Internet-Draft | MNA NRP Sel | May 2023 |
Li, et al. | Expires 6 November 2023 | [Page] |
An IETF Network Slice service provides connectivity coupled with a set of network resource commitments and is expressed in terms of one or more connectivity constructs. A Network Resource Partition (NRP) is a collection of resources identified in the underlay network to support IETF Network Slice services. A Slice-Flow Aggregate refers to the set of traffic streams from one or more connectivity constructs belonging to one or more IETF Network Slices that are mapped to a specific NRP and provided the same forwarding treatment. The packets associated with a Slice-Flow Aggregate may carry a marking in the packet's network layer header to identify this association and this marking is referred to as NRP Selector. The NRP Selector is used to map the packet to the associated NRP and provide the corresponding forwarding treatment to the packet.¶
MPLS Network Actions (MNA) technologies are used to indicate actions for Label Switched Paths (LSPs) and/or MPLS packets and to transfer data needed for these actions. This document discusses options for using MPLS Network Actions (MNAs) to carry the NRP Selector in MPLS packets.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 6 November 2023.¶
Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
An IETF Network Slice [I-D.ietf-teas-ietf-network-slices] service provides connectivity coupled with a set of specific commitments of network resources between a number of endpoints over a shared underlay network. The IETF Network Slice service is expressed in terms of one or more connectivity constructs. A Network Resource Partition (NRP) [I-D.ietf-teas-ietf-network-slices] is a collection of resources identified in the underlay network to support IETF Network Slice services (or any other services that need logical network structures with required characteristics to be created). An NRP Policy [I-D.ietf-teas-ns-ip-mpls] is a policy construct that enables instantiation of mechanisms in support of service specific control and data plane behaviors on select topological elements associated with the NRP.¶
A Slice-Flow Aggregate refers to the set of traffic streams from one or more connectivity constructs belonging to one or more IETF Network Slices that are mapped to a specific NRP and are provided the same forwarding treatment. The NRP policy dictates the identification of the flow aggregate that the packet belongs to and the corresponding forwarding treatment that needs to be applied to the packet. The packets associated with a Slice-Flow Aggregate may carry a marking in the packet's network layer header to identify this association and this marking is referred to as NRP Selector (NRPS). [I-D.ietf-teas-ns-ip-mpls] discusses a few options for carrying the NRP Selector in MPLS packets, including overloading the semantics of forwarding/service labels and using a dedicated identifier field.¶
[I-D.ietf-mpls-mna-fwk] specifies an architectural framework for the MPLS Network Actions (MNA) technologies. MNA technologies are used to indicate actions for Label Switched Paths (LSPs) and/or MPLS packets and to transfer data needed for these actions. The MNA architecture can facilitate carrying the dedicated identifier based NRP Selector in the MPLS label stack. This document discusses a few options for using MPLS network actions to carry the NRP Selector. The proposed encodings are compliant with the MNA header encoding formats defined in [I-D.ietf-mpls-mna-hdr].¶
The reader is expected to be familiar with terminology specified in [I-D.ietf-mpls-mna-fwk] and MNA header encoding formats defined in [I-D.ietf-mpls-mna-hdr].¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
The format of the 13-bit NRP Selector (NRPS13) Action (when encoded in the second label stack entry in the Network Action Sub-Stack):¶
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Opcode=TBA1 | NRPS |R|IHS|S| Res |U| NASL | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+¶
The format of the 20-bit NRP Selector (NRPS20) Action:¶
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Opcode=TBA2| NRPS |S| NRPS | NAL | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+¶
The format of the 20-bit Entropy and NRP Selector (ENRPS20) Action:¶
0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Opcode=TBA3| Entropy | NRPS |S| NRPS | NAL | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+¶
This document requests that IANA allocate a codepoint (TBA1) from the "Multiprotocol Label Switching Architecture (MPLS)"/"MPLS Network Actions Parameters"/"Network Action Opcodes" registry for the 13-bit NRP Selector Action. The allocation should reference this document.¶
This document requests that IANA allocate a codepoint (TBA2) from the "Multiprotocol Label Switching Architecture (MPLS)"/"MPLS Network Actions Parameters"/"Network Action Opcodes" registry for the 20-bit NRP Selector Action. The allocation should reference this document.¶
This document requests that IANA allocate a codepoint (TBA3) from the "Multiprotocol Label Switching Architecture (MPLS)"/"MPLS Network Actions Parameters"/"Network Action Opcodes" registry for the 20-bit Entropy and NRP Selector Action. The allocation should reference this document.¶
The forwarding plane is insecure. If an adversary can affect the forwarding plane, then they can inject data, remove data, corrupt data, or modify data. MNA additionally allows an adversary to make packets perform arbitrary network actions.¶
Link-level security mechanisms can help mitigate some on-link attacks, but does nothing to preclude hostile nodes.¶
The following individuals contributed to this document:¶
Colby Barth
Juniper Networks
Email: cbarth@juniper.net¶
Srihari R. Sangli
Juniper Networks
Email: ssangli@juniper.net¶
Chandra Ramachandran
Juniper Networks
Email: csekar@juniper.net¶
Kireeti Kompella
Juniper Networks
Email: kireeti@juniper.net¶