq-rcvd |pcePcepSessNumPCReqRcvd | +---------------------------------+-------------------------------+ |/stats/pcrep-sent |pcePcepSessNumPCRepSent | Dhody, et al. Expires 14 March 2024 [Page 128] Internet-Draft PCE-YANG September 2023 +---------------------------------+-------------------------------+ |/stats/pcrep-rcvd |pcePcepSessNumPCRepRcvd | +---------------------------------+-------------------------------+ |/stats/pcerr-sent |pcePcepSessNumPCErrSent | +---------------------------------+-------------------------------+ |/stats/pcerr-rcvd |pcePcepSessNumPCErrRcvd | +---------------------------------+-------------------------------+ |/stats/pcntf-sent |pcePcepSessNumPCNtfSent | +---------------------------------+-------------------------------+ |/stats/pcntf-rcvd |pcePcepSessNumPCNtfRcvd | +---------------------------------+-------------------------------+ |/stats/keepalive-sent |pcePcepSessNumKeepaliveSent | +---------------------------------+-------------------------------+ |/stats/keepalive-rcvd |pcePcepSessNumKeepaliveRcvd | +---------------------------------+-------------------------------+ |/stats/unknown-rcvd |pcePcepSessNumUnknownRcvd | +---------------------------------+-------------------------------+ |/stats/corrupt-rcvd |pcePcepSessNumCorruptRcvd | +---------------------------------+-------------------------------+ |/stats/req-sent |pcePcepSessNumReqSent | +---------------------------------+-------------------------------+ |/stats/svec/svec-sent |pcePcepSessNumSvecSent | +---------------------------------+-------------------------------+ |/stats/svec/svec-req-sent |pcePcepSessNumSvecReqSent | +---------------------------------+-------------------------------+ |/stats/req-sent-pend-rep |pcePcepSessNumReqSentPendRep | +---------------------------------+-------------------------------+ |/stats/req-sent-ero-rcvd |pcePcepSessNumReqSentEroRcvd | +---------------------------------+-------------------------------+ |/stats/req-sent-nopath-rcvd |pcePcepSessNumReqSentNoPathRcvd| +---------------------------------+-------------------------------+ |/stats/req-sent-cancel-rcvd |pcePcepSessNumReqSentCancelRcvd| +---------------------------------+-------------------------------+ |/stats/req-sent-error-rcvd |pcePcepSessNumReqSentErrorRcvd | +---------------------------------+-------------------------------+ |/stats/req-sent-timeout |pcePcepSessNumReqSentTimeout | +---------------------------------+-------------------------------+ |/stats/req-sent-cancel-sent |pcePcepSessNumReqSentCancelSent| +---------------------------------+-------------------------------+ |/stats/req-rcvd |pcePcepSessNumReqRcvd | +---------------------------------+-------------------------------+ |/stats/svec/svec-rcvd |pcePcepSessNumSvecRcvd | +---------------------------------+-------------------------------+ |/stats/svec/svec-req-rcvd |pcePcepSessNumSvecReqRcvd | +---------------------------------+-------------------------------+ |/stats/req-rcvd-pend-rep |pcePcepSessNumReqRcvdPendRep | +---------------------------------+-------------------------------+ |/stats/req-rcvd-ero-sent |pcePcepSessNumReqRcvdEroSent | Dhody, et al. Expires 14 March 2024 [Page 129] Internet-Draft PCE-YANG September 2023 +---------------------------------+-------------------------------+ |/stats/req-rcvd-nopath-sent |pcePcepSessNumReqRcvdNoPathSent| +---------------------------------+-------------------------------+ |/stats/req-rcvd-cancel-sent |pcePcepSessNumReqRcvdCancelSent| +---------------------------------+-------------------------------+ |/stats/req-rcvd-error-sent |pcePcepSessNumReqRcvdErrorSent | +---------------------------------+-------------------------------+ |/stats/req-rcvd-cancel-rcvd |pcePcepSessNumReqRcvdCancelRcvd| +---------------------------------+-------------------------------+ |/stats/rep-rcvd-unknown |pcePcepSessNumRepRcvdUnknown | +---------------------------------+-------------------------------+ |/stats/req-rcvd-unknown |pcePcepSessNumReqRcvdUnknown | +---------------------------------+-------------------------------+ Table 6: Relationship with PCEP MIB for Session +===================================+=============================+ | YANG notifications |PCEP MIB NOTIFICATIONS | +===================================+=============================+ | pcep-session-up |pcePcepSessUp | +-----------------------------------+-----------------------------+ | pcep-session-down |pcePcepSessDown | +-----------------------------------+-----------------------------+ | pcep-session-local-overload |pcePcepSessLocalOverload | +-----------------------------------+-----------------------------+ | pcep-session-local-overload-clear |pcePcepSessLocalOverloadClear| +-----------------------------------+-----------------------------+ | pcep-session-peer-overload |pcePcepSessPeerOverload | +-----------------------------------+-----------------------------+ | pcep-session-peer-overload-clear |pcePcepSessPeerOverloadClear | +-----------------------------------+-----------------------------+ Table 7: Relationship with PCEP MIB Notification Appendix E. Contributor Addresses Rohit Pobbathi Nokia Networks India EMail: rohit.pobbathi_ashok@nokia.com Vinod KumarS India EMail: vinods.kumar@gmail.com Zafar Ali Dhody, et al. Expires 14 March 2024 [Page 130] Internet-Draft PCE-YANG September 2023 Cisco Systems Canada EMail: zali@cisco.com Xufeng Liu Alef Edge EMail: xufeng.liu.ietf@gmail.com Young Lee Samsung EMail: younglee.tx@gmail.com Udayasree Palle EMail: udayasreereddy@gmail.com Xian Zhang Huawei Technologies Bantian, Longgang District Shenzhen 518129 P.R.China EMail: zhang.xian@huawei.com Avantika ECI Telecom India EMail: avantika.srm@gmail.com Shashikanth India EMail: shashivh@gmail.com Authors' Addresses Dhruv Dhody (editor) Huawei India Email: dhruv.ietf@gmail.com Dhody, et al. Expires 14 March 2024 [Page 131] Internet-Draft PCE-YANG September 2023 Vishnu Pavan Beeram Juniper Networks India Email: vbeeram@juniper.net Jonathan Hardwick Microsoft United Kingdom Email: jonhardwick@microsoft.com Jeff Tantsura Nvidia United States of America Email: jefftant.ietf@gmail.com Dhody, et al. Expires 14 March 2024 [Page 132]