Internet-Draft | tls1.2-frozen | June 2023 |
Salz & Aviram | Expires 21 December 2023 | [Page] |
TLS 1.2 is in widespread use and can be configured such that it provides good security properties. TLS 1.3 is also in widespread use and fixes some known deficiencies with TLS 1.2, such as removing error-prone cryptographic primitives and encrypting more of the traffic so that it is not readable by outsiders.¶
Both versions have several extension points, so items like new cryptographic algorithms, new supported groups (formerly "named curves"), etc., can be added without defining a new protocol. This document specifies that TLS 1.2 is frozen: no new algorithms or extensions will be approved.¶
Further, TLS 1.3 use is widespread, and new protocols should require and assume its existence.¶
This note is to be removed before publishing as an RFC.¶
Status information for this document may be found at https://datatracker.ietf.org/doc/draft-rsalz-tls-tls12-frozen/.¶
Discussion of this document takes place on the Transport Layer Security Working Group mailing list (mailto:tls@ietf.org), which is archived at https://mailarchive.ietf.org/arch/browse/tls/. Subscribe at https://www.ietf.org/mailman/listinfo/tls/.¶
Source for this draft and an issue tracker can be found at https://github.com/richsalz/tls12-frozen.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 21 December 2023.¶
Copyright (c) 2023 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Revised BSD License.¶
TLS 1.2 [TLS12] is in widespread use and can be configured such that it provides good security properties. However, this protocol version suffers from several deficiencies:¶
In contrast, TLS 1.3 [TLS13] is also in widespread use and fixes most known deficiencies with TLS 1.2, such as encrypting more of the traffic so that it is not readable by outsiders and removing most cryptographic primitives considered dangerous. Importantly, TLS 1.3 enjoys robust security proofs and provides excellent security as-is.¶
Both versions have several extension points, so items like new cryptographic algorithms, new supported groups (formerly "named curves"), etc., can be added without defining a new protocol. This document specifies that TLS 1.2 is frozen: no new algorithms or extensions will be approved.¶
Further, TLS 1.3 use is widespread, and new protocols should require and assume its existence.¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
Quantum computers, once available, will have a huge impact on TLS. In 2016, the US National Institute of Standards and Technology started a multi-year effort to standardize algorithms that will be "safe" once quantum computers are feasible [PQC]. First IETF discussions happened around the same time [CFRGSLIDES].¶
While the industry is waiting for NIST to finish standardization, the IETF has several efforts underway. A working group was formed in early 2013 to work on use of PQC in IETF protocols, [PQUIPWG]. Several other working groups, including TLS [TLSWG], are working on drafts to support hybrid algorithms and identifiers, for use during a transition from classic to a post-quantum world.¶
For TLS it is important to note that the focus of these efforts is TLS 1.3 or later. TLS 1.2 is WILL NOT be supported (see Section 6).¶
Any new protocol that uses TLS MUST specify TLS 1.3 as its default. For example, QUIC [QUICTLS] requires TLS 1.3 and specifies that endpoints MUST terminate the connection if an older version is used.¶
If deployment considerations are a concern, the protocol MAY specify TLS 1.2 as an additional, non-default option. As a counter example, the Usage Profile for DNS over TLS [DNSTLS] specifies TLS 1.2 as the default, while also allowing TLS 1.3. For newer specifications that choose to support TLS 1.2, those preferences are to be reversed.¶
TLS 1.2 was specified with several cryptographic primitives and design choices that have historically hindered its security. The purpose of this section is to briefly survey several such prominent problems that have affected the protocol. It should be noted, however, that TLS 1.2 can be configured securely; it is merely much more difficult to configure it securely as opposed to using its modern successor, TLS 1.3. See [RFC9325] for a more thorough guide on the secure deployment of TLS 1.2.¶
Firstly, the TLS 1.2 protocol, without any extension points, is vulnerable to the renegotiation attack and the Triple Handshake attack. Broadly, these attacks exploit the protocol's support for renegotiation in order to inject a prefix chosen by the attacker into the plaintext stream. This is usually a devastating threat in practice, that allows e.g. obtaining secret cookies in a web setting. Refer to [RENEG1], [RENEG2], [TRIPLESHAKE] for elaboration. In light of the above problems, [RFC5746] specifies an extension that prevents this category of attacks. To securely deploy TLS 1.2, either renegotiation must be disabled entirely, or this extension must be present. Additionally, clients must not allow servers to renegotiate the certificate during a connection.¶
Secondly, the original key exchange methods specified for the protocol, namely RSA key exchange and finite field Diffie-Hellman, suffer from several weaknesses. As before, to securely deploy the protocol, these key exchange methods must be disabled. Refer to draft-obsolete-kex for elaboration (TODO I guess we will anyway wait for WGLC for draft-obsolete-kex, so no sense to temporarily refer to the draft.)¶
Thirdly, symmetric ciphers which were widely-used in the protocol, namely RC4 and CBC cipher suites, suffer from several weaknesses. RC4 suffers from exploitable biases in its key stream; see [RFC7465]. CBC cipher suites have been a source of vulnerabilities throughout the years. A straightforward implementation of these cipher suites inherently suffers from the Lucky13 timing attack [LUCKY13], [LUCKY13FIX]. The first attempt to implement the cipher suites in constant time introduced an even more severe vulnerability. There have been further similar vulnerabilities throughout the years exploiting CBC cipher suites; refer to e.g. [CBCSCANNING] for an example and a survey of similar works.¶
And lastly, historically the protocol was affected by several other attacks that TLS 1.3 is immune to: BEAST [BEAST], Logjam [WEAKDH], FREAK [FREAK], and SLOTH [SLOTH].¶
IANA will stop accepting registrations for any TLS parameters [TLS13REG] except for the following:¶
Entries in any other TLS protocol registry should have an indication like "For TLS 1.3 or later" in their entry.¶
None yet.¶